Showing 1 - 6 results of 6 for search '"ФУНКЦИОНАЛЬНАЯ СВЯЗНОСТЬ"', query time: 0.47s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Russian Psychological Journal; Vol. 21 No. 3 (2024); 152-171 ; Российский психологический журнал; Том 21 № 3 (2024); 152-171 ; 2411-5789 ; 1812-1853 ; 10.21702/t4pekh40

    File Description: application/pdf

  4. 4
    Academic Journal

    Source: Medical Visualization; Том 24, № 2 (2020); 119-130 ; Медицинская визуализация; Том 24, № 2 (2020); 119-130 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/918/604; Кротенкова М.В., Брюхов В.В., Морозова С.Н., Кремнева Е.И., Сергеева А.Н., Древаль М.В., Кротенкова И.А., Коновалов Р.Н., Суслин А.С. Современные технологии нейровизуализации. Радиология-практика. 2017; 62 (2): 47–63.; Кремнева Е.И., Змейкина Э.А., Морозова С.Н., Суслин А.С., Коновалов Р.Н., Кротенкова М.В. Функциональная магнитно-резонансная томография в неврологии. М.: ИП Мартынов, 2016. 90 с. ISBN 978-5-9905509-6-4.; Шарова Е.В., Гаврон А.А., Абдулаев А.А., Смирнов А.С., Фадеева Л.М., Челяпина М.В., Жаворонкова Л.А., Болдырева Г.Н., Куликов М.А., Верхлютов В.М., Пронин И.Н., Корниенко В.Н. Опыт фМРТ-анализа состояния покоя (resting state) здоровых испытуемых с использованием программного обеспечения FSL. Медицинская визуализация. 2017; 4: 6–17.; Розовская Р.И., Печенкова Е.В., Мершина Е.А., Мачинская Р.И. ФМРТ исследование удержания в рабочей памяти изображений различной эмоциональной валентности. Психология. Журнал высшей школы экономики. 2014; 1 (11): 27–48.; Куликова С.Н., Переседова А.В. Кротенкова М.В., Брюхов В.В., Трифонова О.В., Завалишин И.А. Динамическое исследование реорганизации коры и структуры проводящих путей при ремиттирующем рассеянном склерозе с парезом кисти. Анналы клинической и экспериментальной неврологии. 2014; 1 (8): 22–29.; Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Res. Med. 1995; 34 (4): 537–541. https://doi.org/10.1002/mrm.1910340409; Селиверстова Е.В., Селиверстов Ю.А., Коновалов Р.Н., Иллариошкин С.Н. Функциональная магнитно-резонансная томография покоя: новые возможности изуче ния физиологии и патологии мозга. Анналы клинической и экспериментальной неврологии. 2013; 4 (7): 39–44.; Buchbinder B.R. Functional magnetic resonance imaging. Handb. Clin. Neurol. 2016; 135: 61–92. https://doi.org/10.1016/b978-0-444-53485-9.00004-0; Friston K.J., Frith C.D., Fletcher P., Liddle P.F., Frackowiak R.S. Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb. Cortex. 1996; 6 (2): 156–164. https://doi.org/10.1093/cercor/6.2.156; Friston K.J., Worsley K.J., Frackowiak R.S., Mazziotta J.C., Evans A.C. Assessing the significance of focal activations using their spatial extent. Hum. Brain Mapp. 1994; 1 (3): 210–220. https://doi.org/10.1002/hbm.460010306; Foster B.L., Rangarajan V., Shirer W.R., Parvizi J. Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron. 2015; 86: 578–590. https://doi.org/10.1016/j.neuron.2015.03.018; Cole M., Bassett D., Power J., Braver T., Petersen S. Intrinsic and Task-Evoked Network Architectures of the Human Brain. Neuron. 2014; 83: 238–251. https://doi.org/10.1016/j.neuron.2014.05.014; Spadone S., Penna S., Sestieri C., Betti V., Tosoni A., Perrucci M., Romani, G., Corbetta, M. Dynamic reorganization of human resting-state networks during visuospatial attention. Proc. Natl. Acad. Sci. USA. 2015; 112: 8112–8117. https://doi.org/10.1073/pnas.1415439112; Kaufmann T., Alnæs D., Brandt C., Doan N., Kauppi K. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. Neuro-Image. 2017; 147: 243–252. https://doi.org/10.1016/j.neuroimage.2016.11.073; Shine J., Bissett P., Bell P., Koyejo O., Balsters J. The dyna mics of functional brain networks: Integrated network states during cognitive task performance. Neuron. 2016; 92: 544–554. https://doi.org/10.1016/j.neuron.2016.09.018; Krienen F., Yeo T., Buckner R. Reconfigurable taskdependent functional coupling modes cluster around a core functional architecture. Philosophical Transactions Royal Soc. B. Biol. Sci. 2014; 369: 20130526. https://doi.org/10.1098/rstb.2013.0526; Gonzalez-Castillo J., Hoy C.W., Handwerker D., Robinson M.E., Buchanan L.C., Saad Z.S., Bandettini P. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc. Nat. Acad. Sci. 2015; 112: 8762–8767. https://doi.org/10.1073/pnas.1501242112; Sadaghiani S., Poline J.-B., Kleinschmidt A., D’Esposito M. Ongoing dynamics in large-scale functional connectivity predict perception. Proc. Nat. Acad. Sci. 2015; 112: 8463–8468. https://doi.org/10.1073/pnas.1420687112; Лебедева И.С., Каледа В.Г., Бархатов А.Н., Абрамова Л.И., Голимбет В.Е., Петряйкин А.В., Семенова Н.А., Ахадов Т.А. Нейрофизиологические маркеры когнитивных нарушений при приступообразной шизофрении. Психиатрия. 2010; 4 (46): 7–11.; Лурия А.Р. Высшие корковые функции человека. 2-е изд. М.: Изд-во МГУ, 1980. 271 с.; Lezak M.D. Neuropsychological Assessment. 2nd ed. New York: Oxford University Press, 1983. https://doi.org/10.1177/073428298600400111; Семенова О.А. Проблемы исследования функций программирования, регуляции и контроля психической деятельности человека. Обзор литературы. Физиология человека. 2005; 6 (31): 106–115.; Camilleri J.A., Müller V.I., Fox P., Laird A.R., Hoffstaedter F., Kalenscher T., Eickhoff S.B., Definition and characterization of an extended multiple-demand network. NeuroImage. 2018: 138–147. https://doi.org/10.1016/j.neuroimage.2017.10.020; Crittenden B.M., Mitchell D.J., Duncan J. Task Encoding across the Multiple Demand Cortex Is Consistent with a Frontoparietal and Cingulo-Opercular Dual Networks Distinction. J. Neurosci. 2016; 36 (23): 6147–6155. https://doi.org/10.1523/jneurosci.1466-17.2017; Amato M.P., Portaccio E., Goretti B., Zipoli V., Ricchiuti L., De Caro M. F., Patti F., Vecchio R., Sorbi S., Trojano M. The Rao’s brief repeatable battery and stroop test: normative values with age, education and gender corrections in an Italian population. Mult. Scler. 2006; 12: 787–793. https://doi.org/10.1177/1352458506070933; Fera F., Nicoletti G., Cerasa A., Romeo N., Gallo O., Gioia M.C., Arabia G., Pugliese P., Zappia M., Quattrone A. Dopaminergic modulation of cognitive interference after pharmacological washout in Parkinson’s disease. Brain Res. Bull. 2007; 74: 75–83. https://doi.org/10.1016/j.brainresbull.2007.05.009; Scarpina F., Tagini S. The stroop color and word test. Front. Psychol. 2017; 8: 1–8. https://doi.org/10.3389/fpsyg.2017.00557; Langenecker S.A. FMRI of healthy older adults during Stroop interference. NeuroImage. 2004; 21: 192–200. https://doi.org/10.1016/j.neuroimage.2003.08.027; Glascher J., Adolphs R., Damasio H., Bechara A., Rudrauf D., Calamia M. et al. Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 14681– 14686. https://doi.org/10.1073/pnas.1206608109; Esterman M., Noonan S.K., Rosenberg M., Degutis J. In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cereb. Cortex. 2013; 23: 2712–2723. https://doi.org/10.1093/cercor/bhs261; Hellyer P.J., Shanahan M., Scott G., Wise R.J., Sharp D.J., Leech R. The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neurosci. 2014; 34: 451–461. https://doi.org/10.1523/jneurosci.1853-13.2014; Song Y., Hakoda Y. An fMRI study of the functional mecha nisms of Stroop/reverse-Stroop effects. Behav. Brain. Res. 2015; 290: 187–196. https://doi.org/10.1016/j.bbr.2015.04.047; Ярец М.Ю., Шарова Е.В., Смирнов А.С., Погосбекян Э.Л., Болдырева Г.Н., Зайцев О.С., Ениколопова Е.В. Журнал высшей нервной деятельности им. И.П. Павлова. 2018; 2 (68): 1–14; Burbaud P., Camus O., Caille J.M., Biolac B., Allard M. Influence of individual strategies on brain activation pattern during cognitive tasks. J. Neuroradiol. 1999; 26: 59–65. https://doi.org/10.1016/s0304-3940(00)01099-5; Sveljo O., Culić M., Koprivšek K., Lučić M. The functional neuroimaging evidence of cerebellar involvement in the simple cognitive task. Brain Imaging Behav. 2014; 8 (4): 480–486. https://doi.org/10.1007/s11682-014-9290-3; Šveljo O., Koprivšek K., Lučić M., Prvulović N. Counting and language. Prilozi. 2012; 33 (1): 411–418.; Donaldson D.I., Buckner R.L. Effective paradigm design. In: Jezzard, P., Matthews, P.M., Smith, S.M. (Eds.). Functional MRI, an Introduction to Methods. Oxford: Oxford University Press, 2003. https://doi.org/10.1093/acprof:oso/9780192630711.003.0009; Хомская Е. Д. Нейропсихология. 4-е изд. СПб.: Питер, 2005. 496 с.; Whitfield-Gabrieli S., Nieto-Castanon A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity. 2012; 2 (3): 125–141. https://doi.org/10.1089/brain.2012.0073; Fonov V.S., Evans A.C., McKinstry R.C., Almli C.R., Collins D.L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage. 2009; 47 (1): 102. https://doi.org/10.1016/s1053-8119(09)70884-5; Stiers P., Goulas A. Functional connectivity of task context representations in prefrontal nodes of the multiple demand network. Brain Structure and Function. 2018; 223 (5): 2455–2473. https://doi.org/10.1007/s00429-018-1638-9; Harrison B.J., Shaw M., Yücel M., Purcell .R, Brewer W.J., Strother S.C., Egan G.F., Olver J.S., Nathan P.J., Pantelis C. Functional connectivity during Stroop task performance. Neuroimage. 2005; 24 (1): 181–191. https://doi.org/10.1016/j.neuroimage.2004.08.033; Anderson J.S., Shah L.M., Nielsen J.A. Specialty imaging. Functional MRI. First edition. Amirsys Publishing, Inc, 2014. 298 p.; Stoeckel C., Gough P.M., Watkins K.E., Devlin J.T. Supramarginal gyrus involvement in visual word recognition. Cortex. 2009; 45 (9): 1091–1096. https://doi.org/10.1016/j.cortex.2008.12.004; Segal E., Petrides M. Functional activation during reading in relation to the sulci of the angular gyrus region. Eur. J. Neurosci. 2013; 38 (5): 2793–2801. https://doi.org/10.1111/ejn.12277; Seghier M.L. The Angular Gyrus: Multiple Functions and Multiple Subdivisions. The Neuroscientist. 2013; 19 (1): 43–61. https://doi.org/10.1177/1073858412440596; Onitsuka T., Shenton M.E., Salisbury D.F., Dickey C.C., Kasai K., Toner S.K., Frumin M., Kikinis R., Jolesz F.A., McCarley R.W. Middle and Inferior Temporal Gyrus Gray Matter Volume Abnormalities in Chronic Schizophrenia: An MRI Study. Am. J. Psychiatry. 2004; 161: 1603–1611. https://doi.org/10.1176/appi.ajp.161.9.1603; Tailor K.S., Seminowicz D.A., Davis K.D. Two systems of resting state connectivity between the insula and cingulate cortex. Hum. Brain Mapp. 2009; 30 (9): 2731–2745. https://doi.org/10.1002/hbm.20705; Лурия А.Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга. М.: Изд-во МГУ, 1962. 431 с.; Blummenfeld R.S., Parks C.M., Yonelinas A.P., Ranganath C. Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. J. Cogn. Neurosci. 2011; 23 (1): 257–265. https://doi.org/10.1162/jocn.2010.21459; Koechlin E., Hyafil A. Anterior prefrontal function and the limits of human decision making. Science. 2007; 318: 594–598. https://doi.org/10.1126/science.1142995; Warburton E., Wise R.J.S., Price C.J., Weiller C., Hadar U., Ramsay S., Frackowiak R.J.S. Noun and verb retrieval by normal subjects: studies with PET. Brain. 1996; 119: 159–179. https://doi.org/10.1093/brain/119.1.159; https://medvis.vidar.ru/jour/article/view/918

  5. 5
  6. 6