Showing 1 - 20 results of 186 for search '"ФОСФОРИЛИРОВАНИЕ"', query time: 0.74s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Contributors: Исследование выполнено при поддержке гранта Российского научного фонда № 24-75-10057 «Идентификация клеточных маркеров дисфункции эндотелия», https://rscf.ru/project/24-75-10057/.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 2 (2025); 110-126 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 2 (2025); 110-126 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1669/1030; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2051; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2052; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2053; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2054; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2055; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2056; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2057; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2058; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2059; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2060; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2061; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2062; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2063; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2064; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2065; Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi:10.1134/S0022093022030139.; Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi:10.1161/CIRCRESAHA.115.306301.; Шишкова Д.К., Фролов А.В., Маркова В.Е., Маркова Ю.О., Каноныкина А.Ю., Лазебная А.И., Матвеева В.Г., Торгунакова Е.А., Кутихин А.Г. Современные подходы к моделированию дисфункции эндотелия и системному поиску ее циркулирующих маркеров. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 173-190. doi:10.17802/2306-1278-2024-13-3S-173-190.; Богданов Л.А., Кошелев В.А., Мухамадияров Р.А., Каноныкина А.Ю., Лазебная А.И., Кондратьев Е.А., Степанов А.Д., Кутихин А.Г. Современные подходы к идентификации клеточных маркеров дисфункции эндотелия. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 191-207. doi:10.17802/2306-1278-2024-13-3S-191-207.; da Silva FC, de Araújo BJ, Cordeiro CS, Arruda VM, Faria BQ, Guerra JFDC, Araújo TG, Fürstenau CR. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front Physiol. 2022;13:978378. doi:10.3389/fphys.2022.978378.; Ghosh S, Gupta M, Xu W, Mavrakis DA, Janocha AJ, Comhair SA, Haque MM, Stuehr DJ, Yu J, Polgar P, Naga Prasad SV, Erzurum SC. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;310(11):L1199-205. doi:10.1152/ajplung.00092.2016.; Li G, Zhang H, Zhao L, Zhang Y, Yan D, Liu Y. Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase. J Am Soc Hypertens. 2017;11(12):842-852. doi:10.1016/j.jash.2017.10.009.; Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017;120(4):713-735. doi:10.1161/CIRCRESAHA.116.309326.; Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37, 837a-837d. doi:10.1093/eurheartj/ehr304.; Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol. 2013;4:347. doi:10.3389/fphys.2013.00347.; Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des. 2014;20(22):3503-13. doi:10.2174/13816128113196660745.; Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne C, Sokol AM, Günther S, Martínez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129(7):2775-2791. doi:10.1172/JCI123825.; Michell BJ, Chen Zp, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001;276(21):17625-8. doi:10.1074/jbc.C100122200.; Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68-75. doi:10.1161/hh1101.092677.; Lee CH, Wei YW, Huang YT, Lin YT, Lee YC, Lee KH, Lu PJ. CDK5 phosphorylates eNOS at Ser-113 and regulates NO production. J Cell Biochem. 2010;110(1):112-7. doi:10.1002/jcb.22515.; Kennard S, Ruan L, Buffett RJ, Fulton D, Venema RC. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul Pharmacol. 2016;81:61-8. doi:10.1016/j.vph.2016.04.003.; Li C, Ruan L, Sood SG, Papapetropoulos A, Fulton D, Venema RC. Role of eNOS phosphorylation at Ser-116 in regulation of eNOS activity in endothelial cells. Vascul Pharmacol. 2007;47(5-6):257-64. doi:10.1016/j.vph.2007.07.001.; Shishkova D, Markova V, Markova Y, Sinitsky M, Sinitskaya A, Matveeva V, Torgunakova E, Lazebnaya A, Stepanov A, Kutikhin A. Physiological Concentrations of Calciprotein Particles Trigger Activation and Pro-Inflammatory Response in Endothelial Cells and Monocytes. Biochemistry (Mosc). 2025;90(1):132-160. doi:10.1134/S0006297924604064.; Ku KH, Dubinsky MK, Sukumar AN, Subramaniam N, Feasson MYM, Nair R, Tran E, Steer BM, Knight BJ, Marsden PA. In Vivo Function of Flow-Responsive Cis-DNA Elements of eNOS Gene: A Role for Chromatin-Based Mechanisms. Circulation. 2021;144(5):365-381. doi:10.1161/CIRCULATIONAHA.120.051078.; Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest. 2021;131(21):e145734. doi:10.1172/JCI145734.; Cattaneo MG, Vanetti C, Decimo I, Di Chio M, Martano G, Garrone G, Bifari F, Vicentini LM. Sex-specific eNOS activity and function in human endothelial cells. Sci Rep. 2017;7(1):9612. doi:10.1038/s41598-017-10139-x.; Smith AR, Visioli F, Frei B, Hagen TM. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell. 2006;5(5):391-400. doi:10.1111/j.1474-9726.2006.00232.x.; Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012 Oct 12;111(9):1176-89. doi:10.1161/CIRCRESAHA.112.266395.; Bu S, Nguyen HC, Nikfarjam S, Michels DCR, Rasheed B, Maheshkumar S, Singh S, Singh KK. Endothelial cell-specific loss of eNOS differentially affects endothelial function. PLoS One. 2022;17(9):e0274487. doi:10.1371/journal.pone.0274487.; Shu X, Keller TC 4th, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci. 2015;72(23):4561-75. doi:10.1007/s00018-015-2021-0.; Fries DM, Paxinou E, Themistocleous M, Swanberg E, Griendling KK, Salvemini D, Slot JW, Heijnen HF, Hazen SL, Ischiropoulos H. Expression of inducible nitric-oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J Biol Chem. 2003;278(25):22901-7. doi:10.1074/jbc.M210806200.; Singh A, Sventek P, Larivière R, Thibault G, Schiffrin EL. Inducible nitric oxide synthase in vascular smooth muscle cells from prehypertensive spontaneously hypertensive rats. Am J Hypertens. 1996;9(9):867-77. doi:10.1016/s0895-7061(96)00104-5.; Di Pietro N, Di Tomo P, Di Silvestre S, Giardinelli A, Pipino C, Morabito C, Formoso G, Mariggiò MA, Pandolfi A. Increased iNOS activity in vascular smooth muscle cells from diabetic rats: potential role of Ca(2+)/calmodulin-dependent protein kinase II delta 2 (CaMKIIdelta(2)). Atherosclerosis. 2013;226(1):88-94. doi:10.1016/j.atherosclerosis.2012.10.062.; Preeclampsia is associated with loss of neuronal nitric oxide synthase expression in vascular smooth muscle cells of the human umbilical cord. Schönfelder G, Fuhr N, Hadzidiakos D, John M, Hopp H, Paul M. Histopathology. 2004;44(2):116-28. doi:10.1111/j.1365-2559.2004.01806.x.; Boulanger CM, Heymes C, Benessiano J, Geske RS, Lévy BI, Vanhoutte PM. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res. 1998;83(12):1271-8. doi:10.1161/01.res.83.12.1271.; Gomez-Alamillo C, Juncos LA, Cases A, Haas JA, Romero JC. Interactions between vasoconstrictors and vasodilators in regulating hemodynamics of distinct vascular beds. Hypertension. 2003;42(4):831-6. doi:10.1161/01.HYP.0000088854.04562.DA.; Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol. 2012;3:284. doi:10.3389/fphys.2012.00284.; Sheng Y, Zhu L. The crosstalk between autonomic nervous system and blood vessels. Int J Physiol Pathophysiol Pharmacol. 2018;10(1):17-28.; Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013;20(3):239-47. doi:10.1111/micc.12040.; Maruhashi T, Kihara Y, Higashi Y. Assessment of endothelium-independent vasodilation: from methodology to clinical perspectives. J Hypertens. 2018;36(7):1460-1467. doi:10.1097/HJH.0000000000001750.

  5. 5
    Academic Journal

    Contributors: Исследование выполнено при финансовой поддержке гранта Российского научного фонда (проект № 23-75- 00009).

    Source: Acta Biomedica Scientifica; Том 10, № 1 (2025); 103-114 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5219/2966; McDonagh T, Metra M. 2021 рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности. Российский кардиологический журнал. 2023; 28(1): 5168. doi:10.15829/1560-4071-2023-5168; Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: Challenges and therapeutic opportunities. Antioxid Redox Signal. 2022; 36(13-15): 844-863. doi:10.1089/ars.2021.0145; Цыпленкова В.Г. Гистологические и ультраструктурные характеристики миокарда при сердечной недостаточности. Кардиология. 2013; 9: 58-62.; Khoynezhad A, Jalali Z, Tortolani AJ. Apoptosis: Pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg. 2004; 78(3): 1109-1118. doi:10.1016/j.athoracsur.2003.06.034; Wiessner M, Maroofian R, Ni MY, Pedroni A, Müller JS, Stucka R, et al. Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain. 2021; 144(5): 1422-1434. doi:10.1093/brain/awab041; Huang L, Chen H, Luo Y, Rivenson Y, Ozcan A. Recurrent neural network-based volumetric fluorescence microscopy. Light Sci Appl. 2021; 10(1): 62. doi:10.1038/s41377-021-00506-9; Судаков Н.П., Клименков И.В., Катышев А.И., Никифоров С.Б., Гольдберг О.А., Пушкарёв Б.Г., и др. Митохондриальная дисфункция при атеросклерозе и инфаркте миокарда: молекулярные и цитохимические маркеры. Acta biomedica scientifica. 2016; 1(3-2): 131-134. doi:10.12737/article_590823a517c941.46556762; Wong HH, Seet SH, Maier M, Gurel A, Traspas RM, Lee C, et al. Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am J Hum Genet. 2021; 108(7): 1301-1317. doi:10.1016/j.ajhg.2021.05.003; Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, et al. Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLoS One. 2021; 16(11): e0259591. doi:10.1371/journal.pone.0259591; Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, et al. Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep. 2021; 23(6): 70. doi:10.1007/s11886-021-01500-8; Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, et al. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 2021; 128(5): 649-660. doi:10.1016/j.ophtha.2020.12.012; Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y, Fukumoto M, Saito Y, et al. The Involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys. 2016; 96(3): 556-565. doi:10.1016/j.ijrobp.2016.07.002; Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion. 2011; 11(5): 700-706. doi:10.1016/j.mito.2011.06.001; Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 2018; 69: 62-72. doi:10.1016/j.ceca.2017.05.003; Glancy B, Willis WT, Chess DJ, Balaban RS. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013; 52(16): 2793-2809. doi:10.1021/bi3015983; Denton RM, McCormack JG, Edgell NJ. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980; 190(1): 107-117. doi:10.1042/bj1900107; Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020; 126(2): 280-293. doi:10.1161/CIRCRESAHA.119.316306; Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN. Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion. 2020; 51: 126-139. doi:10.1016/j.mito.2020.01.005; Kembro JM, Cortassa S, Aon MA. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol. 2014; 5: 257. doi:10.3389/fphys.2014.00257; D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, et al. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxid Med Cell Longev. 2020; 2020: 5732956. doi:10.1155/2020/5732956; Guo Q, Bi J, Wang H, Zhang X. Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis. Emerg Microbes Infect. 2021; 10(1): 19-36. doi:10.1080/22221751.2020.1861913; Chinopoulos C. Mitochondrial permeability transition pore: Back to the drawing board. Neurochem Int. 2018; 117: 49-54. doi:10.1016/j.neuint.2017.06.010; Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 2019; 40(1): 50-70. doi:10.1016/j.tips.2018.11.004; Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017; 3(12): 857-870. doi:10.1016/j.trecan.2017.10.006; Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR, et al. APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. JAm Soc Nephrol. 2019; 30(12): 2355-2368. doi:10.1681/ASN.2019020114; Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020; 21(5): 268-283. doi:10.1038/s41580-020-0227-y; Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 2018; 39(1): 6-18. doi:10.1016/j.it.2017.08.006; Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, et al. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J Bone Miner Res. 2018; 33(6): 1052- 1065. doi:10.1002/jbmr.3390; Dorr BM, Fuerst DE. Enzymatic amidation for industrial applications. Curr Opin Chem Biol. 2018; 43: 127-133. doi:10.1016/j.cbpa.2018.01.008; Ishida A, Yamada Y, Kamidate T. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation. Anal Bioanal Chem. 2008; 392(5): 987-994. doi:10.1007/s00216-008-2334-z; Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol. 2021; 4(1): 64. doi:10.1038/s42003-020-01574-0; Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 2018; 25(2): 206-214.e11. doi:10.1016/j.chembiol.2017.10.010; Mita M, Sugawara I, Harada K, Ito M, Takizawa M, Ishida K, et al. Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol. 2022; 29(1): 98-108.e4. doi:10.1016/j.chembiol.2021.06.002; Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021; 12(2): 237-251. doi:10.1002/jcsm.12654; Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2022; 23(2): 141-161. doi:10.1038/s41580-021-00415-0; Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer druginduced apoptosis. J Exp Med. 1998; 188(5): 979-984. doi:10.1084/jem.188.5.979; Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016; 2016: 1245049. doi:10.1155/2016/1245049; Khacho M, Tarabay M, Patten D, Khacho P, MacLaurin JG, Guadagno J, et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun. 2014; 5: 3550. doi:10.1038/ncomms4550; Wang M, Ren X, Wang L, Lu X, Han L, Zhang X, et al. A functional analysis of mitochondrial respiratory chain cytochrome bc1 complex in Gaeumannomyces tritici by RNA silencing as a possible target of carabrone. Mol Plant Pathol. 2020; 21(12): 1529-1544. doi:10.1111/mpp.12993; Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of mitochondrial electron transport chain assembly. JMol Biol. 2018; 430(24): 4849-4873. doi:10.1016/j.jmb.2018.09.016; Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martínez-Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019; 565(7740): 495-499. doi:10.1038/s41586-018-0846-z; Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: Multiple enzyme functions revealed by the membrane-embedded FO structure. Crit Rev Biochem Mol Biol. 2020; 55(4): 309-321. doi:10.1080/10409238.2020.1784084; Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, et al. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 2016; 18(7): 803-813. doi:10.1038/ncb3376; Baumann K. mtDNA robs nuclear dNTPs. Nat Rev Mol Cell Biol. 2019; 20(11): 663. doi:10.1038/s41580-019-0182-7; Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, et al. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch. 2020; 472(3): 367-374. doi:10.1007/s00424-020-02355-8; Gu X, Ma Y, Liu Y, Wan Q. Measurement of mitochondrial respiration in adherent cells by seahorse XF96 cell mito stress test. STAR Protoc. 2020; 2(1): 100245. doi:10.1016/j.xpro.2020.100245; Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress. 2020; 13: 100251. doi:10.1016/j.ynstr.2020.100251; Nishida M, Yamashita N, Ogawa T, Koseki K, Warabi E, Ohue T, et al. Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/ mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. JImmunother Cancer. 2021; 9(9): e002954. doi:10.1136/jitc-2021-002954; Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, et al. Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle. 2020; 11(1): 241-258. doi:10.1002/jcsm.12530; Панов А.В., Дикалов С.И., Даренская М.А., Рычкова Л.В., Колесникова Л.И., Колесников С.И. Митохондрии: старение, метаболический синдром и сердечно-сосудистая патология. Становление новой парадигмы. Acta biomedica scientifica. 2020; 5(4): 33-44. doi:10.29413/ABS.2020-5.4.5; Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: Role in heart, skeletal muscle and adi pose tissue. J Cachexia Sarcopenia Muscle. 2017; 8(3): 349-369. doi:10.1002/jcsm.12178; Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013; 47(1): 9-23. doi:10.1007/s12035-012-8344-z; Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 2017; 92(3): 1459-1474. doi:10.1111/brv.12291; Zhu X, Liu G, Bu Y, Zhang J, Wang L, Tian Y, et al. In situ monitoring of mitochondria regulating cell viability by the RNAspecific fluorescent photosensitizer. Anal Chem. 2020; 92(15): 10815-10821. doi:10.1021/acs.analchem.0c02298; Yang J, Chen Z, Liu N, Chen Y. Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol. 2018; 19: 158-165. doi:10.1016/j.redox.2018.08.016; Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and opportunities for small-molecule fluorescent probes in redox biology applications. Antioxid Redox Signal. 2018; 29(6): 518-540. doi:10.1089/ars.2017.7491; Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med. 2018; 122: 202-220. doi:10.1016/j.freeradbiomed.2018.04.005; Gotham JP, Li R, Tipple TE, Lancaster JR Jr, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med. 2020; 154: 84-94. doi:10.1016/j.freeradbiomed.2020.04.020; Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, et al. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci U S A. 2020; 117(25): 14306-14313. doi:10.1073/pnas.1916851117; Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 2020; 63: 101168. doi:10.1016/j.arr.2020.101168; Корепанов В.А., Реброва Т.Ю., Атабеков Т.А., Афанасьев С.А. Возможная роль митохондриальной дисфункции в аритмогенезе при ишемической болезни сердца. Сибирский журнал клинической и экспериментальной медицины. 2023; 38(4): 236-242. doi:10.29001/2073-8552-2023-38-4-236-242; Kuzheleva EA, Garganeeva AA, Tukish OV, Nesova AK, Golubenko MV, Andreev SL, et al. The role of rs2238296 of the mitochondrial DNA polymerase gamma gene in combination with polymorphic variants of antioxidant defense genes in the development of postinfarction left ventricular aneurysm. Russian Journal of Genetics. 2023; 59: 97-103. doi:10.1134/s1022795423010076; Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005; 309(5733): 481-484. doi:10.1126/science.1112125; Понасенко А.В., Цепокина А.В., Тхоренко Б.А., Голубенко М.В., Губиева Е.К., Трефилова Л.П. Изменчивость митохондриальной ДНК в развитии атеросклероза и инфаркта миокарда (обзор литературы). Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7(4S): 75-85. doi:10.17802/2306-1278-2018-7-4S-75-85; Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, et al. Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab. 2022; 135(1): 93-101. doi:10.1016/j.ymgme.2021.12.006; Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021; 17(1): 1-382. doi:10.1080/15548627.2020.1797280; Li H, Slone J, Fei L, Huang T. Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019; 8(6): 608. doi:10.3390/cells8060608; West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017; 17(6): 363-375. doi:10.1038/nri.2017.21; Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. JNucl Med. 1992; 33(8): 1516-1522.; Backus M, Piwnica-Worms D, Hockett D, Kronauge J, Lieberman M, Ingram P, et al. Microprobe analysis of Tc-MIBI in heart cells: Calculation of mitochondrial membrane potential. Am J Physiol. 1993; 265(1 Pt 1): C178-С187. doi:10.1152/ajpcell.1993.265; Kawamoto A, Kato T, Shioi T, Okuda J, Kawashima T, Tamaki Y, et al. Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure. PLoS One. 2015; 10(1): e0117091. doi:10.1371/journal.pone.0117091; Crane P, Laliberté R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med. 1993; 20(1): 20-25. doi:10.1007/BF02261241; Hayashi D, Ohshima S, Isobe S, Cheng XW, Unno K, Funahashi H, et al. Increased (99m)Tc-sestamibi washout reflects impaired myocardial contractile and relaxation reserve during dobutamine stress due to mitochondrial dysfunction in dilated cardiomyopathy patients. J Am Coll Cardiol. 2013; 61(19): 2007-2017. doi:10.1016/j.jacc.2013.01.074; Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: A review of emerging techniques. BMC Med Imaging. 2021; 21(1): 164. doi:10.1186/s12880-021-00695-0; Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, et al. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR Biomed. 2020; 34(5): e4246. doi:10.1002/nbm.4246; Holley CT, Long EK, Lindsey ME, McFalls EO, Kelly RF. Recovery of hibernating myocardium: What is the role of surgical revascularization? JCard Surg. 2015; 30(2): 224-231. doi:10.1111/jocs.12477; Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med. 2020; 24(5): 2717-2729. doi:10.1111/jcmm.14953; Unno K, Isobe S, Izawa H, Cheng XW, Kobayashi M, Hirashiki A, et al. Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy. Eur HeartJ. 2009; 30(15): 1853-1862. doi:10.1093/eurheartj/ehp184; Афанасьев С.А., Муслимова Э.Ф, Реброва Т.Ю., Цапко Л.П., Керчева М.А., Голубенко М.В. Особенности функционального состояния митохондрий лейкоцитов периферической крови у пациентов с острым инфарктом миокарда. Бюллетень экспериментальной биологии и медицины. 2020; 169(4): 435-437. doi:10.1007/s10517-020-04903-9; Tsampasian V, Cameron D, Sobhan R, Bazoukis G, Vassiliou VS. Phosphorus magnetic resonance spectroscopy (31P MRS) and cardiovascular disease: The importance of energy. Medicina (Kaunas). 2023; 59(1): 174. doi:10.3390/medicina59010174; https://www.actabiomedica.ru/jour/article/view/5219

  6. 6
  7. 7
    Academic Journal

    Contributors: Current work was carried out in the framework of scientific grant AP14869357 and program OR11465447 funded by the Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

    Source: Vavilov Journal of Genetics and Breeding; Том 27, № 2 (2023); 93-98 ; Вавиловский журнал генетики и селекции; Том 27, № 2 (2023); 93-98 ; 2500-3259 ; 10.18699/VJGB-23-1

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3673/1687; Altschuler M., Mascarenhas J.P. Heat shock proteins and effects of heat shock in plants. Plant Mol. Biol. 1982;1(2):103­115. DOI:10.1007/BF00024974.; Baird Th.D., Wek R.C. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv. Nutr. 2012;3:307­321. DOI:10.3945/an.112.002113.; Ballard D.J., Peng H.­Y., Das J.K., Kumar A., Wang L., Ren Y., Xiong X., Ren X., Yang J.­M., Song J. Insights into the pathologic roles and regulation of eukaryotic elongation factor-2 kinase. Front. Mol. Biosci. 2021;8:839. DOI:10.3389/fmolb.2021.727863.; Browning K.S., Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. Arabidopsis Book. 2015;13:e0176.; Chen Z., Sun Y., Yang X., Wu Z., Guo K., Niu X., Wang Q., Ruan J., Bu W., Gao S. Two featured series of rRNA-derived RNA fragments (rRFs) constitute a novel class of small RNAs. PLoS One. 2017;12: e0176458. DOI:10.1371/journal.pone.0176458.; Echevarria­Zomeno S., Yanguez E., Fernandez­Bautista N., Castro­ Sanz A.B., Ferrando A., Castellano M.M. Regulation of translation initiation under biotic and abiotic stresses. Int. J. Molec. Sci. 2013; 14:4670­4683. DOI:10.3390/ijms14034670.; Endo Y. Mechanism of action of ricin and related toxins on the inactivation of eukaryotic ribosomes. Cancer Res. Treat. 1988;37:75­89. DOI:10.1007/978-1-4613-1083-9_5.; Gallie D.R., Le H., Caldwell C., Tanguay R., Hoang N.X., Brow ning K.S. The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J. Biol. Chem. 1997;272:1046­1053. DOI:10.1074/jbc.272.2.1046.; Gallie D.R., Le H., Caldwell C., Browning K.S. Analysis of translation elongation factors from wheat during development and following heat shock. Biochem. Biophys. Res. Comm. 1998;245:295­300. DOI:10.1006/bbrc.1998.8427.; Henras A.K., Plisson-Chastang C., O’Donohue M.F., Chakraborty A., Gleizes P.E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA. 2015;6(2):225­242. DOI:10.1002/wrna.1269.; Hernandez G., Altmann M., Lasko P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem. Sci. 2010;35(2):63­73. DOI:10.1016/j.tibs.2009.10.009.; Immanuel T.M., Greenwood D.R., MacDiarmid R.M. A critical review of translation initiation factor eIF2α kinases in plants – regulating protein synthesis during stress. Funct. Plant Biol. 2012;39(9):717­ 735. DOI:10.1071/FP12116.; Kamauchi S., Nakatani H., Nakano C., Urade R. Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J. 2005;272(13):3461­3476. DOI:10.1111/j.1742­4658.2005.04770.x.; Kast A., Klassen R., Meinhardt F. rRNA fragmentation induced by a yeast killer toxin. Mol. Microbiol. 2014;91(3):606­617. DOI:10.1111/mmi.12481.; Knutsen J.H., Rødland G.E., Bøe C.A., Håland T.W., Sunnerhagen P., Grallert B., Boye E. Stress-induced inhibition of translation independently of eIF2α phosphorylation. J. Cell Sci. 2015;128(23): 4420-4427. DOI:10.1242/jcs.176545.; Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680­685. DOI:10.1038/227680a0.; Lageix S., Lanet E., Pouch-Pelissier M.N., Espagnol M.C., Robaglia C., Deragon J.M., Pelissier T. Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biol. 2008;8:134. DOI:10.1186/1471­2229­8­134.; Padgette S.R., Kolacz K.H., Delannay X., Re D.B., LaVallee B.J., Tinius C.N., Rhodes W.K., Otero Y.I., Barry G.F., Eichholtz D.A., Pesch­ ke V.M., Nida D.L., Taylor N.B., Kishore G.M. Development, identification and characterization of a Glyphosate­tolerant soybean line. Crop Sci. 1995;35(5):1451­1461. DOI:10.3389/fpls.2016.01009.; Ruberti C., Kim S.J., Stefano G., Brandizzi F. Unfolded protein response in plants: one master, many questions. Curr. Opin. Plant Biol. 2015;27:59­66. DOI:10.1016/j.pbi.2015.05.016.; Shaikhin S.M., Smailov S.K., Lee A.V., Kozhanov E.V., Iskakov B.K. Interaction of wheat germ translation initiation factor 2 with GDP and GTP. Biochimie. 1992;74(5):447­454. DOI:10.1016/0300­9084(92)90085-s.; Smailov S.K., Lee A.V., Iskakov B.K. Study of phosphorylation of translation elongation factor 2 (EF-2) from wheat germ. FEBS Lett. 1993;321(2­3):219­223. DOI:10.1016/0014­5793(93)80112­8.; Zhang Y., Wang Y., Kanyuka K., Parry M.A., Powers S.J., Halford N.G. GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2alpha in Arabidopsis. J. Exp. Bot. 2008;59(11):3131­ 3141. DOI:10.1093/jxb/ern169.; Zhanybekova S.S., Polimbetova N.S., Nakisbekov N.O., Iskakov B.K. Detection of a new small RNA, induced by heat shock, in wheat seed ribosomes. Biochemistry (Moscow). 1996;61:862­870.; Zhigailov A.V., Alexandrova A.M., Nizkorodova A.S., Stanbekova G.E., Kryldakov R.V., Karpova O.V., Polimbetova N.S., Halford N.G., Iskakov B.K. Evidence that Phosphorylation of the α­subunit of eIF2 does not essentially inhibit mRNA translation in wheat germ cell-free system. Front. Plant Sci. 2020;11:936. DOI:10.3389/fpls.2020.00936.; Zhigailov A.V., Polimbetova N.S., Borankul R.I., Iskakov B.K. Investigation of discrete fragmentation of 18S rRNA within 40S ribosomal subparticles of plant cells. Vestnik KazNU. Biological Series. 2013;2:81­87. (in Russian); Zhigailov A.V., Polimbetova N.S., Doshchanov Kh.I., Iskakov B.K. Detection in plant cells of a new 75-nucleotide cytoplasmic RNA corresponding to the 5′­terminal fragment of 18S RNA. Vestnik KazNU. Biological and Medical Series. 2014;1:191­194. (in Russian); Yu Ch.­Y., Cho Y., Sharma O., Kanehara K. What’s unique? The unfolded protein response in plants. J. Exp. Botany. 2021:erab513. DOI:10.1093/jxb/erab513.; https://vavilov.elpub.ru/jour/article/view/3673

  8. 8
    Academic Journal

    Contributors: The investigation has been conducted within basic scientific topic № 1021051402790-6 "Study of immunopathology, diagnosis and therapy in the early stages of systemic rheumatic diseases.", Статья подготовлена в рамках фундаментальной темы № 1021051402790-6 «Изучение иммунопатологии, диагностики и терапии на ранних стадиях системных ревматических заболеваний».

    Source: Modern Rheumatology Journal; Том 17, № 4 (2023); 13-18 ; Современная ревматология; Том 17, № 4 (2023); 13-18 ; 2310-158X ; 1996-7012

    File Description: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1451/1376; Jeggo PA, Pear LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016 Jan;16(1):35-42. doi:10.1038/nrc.2015.4. Epub 2015 Dec 15.; Migliore L, Coppede F, Fenech M, Thomas P. Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis. 2011 Jan;26(1):85-92. doi:10.1093/mutage/geq067.; Rube CE, Fricke A, Widmann TA, et al. Accumulation of DNA Damage in Hematopoietic Stem and Progenitor Cells during Human Aging. PLoS One. 2011 Mar 7;6(3): e17487. doi:10.1371/journal.pone.0017487.; Vozilova AV, Shagina NB, Degteva MO, Akleyev AV. Chronic radioisotope effects on residents of the Techa river (Russia) region: cytogenetic 323 analysis more than 50 years after onset of exposure. Mutat Res. 2013 Aug 30;756(1-2):115-8. doi:10.1016/j.mrgentox.2013.05.016. Epub 2013 Jun 7.; Pezone A, Olivieri F, Napoli MV, et al. In-flammation and DNA damage: cause, effect or both. Nat Rev Rheumatol. 2023 Apr;19(4): 200-211. doi:10.1038/s41584-022-00905-1. Epub 2023 Feb 7.; Passerini V, Ozeri-Galai E, de Pagter MS, et al. The presence of extra chromosomes leads to genomic instability. Nat Commun. 2016 Feb 15;7:10754. doi:10.1038/ncomms10754.; Chrzanowska K, Gregorek H, Dembowska-Baginska B, et al. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012 Feb 28;7:13. doi:10.1186/1750-1172-7-13.; Ванюшин БФ. Метилирование ДНК и эпигенетика. Генетика. 2006;42(9):985-997.; Кузьмина НС, Лаптева НШ, Русинова ГГ и др. Гиперметилирование промоторов генов в лейкоцитах крови человека в отдаленный период после перенесенного радиационного воздействия. Радиационная биология. Радиоэкология. 2017;(4):341-356.; Paull TT, Rogakou EP, Yamazaki V, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10(15):886-95. doi:10.1016/s0960-9822(00)00610-2.; Sedelnikova OA, Pilch DR, Redon C, Bonner WM. Histone H2AX in DNA damage and repair. Cancer Biol Ther. 2003 May-Jun;2(3):233-5. doi:10.4161/cbt.2.3.373.; Pilch DR, Sedelnikova OA, Redon C, et al. Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol. 2003 Jun;81(3):123-9. doi:10.1139/o03-042.; Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015 Mar 11; 43(5):2489-98. doi:10.1093/nar/gkv061. Epub 2015 Feb 20.; Stucki M, Clapperton JA, Mohammad D, et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005 Dec 29;123(7):1213-26. doi:10.1016/j.cell.2005.09.038.; Iwabuchi K, Basu BP, Kysela B, et al. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J Biol Chem. 2003 Sep 19;278(38):36487-95. doi:10.1074/jbc.M304066200. Epub 2003 Jun 24.; Kuo LJ, Yang LX. Gamma-H2AX — a novel biomarker for DNA double-strand breaks. In Vivo. 2008 May-Jun;22(3):305-9.; Chowdury D, Keogh MC, Ishii H, et al. Y-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 2005 Dec 9; 20(5):801-9. doi:10.1016/j.molcel.2005.10.003. Epub 2005 Nov 28.; Souliotis VL, Vlachogiannis NI, Pappa M, et al. DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. Int J Mol Sci. 2019 Dec 20;21(1):55. doi:10.3390/ijms21010055.; Ferrucci, L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018 Sep;15(9):505-522. doi:10.1038/s41569-018-0064-2.; Nastasi C, Mannarino L, D'Incalci M. DNA damage response and immune defense. Int J Mol Sci. 2020 Oct 12;21(20):7504. doi:10.3390/ijms21207504.; Alfano M. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nat Commun. 2021 Sep 1;12(1):5205. doi:10.1038/s41467-021-25544-0.; Higo T. DNA single-strand break-induced DNA damage response causes heart failure. Nat Commun. 2017 Apr 24;8:15104. doi:10.1038/ncomms15104.; Saez GT. DNA Damage and Repair in Degenerative Diseases 2016. Int J Mol Sci. 2017 Jan 16;18(1):166. doi:10.3390/ijms18010166.; Klein B, Gunther C. Type I Interferon Induction in Cutaneous DNA Damage Syndromes. Front Immunol. 2021 Jul 23;12:715723. doi:10.3389/fimmu.2021.715723. eCollection 2021.; Burton DG. Faragher RG. Cellular senescence: from growth arrest to immunogenic conversion. Age (Dordr). 2015;37(2):27. doi:10.1007/s11357-015-9764-2. Epub 2015 Mar 20.; Souliotis VL, Sfikakis PP. Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis. Lupus. 2015 Jul;24(8):804-15. doi:10.1177/0961203314565413. Epub 2014 Dec 26.; Souliotis VL, Vougas K, Gorgoulis VG, Sfikakis PP. Defective DNA repair and chromatin organization in patients with quiescent systemic lupus erythematosus. Arthritis Res Ther. 2016 Aug 4;18(1):182. doi:10.1186/s13075-016-1081-3.; Micheli C, Parma A, Tani C, et al. UCTD and SLE patients show increased levels of oxidative and DNA damage together with an altered kinetics of DSB repair. Mutagenesis. 2021 Nov 29;36(6):429-436. doi:10.1093/mutage/geab036.; Namas R, Renauer P, Ognenovski M, et al. Histone H2AX phosphorylation as a measure of DNA double-strand breaks and a marker of environmental stress and disease activity in lupus. Lupus Sci Med. 2016 Apr 29;3(1):e000148. doi:10.1136/lupus-2016-000148. eCollection 2016.; Rodier F, Coppe JP, Patil CK, et al. Persi-stent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009 Aug;11(8):973-9. doi:10.1038/ncb1909. Epub 2009 Jul 13.; Nakamura AJ, Redon CE, Bonner WM, Sedelnikova OA. Telomeredependent and telomere-independent origins of endogenous DNA damage in tumor cells. Aging (Albany NY). 2009 Feb 4;1(2):212-8. doi:10.18632/aging.100019.; Reddig A, Voss L, Guttek K, et al. Impact of Different JAK Inhibitors and Methotrexate on Lymphocyte Proliferation and DNA Damage. J Clin Med. 2021 Apr 1;10(7):1431. doi:10.3390/jcm10071431.

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Source: Clinical anatomy and operative surgery; Vol. 6 No. 3 (2007); 23-26
    Клиническая анатомия и оперативная хирургия; Том 6 № 3 (2007); 23-26
    Клінічна анатомія та оперативна хірургія; Том 6 № 3 (2007); 23-26

    File Description: application/pdf

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20