Showing 1 - 20 results of 93 for search '"ФОТОЧУВСТВИТЕЛЬНОСТЬ"', query time: 0.76s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Journal of the Russian Universities. Radioelectronics; Том 27, № 4 (2024); 72-80 ; Известия высших учебных заведений России. Радиоэлектроника; Том 27, № 4 (2024); 72-80 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/915/784; Quantum well infrared photodetector research and development at Jet Propulsion Laboratory / S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, S. B. Rafol, J. M. Mumolo, D. Z. Ting, J. J. Bock, M. E. Ressler, M. W. Werner, P. D. LeVan, R. Chehayeb, C. A. Kukkonen, M. Levy, P. LeVan, M. A. Fauci // Infrared Physics & Technology. 2001. Vol. 42, № 3–5. P. 267–282. doi:10.1016/S1350-4495(01)00085-8; Каталог Радиоэлектронного комплекса. URL: https://katalog-rek.ru/catalog/395/3823/ (дата обращения 23.11.2023).; Li S. S., Tidrow M. Z. Comparison of n- and ptype quantum well infrared photodetectors // Detectors, Focal Plane Arrays, and Imaging Devices II. 1998. Vol. 3553. P. 97–111. doi:10.1117/12.318094; Henini M., Razeghi M. Handbook of infrared detection technologies. Elsevier, 2002. 532 p.; Intersubband transitions in quantum wells: physics and device applications / E. R. Weber, H. C. Liu, F. Capasso, R. K. Willardson. Academic press, 1999. 309 p.; Levine B. F. Quantum‐Well Infrared Photodetectors // J. of Applied Physics. 1993. Vol. 74, № 8. P. R1–R81. doi:10.1063/1.354252; Etteh N. E. I., Harrison P. Quantum mechanical scattering investigation of the dark current in quantum well infrared photodetectors (QWIPs) // Infrared physics & technology. 2003. Vol. 44, № 5–6. P. 473–480. doi:10.1016/S1350-4495(03)00169-5; Quantum Well infrared photodetectors: device physics and light coupling / S. Bandara, S. Gunapala, J. Liu, J. Mumolo, E. Luong, W. Hong, D. Sengupta. Springer, 1998. P. 43–49.; Zubkov V. I., Ivanova Ia. V., Weyers M. Direct observation of resonant tunneling in heterostructure with a single quantum well // Appl. Phys. Let. 2021. Vol. 119. P. 043503. doi:10.1063/5.0056842; Ultimate performance of quantum well infrared photodetectors in the tunneling regime / E. Lhuillier, I. Ribet-Mohamed, M. Tauvy, A. Nedelcu, V. Berger, E. Rosencher // Infrared physics & technology. 2009. Vol. 52, № 4. P. 132–137.; Wasilewski Z. R., Liu H. C., Buchanan M. Studies of Si segregation in GaAs using current–voltage characteristics of quantum well infrared photodetectors // J. of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1994. Vol. 12, № 2. P. 1273–1276. doi:10.1116/1.587020; Luna E., Guzman A., Munoz E. Offset in the dark current characteristics of photovoltaic double barrier quantum well infrared photodetectors // Infrared physics & technology. 2005. Vol. 47, № 1–2. P. 22–28. doi:10.1016/j.infrared.2005.02.007; I–V characterization of a quantum well infrared photodetector with stepped and graded barriers / F. Nutku, A. Erol, M. Gunes, L. B. Buklu, Y. Ergun, M. C. Arikan // Superlattices and Microstructures. 2012. Vol. 52, № 3. P. 585–593. doi:10.1016/j.spmi.2012.06.010; Characterization of the dark current of a quantum well infrared photodetector (QWIP) with selectively doped barrier layers/ Y. Uchiyama, H. Nishino, Y. Matsukura, T. Miyatake, K. Yamamoto, T. Fujii // Infrared Detectors and Focal Plane Arrays VII. 2002. Vol. 4721. P. 151–158. doi:10.1117/12.478844; Effect of barrier width on the performance of quantum well infrared photodetector / S. K. H. Sim, H. C. Liu, A. Shen, M. Gao, K. F. Lee, M. Buchanan, Y. Ohno, H. Ohno, E. H. Li // Infrared Physics & Technology. 2001. Vol. 42, № 3–5. P. 115–121. doi:10.1016/S1350-4495(01)00067-6; Li N., Xiong D.-Y., Yang X.-F., Lu W., Xu W.-L., Yang C.-L., Hou Y., Fu Y. Dark Currents of GaAs/AlGaAs Quantum-Well Infrared Photodetectors. Applied Physics A. 2007, vol. 89, pp. 701–705. doi:10.1007/s00339-007-4142-2; https://re.eltech.ru/jour/article/view/915

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 65, № 6 (2021); 764-768 ; Доклады Национальной академии наук Беларуси; Том 65, № 6 (2021); 764-768 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2021-65-6

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1031/1028; Боднарь, И. В. Ширина запрещенной зоны монокристаллов твердых растворов (In2S3)x(AgIn5S8)1–x / И. В. Боднарь, А. А. Фещенко, В. В. Хорошко // Физика и техника полупроводников. – 2020. – Т. 54, № 12. – С. 1350–1354. https://doi.org/10.21883/ftp.2020.12.50236.9500; Полубок, В. А. Выращивание и исследование свойств кристаллов In2S3 / В. А. Полубок, A. M. Ковальчук // Физика конденсированного состояния: тез. докл. XIII Респ. науч. конф. аспирантов, магистрантов и студентов, Гродно, 26–28 апр. 2005 / редкол.: В. А. Лиопо [и др.]. − Гродно, 2005. – С. 183–186.; Боднарь, И. В. Кристаллическая структура и ширина запрещенной зоны твердых растворов (MnIn2S4)1−x•(AgIn5S8)x / И. В. Боднарь, Бинь Тхан Чан // Физика и техника полупроводников. – 2018. – Т. 52, № 8. – С. 958–962. https://doi.org/10.21883/ftp.2018.08.46227.8643; Шербан, К. Ф. Получение и исследования оптических и фотоэлектрических свойств твердых растворов в системах CdS–In 2S3 и AgInS2-In2S3 / К. Ф. Шербан. – Кишинев, 1974. – 145 с.; The In–In 2S3 System / M. F. Stubbs [et al.] // J. American Chemical Society. – 1952. – Vol. 74, N 6. – P. 1441–1443. https://doi.org/10.1021/ja01126a024; Т-х-фазовая диаграмма системы In–S / А. Ю. Завражнов [и др.] // Неорганические материалы. – 2006. – Т. 42, № 12. – С. 1420–1424.; Ansell, H. G. Phase relationships in the In–S system / H. G. Ansell, R. S. Boorman // J. Electrochemical Society. – 1971. – Vol. 118, N 1. – P. 133–136. https://doi.org/10.1149/1.2407925; Phase equilibria in the quasiternary system Ag2S–Ga2S3–In2S3 and optical properties of (Ga55In45)2S300, (Ga54.59In44.66Er0.75)2S300 single crystals / I. A. Ivashchenko [et al.] // Journal of Solid State Chemistry. – 2015. – Vol. 224. – Р. 255–264. https://doi.org/10.1016/j.jssc.2015.04.006; Phase equilibria in the quasi-ternary system Ag2S–In2S3–CdS at 870 K / V. R. Kozera [et al.] // Journal of Alloys and Compounds. – 2009. – Vol. 480, N 2. – P. 360–364. https://doi.org/10.1016/j.jallcom.2009.02.052; Палатник, Л. С. Диаграммы равновесия и структура полупроводниковых сплавов A2ICVI–B2IIIC3VI / Л. С. Палатник, Е. И. Рогачева // Докл. АН СССР. – 1967. – Т. 174, № 1. – С. 80–83.; https://doklady.belnauka.by/jour/article/view/1031

  14. 14
  15. 15
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 23, № 6 (2019); 717-722 ; Вавиловский журнал генетики и селекции; Том 23, № 6 (2019); 717-722 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2262/1282; Brutch N.B. The development of methods used for evaluation of the inheritance of quantitative characters. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2011;167:23­35. (in Russian); Brutch N.B., Koshkin V., Matvienko I., Porokhovinova E., Tavares de Sousa M., Domantovich A. Influence of low temperatures and short photoperiod on the time of flowering in flax. In: Fiber Foundations – Transportation, Clothing, and Shelter in the Bioeconomy: Proceed­ ings of the 2008 International Conference on Flax and Other Bast Plants. Saskatoon, 21–23 July 2008. Saskatoon, 2008;81-91.; Brutch N.B., Sharov I.Y., Pavlov A.V., Porokhovinova E.A. Diversity of flax characters associated with fibre formation and environmental influence on their formation. Russ. J. Genet.: Appl. Res. 2011;1(5): 361-370. DOI 10.1134/S2079059711050042.; Domantovich A.V., Koshkin V.A., Brutch N.B., Matvienko I.I. Inves­ tigation of photoperiod sensitivity in Linum usitatissimum L. Lines and the effect of short­day conditions on their economically valuable traits. Russian Agricultural Sciences. 2012;38(3):173­177.; Koshkin V.A., Rigin B.V., Matvienko I.I. Evaluation of ultra-earli­ ness and creation of early productive lines of bread wheat with weak photoperiodic sensitivity. Doklady Rossiiskoi Akademii Sel’skokhozyaistvennykh Nauk = Reports of the Russian Academy of Agricultural Sciences. 2003;2:3­5. (in Russian); Lakin G.F. Biometriya [Biometrics]. Moscow: Vysshaya Shkola Publ., 1990. (in Russian); Merezhko A.F. The use of Mendelian principles in computer analysis of quantitative characters inheritance. In: Ecological Genetics of Cul­ tivated Plants: Proceedings of Young Scientists’ School. Krasnodar, 2005;107­117. (in Russian); Obraztsov A.S. Some biological aspects of breeding for earliness. Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 1983; 18(10):3­11. (in Russian); Porokhovinova E.A. Evaluation of the inheritance of flower and seed color and shape, as well as their relationship with the duration of the germination-flowering phase in flax (Linum usitatissimum L.). Nauchno­Issledovatelskij Bulleten Vserossijskogo Nauchno­Issle­ dovatelskogo Instituta Rastenievodstva Imeni N.I. Vavilova = Bulletin VIR “Research of Plant Genetic Resources for Breeding Purposes in Different Regions of Russia”. 2000;239:56-58. (in Russian); Porokhovinova E.A. Genetic control of flax morphological characters. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2011;167:159-184. (in Russian); https://vavilov.elpub.ru/jour/article/view/2262

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal