Εμφανίζονται 1 - 20 Αποτελέσματα από 130 για την αναζήτηση '"ФОТОННЫЕ КРИСТАЛЛЫ"', χρόνος αναζήτησης: 0,74δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: Department of Physics and Mathematics, activities

    Πηγή: Carbon. 2021. Vol. 171. P. 484-492
    Carbon

    Περιγραφή αρχείου: application/pdf

    Συνδεδεμένο Πλήρες Κείμενο
  3. 3
    Academic Journal

    Πηγή: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 4, Pp 13-17 (2022)

    Περιγραφή αρχείου: electronic resource

    Σύνδεσμος πρόσβασης: https://doaj.org/article/b0e847821caf4d2b8215f347eb996ed6

  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 68, № 1 (2023); 7-17 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 68, № 1 (2023); 7-17 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2023-68-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/776/619; Masuda, H. Ordered metal nanohole arrays made be a two-step replication of honeycomb structures of anodic alumina / H. Masuda, K. Fukuda // Science. – 1995. – Vol. 268, № 5216. – P. 1466–1471. https://doi.org/10.1126/science.268.5216.1466; Lee, W. The anodization of aluminum for nanotechnology applications / W. Lee // JOM: Journal of the Minerals, Metals and Materials Society. – 2010. – Vol. 62, № 6. – P. 57–63. https://doi.org/10.1007/s11837-010-0088-5; Santos, A. Nanoporous anodic alumina photonic crystals: fundamentals, developments and perspectives / A. Santos // J. Mater. Chem. C. – 2017. – Vol. 5, № 23. – P. 5581–5599. https://doi.org/10.1039/C6TC05555A; Mukhurov, N. I. Ordered Growth of Anodic Aluminum Oxide in Galvanostatic and Galvanostatic-Potentiostatic Mode / N. I. Mukhurov, I. V. Gasenkova, J. M. Andrukhovich // JMSN: Journal of Materials Science and Nanotechnology. – 2014. – Vol. 1, iss. 1. – P. S110 (1–6). https://doi.org/10.15744/2348-9812.1.S110; Ramana Reddy, P. Effect of electrolyte concentration on morphological and photoluminescence properties of free standing porous anodic alumina membranes formed in oxalic acid / P. Ramana Reddy, K. M Ajith, N. K Udayashankar // Mater. Sci. Semicond. Process. – 2020. – Vol. 106. – Art. ID 104755. https://doi.org/10.1016/j.mssp.2019.104755; Спектры пропускания и оптические свойства мезопористого фотонного кристалла на основе анодного оксида алюминия / В. С. Горелик [и др.] // Оптика и спектроскопия. – 2018. – Т. 124, вып. 2. – С. 171–177. https://doi.org/10.21883/OS.2018.02.45519.177-17; Transmission spectra of one-dimensional porous alumina photonic crystals / V. S. Gorelik [et al.] // Photonics and Nanostructures – Fundamentals and Applications. – 2018. – Vol. 32. – P. 6–10. https://doi.org/10.1016/j.photonics.2018.08.004; Kushnir, S. E. Anodizing with voltage versus optical path length modulation: a new tool for the preparation of photonic structures / S. E. Kushnir, T. Yu. Pchelyakova, K. S. Napolskii // J. Mater. Chem. – 2018. – Vol. 6, № 45. – P. 12192–12199. https://doi.org/10.1039/C8TC04246B; Rapid fabrication of iridescent alumina films supported on an aluminium substrate by high voltage anodization / Chunxin Sun [et al.] // Opt. Mater. – 2022. – Vol. 104. – Art. ID 109937. https://doi.org/10.1016/j.optmat.2020.109937; Segawa, H. Structural colors of laminated alumina films prepared by ac oxidation in oxalic acid solution / H. Segawa, K. Wada // Mater. Chem. Phys. – 2020. – Vol. 250. – Art. ID 123031. https://doi.org/10.1016/j.matchemphys.2020.123031; Юрасов, А. Н. Теория эффективной среды как инструмент анализа оптических свойств нанокомпозитов / А. Н. Юрасов, М. М. Яшин // Рос. технол. журн. – 2018. – Т. 6, № 2. – С. 56–66. https://doi.org/10.32362/2500316X-2018-6-2-56-66; Tunable Nanoporous Anodic Alumina Photonic Crystals by Gaussian Pulse Anodization / L. K. Acosta [et al.] // ACS Appl. Mater. Interfaces. – 2020. – Vol. 12, № 17. – P. 19778–19787. https://doi.org/10.1021/acsami.9b23354; Engineering of Hybrid Nanoporous Anodic Alumina Photonic Crystals by Heterogeneous Pulse Anodization / S. Y. Lim [et al.] // Sci. Rep. – 2018. – Vol. 8, № 1. – Art. ID 9455. https://doi.org/10.1038/s41598-018-27775-6; Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization / C. S. Law [et al.] // ACS Appl. Mater. Interfaces. – 2016. – Vol. 8, № 21. – P. 13542−13554. https://doi.org/10.1021/acsami.6b03900; Napolskii, K. S. Control of high-order photonic band gaps in one-dimensional anodic alumina photonic crystals / K. S. Napolskii, A. A. Noyan, S. E. Kushnir // Opt. Mater. – 2020. – Vol. 109. – Art. ID 110317. https://doi.org/10.1016/j.optmat.2020.110317; Petukhov, D. I. Permeability of anodic alumina membranes with branched channels / D. I. Petukhov, K. S. Napolskii, A. A. Eliseev // Nanotechnology. – 2012. – Vol. 23, № 33. – P. 5601. https://doi.org/10.1088/0957-4484/23/33/335601; The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid / L. Zaraska [et al.] // Thin Solid Films. – 2013. – Vol. 534. – P. 155–161. https://doi.org/10.1016/j.tsf.2013.02.056; Application of infrared interferometry for quantitative analysis of chemical groups grafted onto the internal surface of porous silicon nanostructures / S. A. Alekseev [et al.] // J. Phys. Chem. C. – 2007. – Vol. 111, № 42. – P. 15217–15222. https://doi.org/10.1021/jp0712452; Controlling the color and effective refractive index of metal-anodic aluminum oxide (AAO)-Al nanostructures: morphology of AAO / C. V. Manzano [et al.] // J. Phys. Chem. C. – 2017. – Vol. 122, № 1. – P. 957–963. https://doi.org/10.1021/acs.jpcc.7b11131; Optical properties of one-dimensional photonic crystals based on porous films of anodic aluminum oxide / V. S. Gorelik [et. al.] // Opt. Spectrosc. C. – 2016. – Vol. 120, № 4. – P. 534–539. https://doi.org/10.1134/S0030400X16040081; Кинетика формирования и растворения анодного оксида алюминия в электролитах на основе серной и селеновой кислот / А. И. Садыков [и др.] // Журн. неорган. химии. – 2021. – T. 66, № 2. – С. 265–273. https://doi.org/10.31857/S0044457X21020185; https://vestift.belnauka.by/jour/article/view/776

  7. 7
    Academic Journal

    Πηγή: Известия высших учебных заведений. Физика. 2025. Т. 68, № 6. С. 85-94

    Περιγραφή αρχείου: application/pdf

    Relation: http_0026-80960. Известия высших учебных заведений. Физика; koha:001268979; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001268979

  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Πηγή: Mathematics and Mathematical Modeling; № 6 (2020); 28-36 ; Математика и математическое моделирование; № 6 (2020); 28-36 ; 2412-5911

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mathmelpub.ru/jour/article/view/243/191; Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics // Physical Review Letters. 1987. Vol. 58. No. 20. Pp. 2059-2062. DOI:10.1103/PhysRevLett.58.2059; Vetrov S.Ya., Pankin P.S., Timofeev I.V. The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles // J. of Optics. 2016. Vol. 18. No. 6. P. 065106. DOI:10.1088/2040-8978/18/6/065106; Шабанов В.Ф., Ветров С.Я., Шабанов А.В. Оптика реальных фотонных кристаллов. Новосиб.: Изд-во СО РАН, 2005. 239 с.; Noda S., Fujita M., Asano T. Spontaneous-emission control by photonic crystals and nanocavities // Nature Photonics. 2007. Vol. 1. No. 8. Pp. 449-458. DOI:10.1038/nphoton.2007.141; Photonic crystals: Towards nanoscale photonic devices / J.-M. Lourtioz a.o. 2nd ed. B.: Springer, 2008. 514 р.; Jin J.-M., Riley D.J. Finite element analysis of antennas and arrays. Hoboken: Wiley, 2009. 435 p.; Nagra A.S., York R.A. FDTD analysis of wave propagation in nonlinear absorbing and gain media // IEEE Trans. on Antennas and Propagation. 1998. Vol. 46. No. 3. Pp. 334-340. DOI:10.1109/8.662652; Twersky V. Multiple scattering of radiation by an arbitrary configuration of parallel cylinders // J. of the Acoustical Soc. of America. 1952. Vol. 24. No. 1. Pp. 42-46. DOI:10.1121/1.1906845; Иванов Е.А. К решению задачи о дифракции плоской волны на двух круговых цилиндрах в случае коротких волн // Радиотехника и электроника. 1966. Т. 11. № 5. С. 931-942.; Ветлужский А.Ю., Ломухин Ю.Л., Михайлова О.Г. Эффект прозрачности объемных решеток // Радиотехника и электроника. 1998. Т. 43. № 7. С. 797-799.; You-Yu Chen, Zhen Ye. Acoustic attenuation by two-dimensional arrays of rigid cylinders // Physical Review Letters. 2001. Vol. 87. No. 18. P. 184301. DOI:10.1103/PhysRevLett.87.184301; Корн Г.А., Корн Т.М. Справочник по математике для научных работников и инженеров: пер с англ. 2-е изд. М.: Наука, 1970. 720 с. [Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers. N.Y.: McGraw-Hill, 1961. 943 p.].; Лозовик Ю.Л., Эйдерман С.Л. Зонная структура сверхпроводящих фотонных кристаллов // Физика твердого тела. 2008. Т. 50. № 11. С. 1944-1947.; https://www.mathmelpub.ru/jour/article/view/243

  12. 12
    Academic Journal
  13. 13
    Academic Journal

    Συνεισφορές: Казанский (Приволжский) федеральный университет

    Relation: ИТОГОВАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ПРОФЕССОРСКО-ПРЕПОДАВАТЕЛЬСКОГО СОСТАВА ИНСТИТУТА ФИЗИКИ КАЗАНСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА; http://dspace.kpfu.ru/xmlui/bitstream/net/183855/-1/F_59_3___Tezisy_14_02_2023_fin_028.pdf; https://dspace.kpfu.ru/xmlui/handle/net/183855; 535.326: 539.120.61: 539.184.2

  14. 14
  15. 15
    Conference

    Συγγραφείς: Хе, В. К., Иванов, В. И.

    Relation: Современные технологии и материалы новых поколений : сборник трудов Международной конференции с элементами научной школы для молодежи, г. Томск, 9-13 октября 2017 г. — Томск, 2017.; http://earchive.tpu.ru/handle/11683/43715

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/43715

  16. 16
  17. 17
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 13, No 1 (2018); 5-21 ; Тонкие химические технологии; Vol 13, No 1 (2018); 5-21 ; 2686-7575 ; 2410-6593 ; 10.32362/2410-6593-2018-13-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/130/131; Fenzl C., Hirsch T., Wolfbeis O.S. Photonic crystals for chemical sensing and biosensing // Angew. Chem. Int. Ed. 2014. V. 53. P. 3318-3335.; Men D., Liu D., Li Y. Visualized optical sensors based on two/three-dimensional photonic crystals for biochemical // Sci. Bull. 2016. V. 61. P. 1358-1371.; Vukusic P., Sambles J.R. Photonic structures in biology // Nature. 2003. V. 424. P. 852-855.; Parker A.R., Townley H.E. Biomimetics of photonic nanostructures // Nat. Nanotechnol. 2007. V. 2. P. 347-353.; Sato O., Kubo S., Gu Z.-Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands // Acc. Chem. Res. 2009. V. 42. P. 1-10.; Darragh P.J., Gaskin A.J., Terrell B.C., Sanders J.V. Origin of precious opal // Nature. 1966. V. 209. P. 13-16.; Gao X., Yan X., Yao X., Xu L., Zhang K., Zhang J., Yang B., Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography // Adv. Mater. 2007. V. 19. P. 2213-2217.; Kinoshita S., Yoshioka S. Structural colors in nature: the role of regularity and irregularity in the structure // Chem. Phys. Chem. 2005. V. 6. P. 1442-1459.; Marlow F., Muldarisnur, Sharifi P., Brinkmann R., Mendive C. Opals: status and prospects // Angew. Chem. 2009. V. 121. P. 6328-6351; Angew. Chem. Int. Ed. 2009. V. 48. P. 6212-6233.; Parker A.R., Welch V.L., Driver D., Martini N. Structural colour: Opal analogue discovered in a weevil // Nature. 2003. V. 426. P. 786-787.; Seago A.E., Brady P., Vigneron J.-P., Schultz T.D. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) // Interface. 2009. V. 6. P. S165-S184.; Whitney H.M., Kolle M., Andrew P., Chittka L., Steiner U., Glover B.J. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators // Science. 2009. V. 323. P. 130-133.; Vignolini S., Rudall P.J., Rowland A.V., Reed A., Moyroud E., Faden R.B., Baumberg J.J., Glover B.J., Steiner U. Pointillist structural color in Pollia fruit // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 15712-15715.; Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic crystals: Molding the flow of light: 2nd ed. Princeton: Princeton University Press, 2008. 304 р.; Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics // Phys. Rev. Lett. 1987. V. 58. P. 2059-2062.; John S. Strong localization of photons in certain disordered dielectric superlattices // Phys. Rev. Lett. 1987. V. 58. P. 2486-2489.; Aly A.H., Aghajamali A., Elsayed H.A., Mobarak M. Analysis of cutoff frequency in a onedimensional superconductor-metamaterial photonic crystal // Physica C. Supercond. Appl. 2016. V. 528. P. 5-8.; Lotsch B.V., Ozin G.A. Photonic clays: A new family of functional 1d photonic crystals // ACS Nano. 2008. V. 2. P. 2065-2074.; Lotsch B.V., Ozin G.A. Clay Bragg stack optical sensors // Adv. Mater. 2008. V. 20. P. 4079-4084.; Wang Z., Zhang J., Xie J., Yin Y., Wang Z., Shen H., Li Y., Li J., Liang S., Cui L., Zhang L., Zhang H., Yang B., Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and macrocavities through photolithography: toward tunable colorful patterns as highly selective sensors // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 1397-1403.; Ye X.Z., Li Y., Dong J.Y., Xiao J.Y., Ma Y.R., Qi L.M. Facile synthesis of ZnS nanobowl arrays and their applications as 2D photonic crystal sensors // J. Mater. Chem. C. 2013. V. 1. P. 6112-6119.; Men D.D., Zhang H.H., Hang L., Liu D., Li X., Cai W., Xiong Q., Li Y. Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: Anti-curling performance and enhanced optical diffraction intensity // J. Mater. Chem. C. 2015. V. 3. P. 3659-3665.; Men D.D., Zhou F., Hanga L., Lia X., Duana G., Cai W., Li Y. Functional hydrogel film attached with 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor // J. Mater. Chem. C. 2016. V. 4. P. 2117-2122.; Aly A.H., Elnaggar S.A., Elsayed H.A. Tunability of two dimensional n-doped semiconductor photonic crystals based on the Faraday effect // Optics Express. 2015. V. 23. P. 15038-15046.; Aly A.H., Elsayed H.A., Elnaggar S.A. Tuning the flow of light in two-dimensional metallic photonic crystals based on Faraday effect // J. Modern. Optic. 2017. V. 64. P. 74-80.; Cai Z.Y., Smith N.L., Zhang J.T., Asher S.A. Twodimensional photonic crystal chemical and biomolecular sensors // Anal. Chem. 2015. V. 87. P. 5013-25.; Ge J., Yin Y. Responsive photonic crystals // Angew. Chem. Int. Ed. 2011. V. 50. P. 1492-1522.; Krauss T.F., Rue R.M.D.L., Brand S. Twodimensional photonic-bandgap structures operating at nearinfrared wavelengths // Nature. 1996. V. 383. P. 699-702.; Painter O., Lee R.K., Scherer A., Yariv A., Brien J.D.O., Dapkus P.D., Kim I., Two-dimensional photonic band-Gap defect mode laser // Science. 1999. V. 284. P. 1819-1821.; Benisty H., Weisbuch C., Labilloy D., Rattier M., Smith C.J.M., Krauss T.F., De La Rue R.M., Houdre R., Oesterle U., Jouanin C., Cassagne D. Optical and confinement properties of two-dimensional photonic crystals // J. Lightwave Technol. 1999. V. 17. P. 2063-2077.; Noda S., Chutinan A., Imada M. Trapping and emission of photons by a single defect in a photonic bandgap structure // Nature. 2000. V. 407. P. 608-610.; Zhang J.-T., Wang L., Chao X., Velankar S.S., Asher S.A. Vertical spreading of two-dimensional crystalline colloidal arrays // J. Mater. Chem. C. 2013. V. 1. P. 6099-6102.; Zhang J.-T., Chao X., Liu X., Asher S.A. Twodimensional array Debye ring diffraction protein recognition sensing // Chem. Commun. 2013. V. 49. P. 6337-6339.; Laghaei R., Asher S.A., Coalson R.D. Langevin dynamics simulation of 3D colloidal crystal vacancies and phase transitions // J. Phys. Chem. B. 2013. V. 117. P. 5271-5279.; Zhang J.-T., Wang L., Lamont D.N., Velankar S.S., Asher S.A. Fabrication of large-area twodimensional colloidal crystals // Angew. Chem. Int. Ed. 2012. V. 51. P. 6117-6120.; Tikhonov A., Kornienko N., Zhang J.-T., Wang L., Asher S. A. Reflectivity enhanced two-dimensional dielectric particle array monolayer diffraction // J. Nanophotonics. 2012. V. 6. 063509.; Kelly J.A., Shukaliak A.M., Cheung C.C.Y., Shopsowitz K.E., Hamad W.Y., MacLachlan M.J. Responsive photonic hydrogels based on nanocrystalline cellulose // Angew. Chem. Int. Ed. 2013. V. 52. P. 8912-8916.; Khan M.K., Giese M., Yu M., Kelly J.A., Hamad W.Y., MacLachlan M.J. Flexible mesoporous photonic resins with tunable chiral nematic structures // Angew. Chem. Int. Ed. 2013. V. 52. P. 8921-8924.; Stein A., Wilson B.E., Rudisill S.G. Design and functionality of colloidal-crystal-templated materials - chemical applications of inverse opals // Chem. Soc. Rev. 2013. V. 42. P. 2763-2803.; Xia Y., Gates B., Yin Y., Lu Y. Monodispersed colloidal spheres: Old materials with new applications // Adv. Mater. 2000. V. 12. P. 693-713.; Iler R.K. The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemistry. New York: Wiley, 1979. 866 р.; Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range // J. Colloid Interface Sci. 1968. V. 26. P. 62-69.; Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges // Langmuir. 1994. V. 10. P. 8-16.; Im S.H., Lim Y.T., Suh D.J., Park O.O. Threedimensional self-assembly of colloids at a water-air interface: A novel technique for the fabrication of photonic bandgap crystals // Adv. Mater. 2002. V. 14. P. 1367-1369.; Nishijima Y., Ueno K., Juodkazis S., Mizeikis V., Misawa H., Tanimura T., Maeda K. Lasing with welldefined cavity modes in dye-infiltrated silica inverse opals // Opt. Express. 2007. V. 15. P. 12979-12988.; Aguirre C.I., Reguera E., Stein A. Colloidal photonic crystal pigments with low angle dependence // ACS Appl. Mater. Interfaces. 2010. V. 2. P. 3257-3262.; Cai Z., Liu Y. J., Teng J., Lu X. Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 5562-5569.; von Freymann G., Kitaev V., Lotsch B.V., Ozin G.A. Bottom-up assembly of photonic crystals // Chem. Soc. Rev. 2013. V. 42. P. 2528-2554.; Pieranski P. Colloidal crystals // Contemp. Phys. 1983. V. 24. P. 25-73.; Van Negen W., Shook I. Equilibrium properties of suspensions // Adv. Colloid Interface Sci. 1984. V. 21. P. 119-194.; Massa W. Kristallstrukturbestimmung: 8 ed. Wiesbaden: Springer Spektrum, 2015. 243 р.; Fudouzi H. Fabricating high-quality opal films with uniform structure over a large area // J. Colloid Interface Sci. 2004. V. 275. P. 277-283.; Lee Y.-J., Braun P. V. Tunable inverse opal hydrogel pH sensors // Adv. Mater. 2003. V. 15. P. 563-566.; Aguirre C.I., Reguera E., Stein A. Tunable colors in opals and inverse opal photonic crystals // Adv. Funct. Mater. 2010. V. 20. P. 2565-2578.; Kim S.-H., Jeon S.-J., Jeong W.C., Park H.S., Yang S.-M. Optofluidic synthesis of electroresponsive photonic Janus balls with isotropic structural colors // Adv. Mater. 2008. V. 20. P. 4129-4134.; Ge J., Lee H., He L., Kim J., Lu Z., Kim H., Goebl J., Kwon S., Yin Y. Magnetochromatic microspheres: Rotating photonic crystals // J. Am. Chem. Soc. 2009. V. 131. P. 15687-15694.; Konopsky V.N., Alieva E.V. Photonic crystal surface waves for optical biosensors // Anal. Chem. 2007. V. 79. P. 4729-4735.; Saito H., Takeoka Y., Watanabe M. Simple and precision design of porous gel as a visible indicator for ionic species and concentration // Chem. Commun. 2003. P. 2126-2127.; Kim S.-H., Lee S.Y., Yang S.-M., Yi G.-R. Selfassembled colloidal structures for photonics // NPG Asia Mater. 2011. V. 3(1). P. 25-33.; Orosco M.M., Pacholski C., Sailor M.J. Real-time monitoring of enzyme activity in a mesoporous silicon double layer // Nat. Nanotechnol. 2009. V. 4. P. 255-258.; Bonifacio L.D., Puzzo D.P., Breslav S., Willey B.M., McGeer A., Ozin G.A. Towards the photonic nose: a novel platform for molecule and bacteria identification // Adv. Mater. 2010. V. 22. P. 1351-1354.; Colodrero S., Ocana M., Miguez H. Nanoparticle-based one-dimensional photonic crystals // Langmuir. 2008. V. 24. P. 4430-4434.; Giese M., Blusch L.K., Khan M.K., Hamad W.Y., MacLachlan M.J. Responsive mesoporous photonic cellulose films by supramolecular contemplating // Angew. Chem. Int. Ed. 2014. V. 53. P. 8880-8884.; Lee K., Asher S.A. Photonic crystal chemical sensors: pH and ionic strength // J. Am. Chem. Soc. 2000. V. 122. P. 9534-9537.; Asher S.A., Alexeev V.L., Goponenko A.V., Sharma A.C., Lednev I.K., Wilcox C.S., Finegold D.N. Photonic crystal carbohydrate sensors: low ionic strength sugar sensing // J. Am. Chem. Soc. 2003. V. 125. P. 3322-3329.; Xu X., Goponenko A.V., Asher S.A. Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials // J. Am. Chem. Soc. 2008. V. 130. P. 3113-3119.; Gu Z.-Z., Fujishima A., Sato O. Photochemically tunavble colloidal crystals // J. Am. Chem. Soc. 2000. V. 122. P. 12387-12388.; Kubo S., Gu Z.-Z., Takahashi K., Ohko Y., Sato O., Fujishima A. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition // J. Am. Chem. Soc. 2002. V. 124. P. 10950-10951.; Kubo S., Gu Z.-Z., Takahashi K., Fujishima A., Segawa H., Sato O. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure // J. Am. Chem. Soc. 2004. V. 126. P. 8314-8319.; Fenzl C., Hirsch T., Wolfbeis O. Photonic crystal based sensor for organic solvents and for solvent-water mixtures // Sensors. 2012. V. 12. P. 16954-16963.; Fenzl C., Wilhelm S., Hirsch T., Wolfbeis O.S. Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 173-178.; Козлов А.А., Абдуллаев С.Д., Грицкова И.А., Иванов А.В., Флид В.Р., Корешкова А.Н. Механизм спектральных сдвигов в материалах химических сенсоров на основе фотонных кристаллов // Тонкие химические технологии. 2015. Т. 10. № 6. С. 58-63.; Иванов А.В., Козлов А.А., Корешкова А.Н., Абдуллаев С.Д., Федорова И.А. Спектры отражения органических матриц на основе фотонных кристаллов из полистирольных микросфер диаметром 230 нм // Вестник Московского университета. Серия 2: Химия. 2016. T. 57. № 6. С. 404-409.; Fudouzi H., Xia Y. Photonic papers and inks: Color writing with colorless materials // Adv. Mater. 2003. V. 15. P. 892-896.; Fudouzi H., Xia Y. Colloidal crystals with tunable colors and their use as photonic papers // Langmuir. 2003. V. 19. P. 9653-9660.; Arsenault A.C., Clark T.J., von Freymann G., Cademartiri L., Sapienza R., Bertolotti J., Vekris E., Wong S., Kitaev V., Manners I., Wang R. Z., John S., Wiersma D., Ozin G. A. From color fingerprinting to the control of photoluminescence in elastic photonic crystals // Nat. Mater. 2006. V. 5. P. 179-184.; Li J., Wu Y., Fu J., Cong Y., Peng J., Han Y. Reversibly strain-tunable elastomeric photonic crystals // Chem. Phys. Lett. 2004. V. 390. P. 285-289.; Jethmalani J.M., Ford W.T. Diffraction of visible light by ordered monodisperse silica-poly(methyl acrylate) composite films // Chem. Mater. 1996. V. 8. P. 2138-2146.; Foulger S.H., Jiang P., Lattam A.C., Smith D.W., Ballato J. Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays // Langmuir. 2001. V. 17. P. 6023-6026.; Foulger S.H., Jiang P., Lattam A., Smith D.W., Ballato J., Dausch D.E, Grego S., Stoner B. R. Photonic crystal composites with reversible high-frequency stop band shifts // Adv. Mater. 2003. V. 15. P. 685-689.; Wang X., Wolfbeis O.S., Meier R.J. Luminescent probes and sensors for temperature // Chem. Soc. Rev. 2013. V. 42. P. 7834-7869.; Xu D.D., Yu H.A., Xu Q., Wang K. Thermoresponsive photonic crystal: Synergistic effect of poly(N-isopropylacrylannide)-co-acrylic acid and Morpho butterfly wing // Acs. Appl. Mater. Interf. 2015. V. 7. P. 8750-8756.; Weissman J.M., Sunkara H.B., Tse A.S., Asher S.A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials // Science. 1996. V. 274. P. 959-963.; Debord J.D., Lyon L.A. Thermoresponsive photonic crystals// J. Phys. Chem. B. 2000. V. 104. P. 6327-6331.; Hu Z., Lu X., Gao J. Hydrogel opals //Adv. Mater. 2001. V. 13. P. 1708-1712.; Reese C.E., Mikhonin A.V., Kamenjicki M., Tikhonov A., Asher S.A. Nanogel nanosecond photonic crystal optical switching // J. Am. Chem. Soc. 2004. V. 126. P. 1493-1496.; Hu Y., Wang J., Wang H., Wang Q., Zhu J., Yang Y. Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels // Langmuir. 2012. V. 28. P. 17186-17192.; Wu G., Jiang Y., Xu D., Tang H., Liang X., Li G. Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals // Langmuir. 2011. V. 27. P. 1505-1509.; Ballato J., James A. A ceramic photonic crystal temperature sensor // J. Am. Ceram. Soc. 1999. V. 82. P. 2273-2275.; Honda M., Seki T., Takeoka Y. Dual tuning of the photonic band-gap structure in soft photonic crystals // Adv. Mater. 2009. V. 21. P. 1801-1804.; Jeong U., Xia Y. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids // Angew. Chem. 2005. V. 117. P. 3159-3163; Angew. Chem. Int. Ed. 2005. V. 44. P. 3099-3103.; Pevtsov A.B., Kurdyukov D.A., Golubev V.G., Akimov A.V., Meluchev A.A., Sel’kin A.V., Kaplyanskii A.A., Yakovlev D.R., Bayer M. Ultrafast stop band kinetics in a three-dimensional opal-VO2 photonic crystal controlled by a photoinduced semiconductormetal phase transition // Phys. Rev. B. 2007. V. 75. P. 153101-153105.; Zhou J., Sun C.Q., Pita K., Lam Y.L., Zhou Y., Ng S.L., Kam C.H., Li L.T., Gui Z.L. Thermally tuning of the photonic band gap of SiO2 colloidcrystal infilled with ferroelectric BaTiO3 // Appl. Phys. Lett. 2001. V. 78. P. 661-663.; Tétreault N., Miguez H., Yang S.M., Kitaev V., Ozin G.A. Refractive index patterns in silicon inverted colloidal photonic crystals // Adv. Mater. 2003. V. 15. P. 1167-1172.; Exner A.T., Pavlichenko I., Lotsch B.V., Scarpa G., Lugli P. Low-cost thermo-optic imaging sensors: a detection principle based on tunable one-dimensional photonic crystals // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 1575-1582.; Kamenjicki M., Lednev I.K., Mikhonin A., Kesavamoorthy R., Asher S.A. Photochemically controlled photonic crystals // Adv. Funct. Mater. 2003. V. 13. P. 774-780.; Maurer M.K., Lednev I.K., Asher S.A. Photoswitchable spirobenzopyran-based photochemically controlled photonic crystal // Adv. Funct. Mater. 2005. V. 15. P. 1401-1406.; Hwang K., Kwak D., Kang C., Kim D., Ahn Y., Kang Y. Electrically tunable hysteretic photonic gels for nonvolatile display pixels // Angew. Chem. 2011. V. 123. P. 6435-6438; Angew. Chem. Int. Ed. 2011. V. 50. P. 6311-6314.; Shimoda Y., Ozaki M., Yoshino K. Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal // Appl. Phys. Lett. 2001. V. 79. P. 3627-3629.; Arsenault A.C., Miguez H., Kitaev V., Ozin G.A., Manners I. A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: A step towards photonic ink (P-Ink) // Adv. Mater. 2003. V. 15. P. 503-507.; Arsenault A.C., Puzzo D.P., Manners I., Ozin G.A. Photonic-crystal full-colour displays // Nat. Photonics. 2007. V. 1. P. 468-472.; Puzzo D.P., Arsenault A.C., Manners I., Ozin G.A. Electroactive inverse opal: A single material for all colors // Angew. Chem. 2009. V. 121. P. 961-965; Angew. Chem. Int. Ed. 2009. V. 48. P. 943-947; Ueno K., Matsubara K., Watanabe M., Takeoka Y. An electro- and thermochromic hydrogel as a fullcolor indicator // Adv. Mater. 2007. V. 19. P. 2807-2812.; Ueno K., Sakamoto J., Takeoka Y., Watanabe M. Electrochromism based on structural colour changes in a polyelectrolyte gel // J. Mater. Chem. 2009. V. 19. P. 4778-4783.; Zhao Y., Zhang Y.-N., Wang Q. Research advances of photonic crystal gas and liquid sensors // Sens. Actuators B. 2011. V. 160. P. 1288-1297.; Bogomolov V.N., Gaponenko S.V., Germanenko I.N., Kapitonov A.M., Petrov E.P., Gaponenko N.V., Prokofiev A.V., Ponyavina A.N., Silvanovich N.I., Samoilovich S.M. Photonic band gap phenomenon and optical properties of artificial opals // Phys. Rev. E. 1997. V. 55. P. 7619-7625.; Blanford C.F., Schroden R.C., Al-Daous M., Stein A. Tuning solvent-dependent color changes of threedimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications // Adv. Mater. 2001. V. 13. P. 26-29.; Burgess I.B., Koay N., Raymond K.P., Kolle M., Lončar M., Aizenberg J. Wetting in color: colorimetric differentiation of organic liquids with high selectivity // ACS Nano. 2012. V. 6. P. 1427-1437.; Raymond K.P., Burgess I.B., Kinney M.H., Lončar M., Aizenberg J. Combinatorial wetting in colour: An optofluidic nose // Lab Chip. 2012. V. 12. P. 3666-3669.; Fuertes M.C., López-Alcaraz F.J., Marchi M.C., Troiani H.E., Luca V., Miguez H., Soler-Illia G.J.D. A. Photonic crystals from ordered mesoporous thin-film functional building blocks // Adv. Funct. Mater. 2007. V. 17. P. 1247-1254.; Choi S.Y., Mamak M., von Freymann G., Chopra N., Ozin G.A. Mesoporous Bragg stack color tunable sensors // Nano Lett. 2006. V. 6. P. 2456-2461.; Yao K., Shi Y. High-Q Width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing // Opt. Express. 2012. V. 20. P. 27039-27044.; Thompson C.M., Ruminski A.M., Sega A.G., Sailor M.J., Miskelly G.M. Preparation and characterization of pore-wall modification gradients generated on porous silicon photonic crystals using diazonium salts // Langmuir. 2011. V. 27. P. 8967-8973.; Huang Y., Pandraud G., Sarro P.M. Reflectancebased two-dimensional TiO2 photonic crystal liquid sensors // Opt. Lett. 2012. V. 37. P. 3162-3164.; Kang Y., Walish J.J., Gorishnyy T., Thomas E.L. Broad-wavelength-range chemically tunable block-copolymer photonic gels // Nat. Mater. 2007. V. 6. P. 957-960.; Yang H., Jiang P., Jiang B. Vapor detection enabled by self-assembled colloidal photonic crystals // J. Colloid Interface Sci. 2012. V. 370. P. 11-18.; Zhang Y., Fu Q., Ge J. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum // Nat. Commun. 2015. V. 6. P. 7510. doi:10.1038/ncomms8510.; Waterhouse G.I.N., Metson J.B., Idriss H., Sun- Waterhouse D. Physical and optical properties of inverse opal CeO2 photonic crystals// Chem. Mater. 2008. V. 20. P. 1183-1190.; Cai Z., Liu Y.J., Lu X., Teng J. In situ «doping» inverse silica opals with size-controllable gold nanoparticles for refractive index sensing // J. Phys. Chem. C. 2013. V. 117. P. 9440-9445.; Wu Y., Li F., Zhu W., Cui J., Tao C., Lin C., Hannam P.M., Li G. Metal-organic frameworks with a three-dimensional ordered macroporous structure: Dynamic photonic materials // Angew. Chem. 2011. V. 123. P. 12726-12730; Angew. Chem. Int. Ed. 2011. V. 50. P. 12518-12522.; Kumano N., Seki T., Ishii M., Nakamura H., Takeoka Y. Tunable angle-independent structural color from a phase-separated porous gel // Angew. Chem. 2011. V. 123. P. 4098-4101; Angew. Chem. Int. Ed. 2011. V. 50. P. 4012-4015.; Tian E., Wang J., Zheng Y., Song Y., Jiang L., Zhu D. Colorful humidity sensitive photonic crystal hydrogel // J. Mater. Chem. 2008. V. 18. P. 1116-1122.; Xuan R., Wu Q., Yin Y., Ge J. Magnetically assembled photonic crystal film for humidity sensing // J. Mater. Chem. 2011. V. 21. P. 3672-3676.; Huang J., Tao C., An Q., Lin C., Li X., Xu D., Wu Y., Li X., Shen D., Li G. Visual indication of enviromental humidity by using poly(ionic liquid) photonic crystals // Chem. Commun. 2010. V. 46. P. 4103-4105.; Hu H., Chen Q.-W., Cheng K., Tang J. Visually readable and highly stable self-display photonic humidity sensor // J. Mater. Chem. 2012. V. 22. P. 1021-1027.; Li C., Lotsch B.V. Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing // Chem. Commun. 2012. V. 48. P. 6169-6171.; Zhang J.-T., Wang L., Luo J., Tikhonov A., Kornienko N., Asher S.A. 2-D array photonic crystal sensing motif // J. Am. Chem. Soc. 2011. V. 133. P. 9152-9155.; Asher S.A., Kimble K.W., Walker J.P. Enabling thermoreversible physically cross-linked polymerized colloidal array photonic crystals // Chem. Mater. 2008. V. 20. P. 7501-7509.; Yang Q., Zhu S., Peng W., Yin C., Wang W., Gu J., Zhang W., Ma J., Deng T., Feng C., Zhang D. Bioinspired fabrication of hierarchically structured, phtunable photonic crystals with unique transition // ACS Nano. 2013. V. 7. P. 4911-4918.; Huang Y., Li F.Y., Ye C., Qin M., Ran W., Song Y. A photochromic sensor microchip for highperformance multiplex metal ions detection // Scientific Rep. 2015. V. 5. P. 9724. DOI:10.1038/srep09724/; Li L., Long Y., Gao J.M., Song K., Yang G. Label-free and pH-sensitive colorimetric materials for the sensing of urea // Nanoscale. 2016. V. 8. P. 4458-4462.; Fudouzi H., Xia Y. Colloidal crystals with tunable colors and their use as photonic papers // Langmuir. 2003. V.19. P. 9653-9660; Endo T., Yanagida Y., Hatsuzawa T. Colorimetric detection of volatile organic compounds using a colloidal crystal-based chemical sensor for environmental applications // Sens. Actuators B. 2007. V. 125. P. 589-595.; Pan Z., Ma J., Yan J., Zhou M., Gao J. Response of inverse-opal hydrogels to alcohols // J. Mater. Chem. 2012. V. 22. P. 2018-2025.; Wang Z., Zhang J., Li J., Xie J., Li Y., Liang S., Tian Z., Li C., Wang Z., Wang T., Zhang H., Yang B. Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals // J. Mater. Chem. 2011. V. 21. P. 1264-1270.; Li Y.Y., Cunin F., Link J.R., Gao T., Betts R.E., Reiver S.H., Chin V., Bhatia S.N., Sailor M.J. Polymer replicas of photonic porous silicon for sensing and drug delivery applications // Science. 2003. V. 299. P. 2045-2047.; Chen M., Zhou L., Guan Y., Zhang Y. Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates // Angew. Chem. Int. Ed. 2013. V. 52. P. 9961-9965.; Chen C., Zhu Y., Bao H., Shen J., Jiang H., Peng L., Yang X., Li C., Chen G. Ethanol-assisted multisensitive poly(vinyl alcohol) photonic crystal sensor // Chem. Commun. 2011. V. 47. P. 5530-5532.; Asher S.A., Sharma A.C., Goponenko A.V., Ward M.M. Photonic crystal aqueous metal cation sensing materials // Anal. Chem. 2003. V. 75. P. 1676-1683.; Yan F., Asher S. Cation identity dependence of crown ether photonic crystal Pb2+ sensing // Anal. Bioanal. Chem. 2007. V. 387. P. 2121-2130.; Holtz J.H., Asher S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials // Nature. 1997. V. 389. P. 829-832.; Holtz J.H., Holtz J.S.W., Munro C.H., Asher S.A. Intelligent polymerized crystalline colloidal arrays: Novel chemical sensor materials // Anal. Chem. 1998. V. 70. P. 780-791.; Reese C.E., Asher S.A. Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments // Anal. Chem. 2003. V. 75. P. 3915-3918.; Goponenko A.V., Asher S.A. Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ sensing materials // J. Am. Chem. Soc. 2005. V. 127. P. 10753-10759.; Muscatello M.M.W., Asher S.A. Poly(vinyl alcohol) rehydratable photonic crystal sensor materials // Adv. Funct. Mater. 2008. V. 18. P. 1186-1193.; Jiang H., Zhu Y., Chen C., Shen J., Bao H., Peng L., Yang X., Li C. Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel // New J. Chem. 2012. V. 36. P. 1051-1056.; Hu X., Huang J., Zhang W., Li M., Tao C., Li G. Photonic ionic liquids polymer for naked-eye detection of anions // Adv. Mater. 2008. V. 20. P. 4074-4078.; Hu X., Li G., Huang J., Zhang D., Qiu Y. Construction of self-reporting specific chemical sensors with high sensitivity // Adv. Mater. 2007. V. 19. P. 4327-4332.; Zhang C.J., Losego M.D., Braun P.V. Hydrogelbased glucose sensors: Effects of phenylboronic acid chemical structure on response // Chem. Mater. 2013. V. 25. P. 3239-3250.; Zhang C.J., Cano G.G., Braun P.V. Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents // Adv. Mater. 2014. V. 26. P. 5678-5683.; Zhong Q.F., Xie Z.Y., Zhu C., Yang Z., Gu Z.Z. Carbon inverse opal rods for nonenzymatic cholesterol detection // Small. 2015. V. 11. P. 5766-5770.; Couturier J.P., Sutterlin M., Laschewsky A., Hettrich C., Wischerhoff E. Responsive inverse opal hydrogels for the sensing of macromolecules // Angew. Chem. Int. Ed. 2015. V. 54. P. 6641-6644.; Mu Z.D., Zhao X.W., Huang Y., Lu M., Gu Z.Z. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis // Small. 2015. V. 11. P. 6036-6043.; Zhang J.T., Cai Y., Kwak D.H., Liu X., Asher S.A. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A // Anal. Chem. 2014. V. 86. P. 9036-9041.; MacConaghy K.I., Geary C.I., Kaar J.L., Stoykovich M.P. Photonic crystal kinase biosensor // J. Am. Chem. Soc. 2014. V. 136. P. 6896-6899.; Cai Z.Y, Kwak D.H., Punihaole D., Hong Z., Velank ar S.S., Liu X., Asher S.A. A photonic crystal protein hydrogel sensor for Candida albicans // Angew. Chem. Int. Ed. 2015. V. 54. P. 13036-13040.; Griffete N., Frederich H., Matre A., Schwob C., Ravaine S., Carbonnier B., Chehimi M., Mangeney C. Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A // J. Colloid Interface Sci. 2011. V. 364. P. 18-23.; Kimble K.W., Walker J.P., Finegold D.N., Asher S.A. Progress toward the development of a point-of-care photonic crystal ammonia sensor // Anal. Bioanal. Chem. 2006. V. 385. P. 678-685.; Ozin G.A., Arsenault A.C. P-Ink and Elast-Ink from lab to market // Mater. Today. 2008. V. 11. P. 44-51.; Mandal S., Goddard J.M., Erickson D.A multiplexed optofluidic biomolecular sensor for low mass detection // Lab Chip. 2009. V. 9. P. 2924-2932.; Fujishima M., Sakata S., Iwasaki T., Uchida K. Implantable photonic crystal for reflection-based optical sensing of biodegradation // J. Mater. Sci. 2008. V. 43. P. 1890-1896.; Li M., He F., Liao Q., Liu J., Xu L., Jiang L., Song Y., Wang S., Zhu D. Ultrasensitive DNA detection using photonic crystals // Angew. Chem. 2008. V. 120. P. 7368-7372; Angew. Chem. Int. Ed. 2008. V. 47. P. 7258-7262.; Guan B., Magenau A., Kilian K.A., Ciampi S., Gaus K., Reece P.J., Gooding J.J. Mesoporous silicon photonic crystal microparticles: Towards singlecell optical biosensors // Faraday Discuss. 2011. V. 149. P. 301-317.; Li J., Zhao X., Wie H., Gu Z.-Z., Lu Z. Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor // Anal. Chim. Acta. 2008. V. 625. P. 63-69.; Zhao X., Cao Y., Ito F., Chen H.-H., Nagai K., Zhao Y.-H., Gu Z.-Z. Colloidal crystal beads as supports for biomolecular screening // Angew. Chem. 2006. V. 118. P. 6989-6992; Angew. Chem. Int. Ed. 2006. V. 45. P. 6835-6838.; Badugu R., Nowaczyk K., Descrovi E., Lakowicz J.R. Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals // Anal. Biochem. 2013. V. 442. P. 83-96.

  18. 18
  19. 19
  20. 20
    Academic Journal

    Συνεισφορές: Казанский (Приволжский) федеральный университет

    Relation: ИТОГОВАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ПРОФЕССОРСКО-ПРЕПОДАВАТЕЛЬСКОГО СОСТАВА ИНСТИТУТА ФИЗИКИ И ХИМИЧЕСКОГО ИНСТИТУТА ИМЕНИ А.М. БУТЛЕРОВА КАЗАНСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА; http://dspace.kpfu.ru/xmlui/bitstream/net/175766/-1/ktk2022_019.pdf; https://dspace.kpfu.ru/xmlui/handle/net/175766; 535.3+538.9