Εμφανίζονται 1 - 20 Αποτελέσματα από 95 για την αναζήτηση '"ФЛУОРЕСЦЕНЦИЯ ХЛОРОФИЛЛА"', χρόνος αναζήτησης: 0,70δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Vegetable crops of Russia; № 6 (2023); 129-135 ; Овощи России; № 6 (2023); 129-135 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2292/1521; Cary A., Mitchell F.S. LED advancements for plant-factory artificial lighting. Plant Factory (Second Edition). An Indoor Vertical Farming System for Efficient Quality Food Production / Editors Toyoki Kozai Genhua Niu Michiko Takagaki Acad. Press, 2020. P. 167-184. https://doi.org/10.1016/B978-0-12-816691-8.00010-8; Yuanchun Ma, An Xu, Zong-Ming (Max). Cheng Effects of light emittingdiode lights on plant growth, development and traits a meta-analysis. Horticultural Plant Journal. November 2021;7(6):552-564. https://doi.org/10.1016/j.hpj.2020.05.007; Smith H. Light quality, photoperception, and plant strategy. Annual Review of Plant Physiology, 1982;33(1):481–518. https://doi.org/10.1146/annurev.pp.33.060182.; Casal J.J. Photoreceptor signaling networks in plant responses to shade.Annu Rev Plant Biol. 2013;(64):403–427. https://doi.org/10.1146/annurevarplant-050312-120221.; Grant R.H. Partitioning of biologically active radiation in plant canopies.Int. J. Biometeorol. 1997;(40):26-40.; Leduc N., Roman H., Barbier F., Péron T., Huché-Thélier L., Lothier J.et al. Light signaling in bud outgrowth and branching in plants. Plants. 2014;(3):223. https://doi.org/10.3390/plants3020223; Sasidharan R., Chinnappa C.C., Staal M., Elzenga J.T.M., YokoyamaR., Nishitani K. et al. Light quality-mediated petiole elongation in arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases. Plant Physiol. 2010;(154):978–990. https://doi.org/10.1104/pp.110.162057; Bongers F.J., Evers J.B., Anten N.P.R., Pierik R. From shade avoidanceresponses to plant performance at vegetation level: using virtual plant modelling as a tool. New Phytol. 2014; (204):268–272. https://doi.org/10.1111/nph.1304; Yujin Park, Erik S. Runkle. Far-red Radiation Promotes Growth ofSeedlings by Increasing Leaf Expansion and Whole-plant Net Assimilation. Environmental and Experimental Botany. April 2017;(136):41-49. https://doi.org/10.1016/j.envexpbot.2016.12.013; Tarakanov I.G., Kosobryukhov A.A., Tovstyko D.A., Anisimov A.A.,Shulgina A.A., Sleptsov N.N., Kalashnikova E.A., Vassilev A.V., Kirakosyan R.N. Effects of light spectral quality on the micropropagated raspberry plants during ex vitro adaptation. Plants, 2021;10(10):2071. https://doi.org/10.3390/plants10102071; Sergejeva D., Alsina I., Duma M., Dubova L., Augspole I., Erdberga I.,Berzina K. Evaluation of different lighting sources on the growth and chemical composition of lettuce. Agronomy Research. 2018;16(3):892–899. https://doi.org/10.15159/AR.18.133; Kim H.-J., Yang T., Choi S., Wang Y.-J., Lin M.-Y., Liceaga A.M.Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes. Scientia Horticulturae. 2020;(261):108985. https://doi.org/10.1016/j.scienta.2019.108985; Kurepin L.V., Emery R.J., Pharis R.P., Reid D.M. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J Exp Bot. 2007;58(8):2145-57. https://doi.org/10.1093/jxb/erm068; Feng Yanga, Lingyang Fenga, Qinlin Liua, Xiaoling Wua, Yuanfang Fana,, Muhammad Ali Razaa, Yajiao Chenga, Junxu Chena, Xiaochun Wanga, Taiwen Yonga, Weiguo Liua, Jiang Liua, Junbo Dua, Kai Shua, Wenyu Yanga. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany. 2018;(150):79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008; Zelenkov V.N., Vernik P.A., Latushkin V.V. Creating closed technobioecosystems (synergotron class) as a modern direction of using digital technologies for the development of Agrarian Science and solving tasks of the agrarian-industrial complex of Russia. IOP Conf. Series: Earth and Environmental Science. 2019;(274):12101. https://doi.org/10.1088/1755-1315/274/1/; Гольцев В.Н., Каладжи Х.М., Кузманова М.А. Аллахвердиев С.И. Переменная и замедленная флуоресценция хлорофилла а – теоретические основы и практическое приложение в исследовании растений. М. – Ижевск: Институт компьютерных исследований, 2014. 220 с.; Carvalho R.F., Campos M.L., Azevedo R.A. The role of phytochrome instress tolerance. J. Integr. Plant Biol. 2011;53(12):920–929. https://doi.org/10.1111/j.1744-7909.2011.01081.x.; Kreslavski V.D., Los D.A., Schmitt F.-J., Zharmukhamedov S.K.,Kuznetsov V.V., Allakhverdiev S.I. The impact of the phytochromes on photosynthetic processes. Biochim Biophys Acta Bioenerg. 2018 May;1859(5):400-408. https://doi.org/10.1016/j.bbabio.2018.03.003.; Franklin K.A., Larner V.S., Whitelam G.C. The signal transducing photoreceptors of plants. Int. J. Dev. Biol. 2005;49(5-6):653-64. https://doi.org/10.1387/ijdb.051989kf; Li Q., Kubota C. Effects of supplemental light quality on growth andphytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009;67(1):59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011; Heraut-Bron V., Robin C., Varlet-Grancher C., Afif D., Guckert A. Lightquality (red:far-red ratio): does it affect photosynthetic activity, net CO2 assimilation, and morphology of young white clover leaves? Canadian Journal of Botany. February 2011;77(10):1425-1431. https://doi.org/10.1139/b99-099; Zhen S.Y., van Iersel M.W. Far-red light is needed for efficient photochemistry and photosynthesis. J. Plant Physiol. 2017;(209):115-122. https://doi.org/10.1016/j.jplph.2016.12.004; Ballaré C.L., Scopel A.L., Sánchez R.A. Plant photomorphogenesis incanopies, crop growth, and yield. HortScience. 1997;(30):1172–1181.; Marchiori P.E.R., Machado, E.C., Ribeiro, R.V. Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Research. January 2013;(155):30–37. https://doi.org/10.1016/j.fcr.2013.09.025; Yang F., Huang S., Gao R.C., Liu W.G., Yong T.W., Wang X.C.,Wu X.L., Yang W.Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crop Res. 2014;(155):45–253. https://doi.org/10.1016/j.fcr.2013.08.011; https://www.vegetables.su/jour/article/view/2292

  2. 2
    Academic Journal

    Συνεισφορές: The work was carried out under the state budget theme “Diversity, structure and functioning of marine and coastal ecosystems” (CITIS no. 121032500077-8) and Development program of Moscow State University “The future of the planet and global environmental changes.”, Исследование выполнено в рамках государственной темы “Разнообразие, структура и функционирование морских и прибрежных экосистем” (номер ЦИТИС: 121032500077-8), Программы развития МГУ имени М.В. Ломоносова “Будущее планеты и глобальные изменения окружающей среды”.

    Πηγή: Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya; Том 86, № 6 (2022): Специальный выпуск: Белое море в плейстоцене, голоцене и антропоцене; 985–1001 ; Известия Российской академии наук. Серия географическая; Том 86, № 6 (2022): Специальный выпуск: Белое море в плейстоцене, голоцене и антропоцене; 985–1001 ; 2658-6975 ; 2587-5566

    Περιγραφή αρχείου: application/pdf

    Relation: https://izvestia.igras.ru/jour/article/view/1672/905; Белевич Т.А., Ильяш Л.В. Сезонная динамика первичной продукции пикофитопланктона в Кандалакшском заливе Белого моря // Тр. VII Междунар. науч.-практ. конф. “Морские исследования и образование (MARESEDU-2018)”. Тверь: ПолиПРЕСС, 2019. Т. IV. С. 193‒196.; Белевич Т.А., Милютина И.А. Видовое разнообразие фототрофного пикопланктона морей Карского и Лаптевых // Микробиология. 2022. Т. 1. № 1. С. 75‒85. https://doi.org/10.31857/S0026365622010025; Белькова Н.Л. Молекулярно-генетические методы анализа микробных сообществ // Разнообразие микробных сообществ внутренних водоемов России: Учеб.-методич. пособие. Ярославль: Принтхаус, 2009. С. 53‒63.; Ильяш Л.В., Радченко И.Г., Кузнецов Л.Л., Лисицын А.П., Мартынова Д.М., Новигатский А.Н., Чульцова А.Л. Пространственная вариабельность состава, обилия и продукционных характеристик фитопланктона Белого моря в конце лета // Океанология. 2011. Т. 51. № 1. С. 24–32.; Краснова Е.Д. Экология меромиктических озер России. 1. Прибрежные морские водоемы // Водные ресурсы. 2021. Т. 48. № 3. С. 322–333. https://doi.org/10.31857/S0321059621030093; Краснова Е.Д., Воронов Д.А., Демиденко Н.А., Кокрятская Н.М., Пантюлин А.Н., Рогатых Т.А., Самсонов Т.Е., Фролова Н.Л., Шапоренко С.И. К инвентаризации реликтовых водоемов, отделяющихся от Белого моря // Комплексные исследования Бабьего моря, полу-изолированной беломорской лагуны: геология, гидрология, биота – изменения на фоне трансгрессии берегов. Тр. Беломорской биостанции МГУ. М: Тов-во науч. изд. КМК, 2016. Т. 12. С. 211–241.; Краснова Е.Д., Пантюлин А.Н., Маторин Д.Н., Тодоренко Д.А., Белевич Т.А., Милютина И.А., Воронов Д.А. Цветение криптофитовой водоросли Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) в редокс-зоне водоемов, отделяющихся от Белого моря // Микробиология. 2014. Т. 83. № 3. С. 346–354. https://doi.org/10.7868/S0026365614030100; Лосюк Г.Н., Кокрятская Н.М., Краснова Е.Д. Сероводородное заражение прибрежных озер на разных стадиях изоляции от Белого моря // Океанология. 2021. Т. 61. № 3. С. 401–412. https://doi.org/10.31857/S003015742102012X; Маторин Д.Н., Рубин А.Б. Флуоресценция хлорофилла высших растений и водорослей. М.: Ижевск, 2012. 256 с.; Мордасова Н.В. Косвенная оценка продуктивности вод по содержанию хлорофилла // Тр. ВНИРО. 2014. Т. 152. С. 41‒56.; Нецветаева О.П., Македонская И.Ю., Коробов В.Б., Зметная М.И. Зависимость кислородонасыщения от содержания хлорофилла “а” в поверхностном слое вод Белого моря // Арктика: экология и экономика. 2018. № 3 (31). С. 31‒41. https://doi.org/10.25283/2223-4594-2018-3-31-41; Романенко Ф.А., Шилова О.С. Послеледниковое поднятие Карельского берега Белого моря по данным радиоуглеродного и диатомового анализов озерноболотных отложений п-ова Киндо // ДАН. 2012. Т. 442. № 4. С. 544–548.; Саввичев А.С., Лунина О.Н., Русанов И.И., Захарова Е.Е., Веслополова Е.Ф., Иванов М.В. Микробиологические и изотопно-геохимические исследования озера Кисло-Сладкое − меромиктического водоема на побережье Кандалакшского залива Белого моря // Микробиология. 2014. Т. 83. № 2. С. 191−203. https://doi.org/10.7868/S002636561401011X; Тодоренко Д.А., Краснова Е.Д., Маторин Д.Н. Изучение функционального состояния фотосинтетического аппарата фитопланктона в отделяющихся водоемах на Беломорском побережье с помощью флуоресцентных методов // Тр. VII Междунар. науч.- практ. конф. “Морские исследования и образование (MARESEDU-2018)”. Тверь: ПолиПРЕСС, 2019. Т. IV. С. 227–229.; Чеканов К.А., Краснова Е.Д. Характеристики фотосинтетического аппарата криптофитовых жгутиконосцев Rhodomonas sp. из хемоклина стратифицированной лагуны на Зеленом мысе (Белое море, Кандалакшский залив) // Материалы XXII Междунар. науч. конф. (Школы) по морской геологии “Геология морей и океанов”. М.: ИО РАН, 2019. Т. 3. С. 232–234.; Шапоренко С.И., Корнеева Г.А., Пантюлин А.Н., Перцова Н.М. Особенности экосистем отшнуровывающихся водоемов Кандалакшского залива Белого моря // Водные ресурсы. 2005. Т. 32. № 5. С. 517‒532.; Abad D., Albaina A., Aguirre M., Laza-Martínez A., Uriarte I., Iriarte A., Villate F., Estonba A. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy // Marine Biol. 2016. Vol. 163. Iss. 7. Art. number 149. https://doi.org/10.1007/s00227-016-2920-0; Baatar B., Chiang P.-W., Rogozin D.Y., Wu Y.-T., Tseng C.-H., Yang C.-Y., Chiu H.-H., Oyuntsetseg B., Degermendzhy A.G., Tang S.-L. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia // PLOS ONE. 2016. Vol. 11. № 3. e0150847. https://doi.org/10.1371/journal.pone.0150847; Casamayor E.O., Schafer H., Baneras L., Pedros-Alio C., Muyzer G. Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis // Appl. and Environ. Microbiol. 2000. Vol. 66. № 2. P. 499–508. https://doi.org/10.1128/aem.66.2.499-508.2000; Del Campo J., Pizzorno A., Djebali S., Bouley J., Haller M., Pérez-Vargas J., Lina B., Boivin G., Hamelin M.-E., Nicolas F., Le Vert F., Leverrier Y., Rosa-Calatrava M., Marvel J., Hill F. OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes // NPJ Vaccines. 2019. Vol. 4. Iss. 4. https://doi.org/10.1038/s41541-019-0098-4; Dzhembekova N., Moncheva S., Ivanova P., Slabakova N., Nagai S. Biodiversity of phytoplankton cyst assemblages in surface sediments of the Black Sea based on metabarcoding // Biotechnol. & Biotechnol. Equipment. 2018. Vol. 32. № 6. P. 1507–1513. https://doi.org/10.1080/13102818.2018.1532816; Edgar R.C. Search and clustering orders of magnitude faster than BLAST // Bioinformatics. 2010. Vol. 26. Iss. 19. P. 2460–2461. https://doi.org/10.1093/bioinformatics/btq461; Edgar R.C. UPARSE: highly accurate OTU sequences from microbial amplicon reads // Nature Methods. 2013. Vol. 10. Iss. 10. P. 996–998. https://doi.org/10.1038/nmeth.2604; Falkowski P.G., Raven J.A. Aquatic photosynthesis. USA: Princeton Univ. Press, 2007. 488 p.; Gorlenko V.M., Vainstein M.B., Kachalkin V.I. Microbiological characteristic of lake Mogilnoye // Arch. Hydrobiol. 1978. Vol. 81. № 4. P. 475−492.; Gran-Stadniczeñko S., Egge E., Hostyeva V., Logares R., Eikrem W., Edvardsen B. Protist Diversity and Seasonal Dynamics in Skagerrak Plankton Communities as Revealed by Metabarcoding and Microscopy // J. of Eukaryotic Microbiol. 2018. Vol. 66. Iss. 3. P. 494−513. https://doi.org/10.1111/jeu.12700; Guillou L., Bachar D., Audic S. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy // Nucleic Acids Res. 2013. Vol. 41. Iss. D1. P. D597–D604. https://doi.org/10.1093/nar/gks1160; Hakala A. Meromixis as a part of lake evolution – observations and a revised classification of true meromictic lakes in Finland // Boreal Environ. Res. 2004. Vol. 9. P. 37–53.; İnceoğlu Ö., Llirós M., Crowe S. A., García-Armisen T., Morana C., Darchambeau F., Borges A.V., Descy J.-P., Servais P. Vertical Distribution of Functional Potential and Active Microbial Communities in Meromictic Lake Kivu // Microbial Ecol. 2015. Vol. 70. Iss. 3. P. 596–611. https://doi.org/10.1007/s00248-015-0612-9; Jeunen G., Lamare M.D., Knapp M., Spencer H.G., Taylor H.R., Stat M., Bunce M., Gemmell N.J. Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal // Environ. DNA. 2019. Vol. 2. Iss. 1. P. 99–111. https://doi.org/10.1002/edn3.49; Krasnova E., Matorin D., Belevich T., Efimova L., Kharcheva A., Kokryatskaya N., Losyuk G., Todorenko D., Voronov D., Patsaeva S. The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea // Chinese J. of Oceanol. and Limnol. 2018. № 6. P. 1–16. https://doi.org/10.1007/s00343-018-7323-2; Lauro F.M., DeMaere M.Z., Yau S., Brown M.V., Ng C., Wilkins D., Raftery M.J., Gibson J.A., Andrews-Pfannkoch C., Lewis M., Hoffman J.M., Thomas T., Cavicchioli R. An integrative study of a meromictic lake ecosystem in Antarctica // The ISME J. 2010. № 5. P. 879–895. https://doi.org/10.1038/ismej.2010.185; Lewis W.M., Jr. A revised classification of lakes based on mixing // Canadian J. of Fisheries and Aquatic Sci. 1983. Vol. 40. № 10. P. 1779−1787. https://doi.org/10.1139/f83-207; Lunina O.N., Savvichev A.S., Krasnova E.D., Kokryatskaya N.M., Veslopolova E.F., Kuznetsov B.B., Gorlenko V.M. Succession processes in the anoxygenic phototrophic bacterial community in lake Kislo-Sladkoe (Kandalaksha Bay, White Sea) // Microbiology. 2016. Vol. 85. P. 531–544. https://doi.org/10.1134/S0026261716050118; Matorin D., Antal T., Ostrowska M., Rubin A., Ficek D., Majchrowski R. Chlorophyll fluorimetry as a method for studying light absorption by photosynthetic pigments in marine algae // Oceanol. 2004. Vol. 46. № 4. P. 519–531.; Millette N.C., Pierson J.J., Aceves A., Stoecker D.K. Mixotrophy in Heterocapsa rotundata: A mechanism for dominating the winter phytoplankton // Limnol. and Oceanogr. 2017. Vol. 62. Iss. 2. P. 836–845. https://doi.org/10.1002/lno.10470; Orsi W., Song Y.C., Hallam S., Edgcomb V. Effect of oxygen minimum zone formation on communities of marine protists // The ISME J. 2012. № 6. P. 1586–1601. https://doi.org/10.1038/ismej.2012.7; Salmaso N. Effects of Habitat Partitioning on the Distribution of Bacterioplankton in Deep Lakes // Frontiers in Microbiol. 2019. Vol. 10. 2257. https://doi.org/10.3389/fmicb.2019.02257; Savvichev A.S., Babenko V.V., Lunina O.N., Letarova M.A., Boldyreva D.I., Veslopolova E.F., Demidenko N.A., Kokryatskaya N.M., Krasnova E.D., Gaisin V.A., Kostryukova E.S., Gorlenko V.M., Letarov A.V. Sharp water column stratification with an extremely dense microbial population in a small meromictic lake, Trekhtzvetnoe // Environ. Microbiol. 2018. Vol. 20. Iss. 10. P. 3784−3797. https://doi.org/10.1111/1462-2920.14384; Savvichev A.S., Kadnikov V.V., Rusanov I.I. et al. Microbial processes and microbial communities in the water column of the polar meromictic lake Bol’shie Khruslomeny at the White Sea coast // Frontiers in Microbiol. 2020. Vol. 11. 1945. https://doi.org/10.3389/fmicb.2020.01945; Schreiber U. Pulse-Amplitude-Modulation (PAM) Fluorymetry and Saturation Pulse Method: An Overview // Chlorophyll A Fluorescence: A Signature of Photosynthesis / G. Govindjee and G. Papageorgiou (Eds.). Dordrecht: Springer, 2004. P. 279–319. https://doi.org/10.1007/978-1-4020-3218-9; Selivanova E.A., Ignatenko M.E., Yatsenko-Stepanova T.N., Plotnikov A.O. Diatom assemblages of the brackish Bolshaya Samoroda River (Russia) studied via light microscopy and DNA metabarcoding // Protistology. 2019. Vol. 13. Iss. 4. P. 215–235. https://doi.org/10.21685/1680-0826-2019-13-4-5; Suggett D.J., Prašil O., Borowitzka M.A. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Dordrecht: Springer, 2011. 326 p. https://doi.org/10.1007/978-90-481-9268-7; Trefault N., De la Iglesia R., Moreno-Pino M., dos Santos A.L., Ribeiro C.G., Parada-Pozo G., Cristi A., Marie D., Vaulot D. Annual phytoplankton dynamics in coastal waters from Fildes Bay, Western Antarctic Peninsula // Sci. Rep. 2021. Vol. 11. 1368. https://doi.org/10.1038/s41598-020-80568-8; Yoshimura S. Abnormal Thermal Stratifications of Inland Lakes // Proceedings of the Imperial Academy. 1937. Vol. 13. P. 316–319. https://doi.org/10.2183/pjab1912.13.316; https://izvestia.igras.ru/jour/article/view/1672

  3. 3
    Academic Journal

    Συνεισφορές: The research was funded by Russian Science Foundation, project number 22-11-00009., Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 22-11-00009).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 3 (2023); 186-194 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 3 (2023); 186-194 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1260/632; Van Doorslaer X., Dewulf J., Van Langenhove H., Demeestere K. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Sci. Total Environ. 2014;500–501:250–269.; Eregowda T., Mohapatra S. Fate of micropollutants in engineered and natural environment. Resilience, response, and risk in water systems. Eds. M. Kumar, F. Munoz-Arriola, H. Furumai, and T. Chaminda. Singapore: Springer; 2020:283–301.; Omuferen L.O., Maseko B., Olowoyo J.O. Occurrence of antibiotics in wastewater from hospital and convectional wastewater treatment plants and their impact on the effluent receiving rivers: current knowledge between 2010 and 2019. Environ. Monit. Assess. 2022;194(4):306.; Lalumera G.M., Calamari D., Galli P. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere. 2004;54(5):661–668.; Yang S., Carlson K.H. Solid-phase extraction-high performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and wastewater matrices. J. Chromatogr. A. 2004;1038(1–2):141–155.; Santos L.H.M.L.M., Araujo A.N., Fachini A., Pena A., Delerue-Matos C., Montenegro M.C.B.S.M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010;175(1–3):45–95.; Kümmerer K. Drugs in the environment, emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources review. Chemosphere. 2001;45(6–7):957–969.; Kovalakova P., Cizmas L., McDonald T.J., Marsalek B., Feng M., Sharma V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere. 2020;251:126351.; Vannini C., Domingo G., Marsoni M., Mattia F.D., Labra M., Castiglioni S., Bracale M. Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. Aquat. Toxicol. 2011;101(2):459–465.; Karampela I., Dalamaga M. Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19? Arch. Med. Res. 2020;51(7):741–742.; Hughes S.R., Kay P., Brown L.E. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 2013;47(2):661–677.; Liu B.Y., Nie X.P., Liu W.Q., Snoeijs P., Guan C., Tsui M.T.K. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2011;74(4):1027–1035.; Nie X.P., Liu B.Y., Yu H.J., Liu W.Q., Yang Y.F. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxa- zole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut. 2013;172:23–32.; Xiong J., Kurade M.B., Kim J.R., Roh H., Jeon B. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 2017;323(Part A):212–219.; Strasser R.J., Tsimilli-Michael M., Srivasta A. Analysis of the chlorophyll a fluorescence transient. Chloro- phyll a fluorescence. Advances in photosynthesis and respira- tion, vol. 19. Eds. G. Papageorgiou and R. Govindjee. Dordrecht: Springer; 2004:321–362.; Schreiber U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol. 19. Eds. G. Papageorgiou and R. Govindjee. Dordrecht: Springer; 2004:279–319.; Stewart R.R.C., Bewley J.D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 1980;65(2):245–248.; Yang L.H., Ying G.G., Su H.C., Stauber J.L., Adams M.S., Binet M.T. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 2008;27(5):1201–1208.; Chen Q., Zhang L., Han Y., Fang J., Wang H. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems. Environ. Sci. Pollut. Res. 2020;27:28198–28208.; Genty B., Briantais J.M., Baker N.R. The relation- ship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1989;990(1):87–92.; Антал Т.К., Гpаевcкая Е.Э., Матоpин Д.Н., Волгушева А.А., Оcипов В.А., Кpенделева Т.Е., Pубин А.Б. Исследование влияния ионов метилртути и меди на первичные процессы фотосинтеза у зеленой водоросли Chlamydomonas moewusii с использованием параметров кинетических кривых переменной флуоресценции хлорофилла. Биофизика. 2009;54(4):681–687.; Pan X., Zhang D., Chen X., Mu G., Li L., Bao A. Effects of levofloxacin hydrochlordie on photosystem II activity and heterogeneity of Synechocystis sp. Chemosphere. 2009;77(3):413–418.; Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Łukasik I., Goltsev V., Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016;38:102.; Joshi M.K., Mohanty P. Chlorophyll a fluorescence as a probe of heavy metal Ion toxicity in plants. Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol. 19. Eds. G. Papageorgiou and R. Govindjee. Dordrecht: Springer; 2004:637–661.; Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006;33(1):9–30.; Aristilde L., Melis A., Sposito G. Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environ. Sci. Technol. 2010;44(4):1444–1450.; Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta. 2007;1767(6):414–421.; Tyystjärvi E. Photoinhibition of Photosystem II. Int. Rev. Cell Mol. Biol. 2013;300:243–303.; Pätsikkä E., Aro E.-M., Tyystjärvi E. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. Plant Physiol. 1998;117(2):619–627.; Rintamäki E., Salo R., Lehtonen E., Aro E.-M. Regulation of D1-protein degradation during photoinhibition of photosystem II in vivo: phosphorylation of the D1 protein in various plant groups. Planta. 1995;195(3):379–386.; Pinto E., Sigaud-kutner T.K.S., Leitão M.A.S., Okamoto O.K., Morse D., Colepicolo P. Heavy metal–induced oxidative stress in algae. J. Phycol. 2003;39(6):1008–1018.

  4. 4
    Academic Journal

    Συνεισφορές: The research was funded by Russian Science Foundation, project number 23-24-00353., Работа выполнена при финансовой поддержке Российского научного фонда (проект №23-24- 00353).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 3 (2023); 170-177 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 3 (2023); 170-177 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1258/630; Bender M.L., Grande K.D., Johnson K.M., Marra J.F., Williams P.J., Sieburth J.M., Pilson M.E., Langdon C., Hitchcock G.L., Orchardo J., Hunt C.P., Donaghay P.L., Heinemann K. A comparison of four methods for determining planktonic community production 1. Limnol. Oceanogr. 1987;32(5):1085–1098.; Kelly C.A., Fee E., Ramlal P.S., Rudd J.W.M., Hesslein R.H., Anema C., and Schindler E.U. Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol. Oceanogr. 2001;46(5):1054–1064.; del Giorgio P.A., Williams P.J. Respiration in aquatic ecosystems: history and background. Respiration in Aquatic Ecosystems. Eds. P.A. del Giorgio and P.J. Williams. N.Y.: Oxford Univ. Press; 2023:1–17.; Маторин Д.Н., Горячев С.Н. Флуоресценция хлорофилла микроводорослей в биотестировании загрязнений. М.: Альтекс; 2017. 142 с.; Погосян С.И., Конюхов И.В., Рубин А.Б. Проблемы экологической биофизики. М. – Ижевск: АНО Ижевский институт компьютерных исследований; 2017. 270 с.; Schreiber U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol. 19. Eds. G.C. Papageorgiou and Govindjee. Berlin.: Springer; 2004:279–319.; Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth. Res. 2007;94(2–3):275–290.; Stirbet A., Govindjee Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. Photosynth. Res. 2012; 113(1–3):15–61.; Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006; 33(1):9–30.; Schansker G., Tóth S.Z., Kovács L., Holzwarth A.R., Garab G. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim. Biophys. Acta. 2011;1807(9):1032–1043.; Vredenberg W.J., Bulychev A. Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry. 2003;60(1–2):87–95.; Sipka G., Magyar M., Mezzetti A., Akhtar P., Zhu Q., Xiao Y., Han G., Santabarbara S., Shen J.-R., Lambrev P.H., Garab G. Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. Plant Cell. 2021;33(4):1286–1302.; Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot. 2013;64(13):3983–98.; Kuznetsov A.G., Konyukhov I.V., Pogosyan S.I., Rubin A.B. Microfluorimeter for studying the state of photosynthetic apparatus of individual cells of microalgae. Oceanology. 2021;61(6):1055–1063.; Volgusheva A.A., Todorenko D.A., Konyukhov I.V., Voronova E.N., Pogosyan S.I., Plyusnina T.Y., Khruschev S.S., Antal T.K. Acclimation response of green microalgae Chlorella sorokiniana to 2,3’,4,4’,6-pentachlorobiphenyl. Photochem. Photobiol. 2022; 99(4):1106–1114.; Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll а fluorescence transient. Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol. 19. Eds. G.C. Papageorgiou and Govindjee. Dordrecht.: Springer; 2004:321–362.; Rippka R., Deruelles J., Waterbury J., Herdman M., Stanier R. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979; 111(1):1–61.; Harris E.H. The Chlamydomonas sourcebook: A comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989. 780 pp.; Antal T.K., Osipov V., Matorin D.N., Rubin A.B. Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. J. Photochem. Photobiol. B. 2011;102(2):169–173.; Vanharanta M., Elovaara S., Franklin D.J., Spilling K., Tamelander T. Viability of picoand nanophytoplankton in the Baltic Sea during spring. Aquat. Ecol. 2020;54:119–135.; Swoczyna T., Kalaji H.M., Bussotti F., Mojski J., Pollastrini M. Environmental stress – what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. Front. Plant Sci. 2022;13:1048582.; Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I., Cetner M.D., I. Lukasik, Goltsev V. and Ladle R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 2016; 38(4):102.; Sasi S., Venkatesh J., Daneshi R.F., Gururani M.A. Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants. 2018;7(4):100.; Behrenfeld M.J., Milligan A.J. Photophysiological expressions of iron stress in phytoplankton. Ann. Rev. Mar. Sci. 2013;5:217–246.; Van de Waal D.B., Litchman E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans R Soc. Lond. B Biol. Sci. 2020;375(1798):20190706.; Antal T.K., Krendeleva T.E., Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. Photosynth. Res. 2015;125(3):357–381.; Петрова Е.В., Кукарских Г.П., Кренделева Т., Антал, Т.К. О механизмах и роли фотосинтетического образования водорода у зеленых микроводорослей. Микробиол. 2020;89(3):259–275.

  5. 5
    Academic Journal

    Συνεισφορές: the research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of Federal Agricultural Research Center of the North-East named N. V. Rudnitsky (theme No. FNWE-2022-0007). The authors thank the reviewers for their contribution to the peer review of this work, Работа выполнена при поддержке Минобрнауки РФ в рамках Государственного задания ФГБНУ «Федеральный аграрный научный центр Северо-Востока имени Н. В. Рудницкого» (тема № FNWE-2022-0007). Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы.

    Πηγή: Agricultural Science Euro-North-East; Том 24, № 1 (2023); 66-76 ; Аграрная наука Евро-Северо-Востока; Том 24, № 1 (2023); 66-76 ; 2500-1396 ; 2072-9081

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.agronauka-sv.ru/jour/article/view/1248/635; Dorsaf A., Anis B.-A., Chedly A. Leaf photosynthesis, chlorophyll fluorescence and ion content of barley (Hordeum vulgare) in response to salinity. Journal of Plant Nutrition. 2018;41(4):497-508. DOI: https://doi.org/10.1080/01904167.2017.1385811; Kalaji H. M., Rastogi A., Živčák M., Brestic M., Daszkowska-Golec A., Sitko K., Alsharafa K. Y., Lotfi R., Stypiński P., Samborska I. A., Cetner M. D. Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica. 2018;56(3):953-961. DOI: https://doi.org/10.1007/s11099-018-0766-z; Rapacz M., Wójcik-Jagła M., Fiust A., Kalaji H. M., Kościelniak J. Genome-wide associations of chlorophyll fluorescence ojip transient parameters connected with soil drought response in barley. Frontiers in Plant Science. 2019;10:78. DOI: https://doi.org/10.3389/fpls.2019.00078; Matile P. H., Hortensteiner S., Thomas H., Krautler B. Chlorophyll breakdown in senescent leaves. Plant Physiology. 1996;112(4):1403-1409. DOI: https://doi.org/10.1104%2Fpp.112.4.1403; Paul S., Neese F., Pantazis D. A. Structural models of the biological oxygen-evolving complex: achievements, insights, and challenges for biomimicry. Green Chemistry. 2017;19:2309-2325. DOI: https://doi.org/10.1039/C7GC00425G; Rayen M., Reyes-Dίaz M., Ivanov A. G., Mora M. L., Alberdi M. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition. 2010;10(4):470-481. DOI: http://dx.doi.org/10.4067/S0718-95162010000200008; Liang H. Z., Zhu F., Wang R. J., Huang X.-H., Chu J.-J. Photosystem II of Ligustrum lucidum in response to different levels of manganese exposure. Scientific Reports. 2019;9:12568. DOI: https://doi.org/10.1038/s41598-019-48735-8; Шихова Л. Н., Зубкова О. А. Изменение содержания подвижных соединений Mn в подзолистых почвах в течение вегетационного периода. Аграрная наука Евро-Северо-Востока. 2012;2(27):35-39. Режим доступа: https://www.elibrary.ru/item.asp?id=17532819 EDN: OTRLFX; Зубкова O. A. Динамика содержания кислоторастворимых соединений марганца в подзолистых почвах. Аграрная наука Евро-Северо-Востока. 2015;44(1):46-52. Режим доступа: https://www.elibrary.ru/item.asp?id=22856651 EDN: TGEMDP; Небольсин А. Н., Небольсина З. П. Оптимальные для растений параметры кислотности дерновоподзолистой почвы. Агрохимия. 1997;(6):9-26.; Пасынков А. В., Светлакова Е. В., Котельникова Н. В., Абашев В. Д., Пасынкова Е. Н., Садакова Г. Г., Баландина С. А., Дуняшева Г. И., Рублева Н. В., Татаринова М. С. Влияние длительного применения минеральных удобрений на плодородие дерново-подзолистой почвы, продуктивность севооборота и качество зерна. Агрохимия. 2016;(10):38-47. Режим доступа: https://elibrary.ru/item.asp?id=27169477 EDN: WWOHIV; Родина Н. А., Щенникова И. Н., Кокина Л. П. Реакция новых сортов ячменя на различные приемы технологии. Достижения науки и техники АПК. 2009;8:14-16. Режим доступа: https://www.elibrary.ru/item.asp?id=12979727 EDN: KYAXUR; Husted S., Laursen K. H., Hebbern C. A., Schmidt S. B., Pedas P., Haldrup A., Jensen P. E. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions. Plant Physiology. 2009;150(2):825-833. DOI: https://doi.org/10.1104/pp.108.134601; Schmidt S., Pedas P., Laursen K., Schjoerring J., Husted S. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant and Soil. 2013;372:417-429. DOI: https://doi.org/10.1007/s11104-013-1702-4; Giorio P., Sellami M. H. Polyphasic OKJIP chlorophyll a fluorescence transient in a landrace and a commercial cultivar of sweet pepper (Capsicum annuum L.) under long-term salt stress. Plants. 2021;10(5):887. DOI: https://doi.org/10.3390/plants10050887; Yusuf M. A., Kumar D., Rajwanshi R., Strasser R. J., Tsimilli-Michael M., Govindjee, Sarin N. B. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. BBA-Bioenergetics. 2010;1797(8):1428-1438. DOI: https://doi.org/10.1016/j.bbabio.2010.02.002; Mlinarić S., Dunić J. A., Babojelić M. S., Cesar V., Lepeduš H. Differential accumulation of photosynthetic proteins regulates diurnal photochemical adjustments of PSII in common fig (Ficus carica L.) leaves. Journal of Plant Physiology. 2017;209:1-10. DOI: https://doi.org/10.1016/j.jplph.2016.12.002; Ergo V. V., Veas R. E., Vega C. R. C., Lascano R., Carrera C. S. Leaf photosynthesis and senescence in heated and droughted fieldgrown soybean with contrasting seed protein concentration. Plant Physiology and Biochemistry. 2021;166:437-447. DOI: https://doi.org/10.1016/j.plaphy.2021.06.008; Markulj Kulundžić A., Kovačević J., Viljevac Vuletić M., Josipović A., Liović I., Mijić A., Lepeduš H., Matoša Kočar M. Impact of abiotic stress on photosynthetic efficiency and leaf temperature in sunflower. Poljoprivreda. 2016;22(2):17-22. DOI: https://doi.org/10.18047/poljo.22.2.3; Bano H., Athar H., Zafar Z. U., Kalaji H. M., Ashraf M. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiologia Plantarum. 2020;172(2):1244-1254. DOI: https://doi.org/10.1111/ppl.13327; Singh S., Prasad S. M. Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings under cadmium stress: Photosynthesis and nitrogen metabolism. Plant Growth Regulation. 2017;82:161-173. DOI: https://doi.org/10.1007/s10725-017-0248-5; Pavlović I., Mlinarić S., Tarkowska D, Oklestkova J., Novak O., Lepeduš H., Vujčić Bok V., Radić Brkanac S., Strnad M., Salopek-Sondi B. Early Brassica crops responses to salinity stress: A comparative analysis between Chinese cabbage, white cabagge, and kale. Frontiers in Plant Science. 2019;10:450. DOI: https://doi.org/10.3389/fpls.2019.00450; Mihaljević I., Viljevac Vuletić M., Šimić D., Tomaš V., Horvat D., Josipović M., Zdunić Z., Dugalić K., Vuković D. Comparative study of drought stress effects on traditional and modern apple cultivars. Plants. 2021;10(3):561. DOI: https://doi.org/10.3390/plants10030561; Matoša Kočar M., Josipović A., Sudarić A., Duvnjak T., Viljevac Vuletić M., Marković M., Markulj Kulundžić A. Chlorophyll a fluorescence as tool in breeding drought stress-tolerant soybean. Journal of Central European Agriculture. 2022;23(2):305-317. DOI: https://doi.org/10.5513/jcea01/23.2.3437

  6. 6
  7. 7
    Academic Journal

    Συνεισφορές: The results were obtained using the resources of the Center for Collective Use of Scientific Equipment of Derzhavin Tambov State University. This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the frame work of agreement № 075-15-2021-709 (unique project identifier RF – 2296.61321X0037)., Результаты получены с использованием ресурсов Центра коллективного пользования ТГУ имени Г.Р. Державина. Работа поддержана Министерством науки и высшего образования Российской Федерации в рамках проекта по соглашению № 075-15-2021-709 (уникальный идентификатор проекта RF – 2296.61321X0037).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 2 (2022); 51–64 ; Вестник Московского университета. Серия 16. Биология; Том 77, № 2 (2022); 51–64 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1127/582; Withers P., Cooper C. Dormancy // Encyclopedia of ecology, vol. 3 / Ed. B.D. Fath. Elsevier, 2018. P. 309–314.; Генкель П.А., Окнина Е.З. О физиологии состояния покоя и способах его диагностики // Физиология состояния покоя у растений / Под. ред. А. Прокофьева. М.: Наука, 1968. С. 29–54.; Нестеров Я.С. Период покоя плодовых культур. М.: Сельхозиздат, 1962. 152 с.; Campoy J.A., Ruiz D., Egea J. Dormancy in temperate fruit trees in a global warming context: a review // Sci. Hort. 2011. Vol. 130. N 2. P 357–372.; Luedeling E. Climate change impacts on winter chill for temperate fruit and nut production: A review // Sci. Hort. 2012. Vol. 144. N 6. P. 218–229.; Туманов И.И. Физиология закаливания и морозостойкости растений. М.: Наука, 1979. 352 с.; Considine M.J., Considine J.A. On the language and physiology of dormancy and quiescence in plants // J. Exp. Bot. 2016. Vol. 67. N 11. P. 3189–3203.; Rohde A., Bhalerao R.P. Plant dormancy in the perennial context // Trends Plant. Sci. 2007. Vol. 12. N 5. P. 217–223.; Bewley J.D. Seed germination and dormancy // The Plant Cell. 1997. Vol. 9. N 7. P. 1055–1066.; Allona I., Ramos A., Ibáñez C., Contreras A., Casado R., Aragoncillo C. Molecular control of winter dormancy establishment in trees: a review // Span. J. Agric. Res. 2008. Vol. 6. P. 201–210.; Saito T., Tuan P.A., Katsumi-Horigane A., Bai S., Ito A., Sekiyama Y., Ono H., Moriguchi T. Development of flower buds in the Japanese pear (Pyrus pyrifolia) from late autumn to early spring // Tree Physiol. 2015. Vol. 35. N 6. P. 653–662.; Arora R., Rowland L.J., Tanino K. Induction and release of bud dormancy in woody perennials: a science comes of age // HortScience. 2003. Vol. 38. N 5. P. 911–921.; Yu J., Conrad A.O., Decroocq V., Zhebentyayeva T., Williams D.E., Bennett D., Roch G., Audergon J.-M., Dardick C., Liu Z., Abbott A.G., Staton M.E. Distinctive gene expression patterns define endodormancy to ecodormancy transition in apricot and peach // Front. Plant Sci. 2020. Vol. 11: 180.; Yamane H., Wada M., Honda C., Matsuura T., Ikeda Y., Hirayama T., Osako Y., Gao-Takai M., Kojima M., Sakakibara H. Overexpression of Prunus DAM6 inhibits growth represses bud break competency of dormant buds and delays bud outgrowth in apple plants // PloS One. 2019. Vol. 14. N 4: e0214788.; Moser M., Asquini E., Miolli G.V., Weigl K., Hanke M.-V., Flachowsky H., Si-Ammour A. The MADSbox gene MdDAM1 controls growth cessation and bud dormancy in apple // Front. Plant Sci. 2020. Vol. 11: 1003.; Maurya J.P., Bhalerao R.P. Photoperiod- and temperature-mediated control of growth cessation and; dormancy in trees: a molecular perspective // Ann. Bot. 2017. Vol. 120. N 3. P. 351–360.; Demidchik V.V., Shashko A.Y., Bandarenka U.Y., Smolikova G.N., Przhevalskaya D.A., Charnysh M.A., Pozhvanov G.A., Barkosvkyi A.V., Smolich I.I., Sokolik A.I., Yu M., Medvedev S.S. Plant phenomics: fundamental bases software and hardware platforms and machine learning // Russ. J. Plant Physiol. 2020. Vol. 67. N 3. P. 397–412.; McAusland L., Atkinson J.A., Lawson T., Murchie E.H. High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions // Plant Meth. 2019. Vol. 15: 109.; Jin X., Zarco-Tejada P., Schmidhalter U., Reynolds M.P., Hawkesford M.J., Varshney R.K., Yang T., Nie C., Li Z., Ming B., Xiao Y., Xie Y., Li. S. High-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms // IEEE Geosci. Remote Sens. Mag. 2020. Vol. 9. N 1. P. 200–231.; Watt M., Fiorani F., Usadel B., Rascher U., Muller O., Schurr U. Phenotyping: new windows into the plant for breeders // Annu. Rev. Plant Biol. 2020. Vol. 71. P. 689–712.; Alekseev A., Matorin D., Osipov V., Venediktov P. Investigation of the photosynthetic activity of bark phelloderm of arboreous plants using the fluorescent method // Moscow Univ. Biol. Sci. Bull. 2007. Vol. 62. N 4. P. 164–170.; Tikhonov K.G., Khristin M.S., Klimov V.V. Sundireva M.A., Kreslavski V.D., Sidorov R.A., Tsidendambayev V.D., Savchenko T.V. Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue // Russ. J. Plant Physiol. 2017. Vol. 64. N 1. P. 73–82.; Perks M.P., Monaghan S., O’Reilly C., Osborne B.A., Mitchell D.T. Chlorophyll fluorescence characteristics performance and survival of freshly lifted and cold stored Douglas fir seedlings // Ann. Forest Sci. 2001. Vol. 58. N 3. P. 225–235.; Samish R. Dormancy in woody plants // Annu. Rev. Plant Physiol. 1954. Vol. 5. P. 183–204.; Ritchie G.A. Effect of freezer storage on bud dormancy release in Douglas-fir seedlings // Can. J. Forest Res. 1984. Vol. 14. N 2. P. 186–190.; Colombo S., Raitanen E. Frost hardening in white cedar container seedlings exposed to intermittent short days and cold temperatures // For. Chron. 1991. Vol. 67. N 5. P. 542–544.; Heide O., Prestrud A. Low temperature but not photoperiod controls growth cessation and dormancy induction and release in apple and pear // Tree Physiol. 2005. Vol. 25. N 1. P. 109–114.; Heide O. High autumn temperature delays spring bud burst in boreal trees counterbalancing the effect of climatic warming // Tree Physiol. 2003. Vol. 23. N 13. 931–936.; Heide O.M. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species // Sci. Hort. 2008. Vol. 115. N 3. P. 309–314.; Cook N.C., Bellen A., Cronjé P.J., De Wit I., Keulemans W., Van den Putte A., Steyn W. Freezing temperature treatment induces bud dormancy in ‘Granny Smith’ apple shoots // Sci. Hort. 2005. Vol. 106. N 2. P. 170–176.; Li C., Junttila O., Heino P., Palva E.T. Low temperature sensing in silver birch (Betula pendula Roth) ecotypes // Plant Sci. 2004. Vol. 167. N 1. P. 165–171.; Christersson L. The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus silvestris and Picea abies // Physiol. Plant. 1978. Vol. 44. N 3. P. 288–294.; Wake C.M., Fennell A. Morphological physiological and dormancy responses of three Vitis genotypes to short photoperiod // Physiol. Plant. 2000. Vol. 109. N 2. P. 203–210.; Соловченко А.Е., Ткачев Е.Н., Цуканова Е.М., Шурыгин Б.М., Хрущев С.С., Конюхов И.В., Птушенко В.В. Фотосинтетическая активность древесных растений в период зимнего покой и ее неинвазивный мониторинг // Цифровизация агропромышленного комплекса: Сборник научных статей II международной научно-практической конференции / Под ред. Д.Ю. Муромцева и др. Тамбов: Издательский центр ФГБОУ ВО «ТГТУ», 2020. С. 352–355; Li C., Wu N., Liu S. Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia // Biol. Plant. 2005. Vol. 49. N 1. P. 65–71.; Jeknić Z., Chen T.H.H. Changes in protein profiles of poplar tissues during the induction of bud dormancy by short-day photoperiods // Plant Cell Physiol. 1999. Vol. 40. N 1. P. 25–35.; Zhang H.-S., Li D.-M., Tan Q.-P., Gao H.-Y., Gao D.-S. Photosynthetic activities C3 and C4 indicative enzymes and the role of photoperiod in dormancy induction in ‘Chunjie’ peach // Photosynthetica. 2015. Vol. 53. N 2. P. 269–278.; Junttila O. Apical growth cessation and shoot tip abscission in Salix // Physiol. Plant. 1976. Vol. 38. N 4. P. 278–286.; Knott J.E. Effect of a localized photoperiod on spinach // Proc. Amer. Soc. Hortic. Sci. 1934. Vol. 31. P. 152–154.; Garner W., Allard H. Further studies in photoperiodism: the response of the plant to relative length of day and night // Science. 1922. Vol. 55. N 1431. P. 582–583.; Coleman G.D., Chen T.H., Ernst S.G., Fuchigami L. Photoperiod control of poplar bark storage protein accumulation // Plant Physiol. 1991. Vol. 96. N 3. P. 686–692.; Wilson B.C., Jacobs D.F. Chlorophyll fluorescence of stem cambial tissue reflects dormancy development in Juglans nigra seedlings // New Forests. 2012. Vol. 43. N 5–6. P. 771–778.; Fowler S.G., Cook D., Thomashow M.F. Low temperature induction of Arabidopsis CBF1 2 and 3 is gated by the circadian clock // Plant Physiol. 2005. Vol. 137. N 3. P. 961–968.; Druart N., Johansson A., Baba K., Schrader J., Sjödin A., Bhalerao R.R., Resman L., Trygg J., Moritz T., Bhalerao R.P. Environmental and hormonal regulation of the activity–dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks // Plant J. 2007. Vol. 50. N 4. P. 557–573.; Kitamura Y., Yamane H., Yukimori A., Shimo H., Numaguchi K., Tao R. Blooming date predictions based on Japanese apricot ‘Nanko’flower bud responses to temperatures during dormancy // HortScience. 2017. Vol. 52. N 3. P. 366–370.; Erez A. Bud dormancy; phenomenon problems and solutions in the tropics and subtropics // Temperate fruit crops in warm climates / Ed. A. Erez. Dordrecht: Springer, 2000. P. 17–48.; Erez A. Chemical control of budbreak // HortScience. 1987. Vol. 22. N 6. P. 1240–1243.; Frewen B.E., Chen T.H., Howe G.T., Davis J., Rohde A., Boerjan W., Bradshaw H. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus // Genetics. 2000. Vol. 154. N 2. P. 837–845.; Dirlewanger E., Quero-Garcia J., Le Dantec L., Lambert P., Ruiz D., Dondini L., Illa E., Quilot-Turion B., Audergon J.M., Tartarini S. Comparison of the genetic determinism of two key phenological traits flowering and maturity dates in three Prunus species: peach apricot and sweet cherry // Heredity. 2012. Vol. 109. N 5. P. 280–292.; Li S., Tan Q., Sun M., Xu G., Li C., Fu X., Li L., Gao D., Li D. Protein changes in response to photoperiod during dormancy induction in peach leaves and flower buds // Sci. Hort. 2018. Vol. 239. P. 114–122.; Bielenberg D.G., Wang Y.E., Li Z., Zhebentyayeva T., Fan S., Reighard G.L., Scorza R., Abbott A.G. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation // Tree Genet. Genomes. 2008. Vol. 4. N 3. P. 495–507.; Leida C., Conesa A., Llácer G., Badenes M.L., Ríos G. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner // New Phytol. 2012. Vol. 193. N 1. P. 67–80.; Cattani A.M., Sartor T., da Silveira Falavigna V., Porto D.D., Silveira C.P., de Oliveira P.R.D., Revers L.F. The control of bud break and flowering time in plants: contribution of epigenetic mechanisms and consequences in agriculture and breeding // Advances in Botanical Research, vol. 88 / Eds. M. Mirouze, E. Bucher, and P. Gallusci. Elsevier, 2018. P. 277–325.; Pedrosa A.M., Martins C.d.P.S., Goncalves L.P., Costa M.G.C. Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.) // PloS One. 2015. Vol. 10. N 12: e0145785.; Kaye C., Neven L., Hofig A., Li Q.-B., Haskell D., Guy C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco // Plant Physiol. 1998. Vol. 116. N 4. P. 1367–1377.; Puhakainen T., Hess M.W., Mäkelä P., Svensson J., Heino P., Palva E.T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis // Plant Mol. Biol. 2004. Vol. 54. N 5. P. 743–753.; Singh R.K., Miskolczi P., Maurya J.P., Bhalerao R.P. A tree ortholog of SHORT VEGETATIVE PHASE floral repressor mediates photoperiodic control of bud dormancy // Curr. Biol. 2019. Vol. 29. N 1. P. 128–133.; Xie Y., Chen P., Yan Y., Bao C., Li X., Wang L., Shen X., Li H., Liu X., Niu C. An atypical R2R3 MYB transcription factor increases cold hardiness by CBFdependent and CBF-independent pathways in apple // New Phytol. 2018. Vol. 218. N 1. P. 201–218.; Chinnusamy V., Zhu J.-K., Sunkar R. Gene regulation during cold stress acclimation in plants // Plant stress tolerance. Methods in molecular biology (Methods and protocols), vol. 639 / Ed. R. Sunkar. Humana Press, 2010. P. 39–55.; Artlip T., McDermaid A., Ma Q., Wisniewski M. Differential gene expression in non-transgenic and transgenic “M. 26” apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break // Hort. Res. 2019. Vol. 6: 86.; Tylewicz S., Petterle A., Marttila S., Miskolczi P., Azeez A., Singh R.K., Immanen J., Mähler N., Hvidsten T.R., Eklund D.M. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication // Science. 2018. Vol. 360. N 6385. P. 212–215.; Eriksson M.E., Moritz T. Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L.× P. tremuloides Michx.) // Planta. 2002. Vol. 214. N 6. P. 920–930.; Rinne P.L., Welling A., Vahala J., Ripel L., Ruonala R., Kangasjärvi J., van der Schoot C. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1 3-β-glucanases to reopen signal conduits and release dormancy in Populus // The Plant Cell. 2011. Vol. 23. N 1. P. 130–146.; Wen L., Zhong W., Huo X., Zhuang W., Ni Z., Gao Z. Expression analysis of ABA-and GA-related genes during four stages of bud dormancy in Japanese apricot (Prunus mume Sieb. et Zucc) // J. Hort. Sci. Biotechnol. 2016. Vol. 91. N 4. P. 362–369.; Mølmann J.A., Asante D.K., Jensen J.B., Krane M.N., Ernstsen A., Junttila O., Olsen J.E. Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action and induce bud set and cold acclimation but not dormancy in PHYA overexpressors and wild-type of hybrid aspen // Plant Cell Environ. 2005. Vol. 28. N 12. P. 1579–1588.; Kumar G., Gupta K., Pathania S., Swarnkar M.K., Rattan U.K., Singh G., Sharma R.K., Singh A.K. Chilling affects phytohormone and post-embryonic development pathways during bud break and fruit set in apple (Malus domestica Borkh.) // Sci. Rep. 2017. Vol. 7: 42593.; Porto D.D., Bruneau M., Perini P., Anzanello R., Renou J.-P., Santos H.P.d., Fialho F.B., Revers L.F. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes // J. Exp. Bot. 2015. Vol. 66. N 9. P. 2659–2672.; Кефели В.И., Коф Э.М., Власов П.В., Кислин Е.Н. Природный ингибитор роста-абсцизовая кислота. М.: Институт физиологии растений им. К.А. Тимирязева, 1989. 184 с.; Rinne P.L., Kaikuranta P.M., Van Der Schoot C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy // Plant J. 2001. Vol. 26. N 3. P. 249–264.; Busov V.B. Plant development: dual roles of poplar SVL in vegetative bud dormancy // Curr. Biol. 2019. Vol. 29. N 2. P. R68–R70.; Ruttink T., Arend M., Morreel K., Storme V., Rombauts S., Fromm J., Bhalerao R.P., Boerjan W., Rohde A. A molecular timetable for apical bud formation and dormancy induction in poplar // The Plant Cell. 2007. Vol. 19. N 8. P. 2370–2390.; Oláh V., Hepp A., Mészáros I. Temporal dynamics in photosynthetic activity of Spirodela polyrhiza turions during dormancy release and germination // Environ. Exp. Bot. 2017. Vol. 136. P. 50–58.; Ruonala R., Rinne P.L., Baghour M., Moritz T., Tuominen H., Kangasjärvi J. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene // Plant J. 2006. Vol. 46. N 4. P. 628–640.; Li M., Kim C. Chloroplast ROS and stress signaling // Plant Commun. 2022. Vol. 3. N 1: 100264.; Hüner N., Bode R., Dahal K., Busch F., Possmayer M., Szyszka B., Rosso D., Ensminger I., Krol M., Ivanov A., Maxwell D. Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity // Botany. 2012. Vol. 91. N 3. P. 127–136.; Huner N., Dahal K., Hollis L., Bode R., Rosso D., Krol M., Ivanov A.G. Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited // Front. Plant Sci. 2012. Vol. 3: 255.; Ensminger I., Busch F., Huner N. Photostasis and cold acclimation: sensing low temperature through photosynthesis // Physiol. Plant. 2006. Vol. 126. N 1. P. 28–44.; Öquist G., Huner N.P. Photosynthesis of overwintering evergreen plants // Ann. Rev. Plant Biol. 2003. Vol. 54. P. 329–355.; Sofronova V., Antal T., Dymova O., Golovko T. Seasonal changes in primary photosynthetic events during low temperature adaptation of Pinus sylvestris in Central Yakutia // Russ. J. Plant Physiol. Vol. 65. N 5. P. 658–666.; Lípová L., Krchňák P., Komenda J., Ilík P. Heatinduced disassembly and degradation of chlorophyllcontaining protein complexes in vivo // Biochim. Biophys. Acta (BBA)-Bioenergetics. 2010. Vol. 1797. N 1. P. 63–70.; Yang Q., Blanco N.E., Hermida-Carrera C., Lehotai N., Hurry V., Strand Å. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring // Nat. Comm. 2020. Vol. 11. N 1: 128.; Tikkanen M., Grebe S. Switching off photoprotection of photosystem I–a novel tool for gradual PSI photoinhibition // Physiol. Plant. 2018. Vol. 162. N 2. P. 156–161.; Vogg G., Heim R., Hansen J., Schäfer C., Beck E. Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function // Planta. 1998. Vol. 204. N 2. P. 193–200.; Chang C.Y.Y., Bräutigam K., Hüner N.P., Ensminger I. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers // New Phytol. 2021. Vol. 229. N 2. P. 675–691.; Valcke R. Can chlorophyll fluorescence imaging make the invisible visible? // Photosynthetica. 2021. Vol. 51. P. 381–398.; Vlaovic J., Balen J., Grgic K., Zagar D., Galic V., Simic D. An overview of chlorophyll fluorescence measurement process meters and methods // Proceedings of 2020 International Conference on Smart Systems and Technologies (SST) / Eds. D. Zagar, G. Martinovic, S. Rimae Drlje, and I. Galic. Computer Science and Information Technology Osijek, 2020. P. 245–250.; Hawkins C., Lister G. In vivo chlorophyll fluorescence as a possible indicator of the dormancy stage in Douglas-fir seedlings // Can. J. Forest Res. 1985. Vol. 15. N 4. P. 607–612.; Damesin C. Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance // New Phytol. 2003. Vol. 158. N 3. P. 465–475.; Lennartsson M., Ögren E. Predicting the cold hardiness of willow stems using visible and near-infrared spectra and sugar concentrations // Trees. 2003. Vol. 17. N 5. P. 463–470.; Linkosalo T., Heikkinen J., Pulkkinen P., Mäkipää R. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn // Front. Plant Sci. 2014. Vol. 5: 264.; Sundblad L.-G., Sjöström M., Malmberg G., Öquist G. Prediction of frost hardiness in seedlings of Scots pine (Pinus sylvestris) using multivariate analysis of chlorophyll a fluorescence and luminescence kinetics // Can. J. Forest Res. 1990. Vol. 20. N 5. P. 592–597.; Sakar E.H., El Yamani M., Rharrabti Y. Frost susceptibility of five almond [Prunus dulcis (mill.) DA Webb] cultivars grown in north-eastern Morocco as revealed by chlorophyll fluorescence // Int. J. Fruit Sci. 2017. Vol. 17. N 4. P. 415–422.; Savitch L.V., Leonardos E.D., Krol M., Jansson S., Grodzinski B., Huner N., Öquist G. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation // Plant Cell Environ. 2002. Vol. 25. N 6. P. 761–771.; Corcuera L., Gil-Pelegrin E., Notivol E. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures // PLoS One. 2011. Vol. 6. N 12: e28772.; Öquist G., Brunes L., Hällgren J.-E., Gezelius K., Hallén M., Malmberg G. Effects of artificial frost hardening and winter stress on net photosynthesis photosynthetic electron transport and RuBP carboxylase activity in seedlings of Pinus silvestris // Physiol. Plant. 1980. Vol. 48. N 4. P. 526–531.; Grebe S., Trotta A., Bajwa A.A., Suorsa M., Gollan P.J., Jansson S., Tikkanen M., Aro E.M. The unique photosynthetic apparatus of Pinaceae—Analysis of photosynthetic complexes in Norway spruce (Picea abies) // J. Exp. Bot. 2019. Vol. 70. N 12. P. 3211–3225.; Grebe S., Trotta A., Bajwa A., Mancinia I., Bag P., Jansson S., Tikkanen M., Aro E.M. Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce (Picea abies) photosynthesis // Proc. Natl. Acad. Sci. U.S.A. 2020. Vol. 117. N 30. P. 17499–17509.; Ivanov A., Sane P., Zeinalov Y., Simidjiev I., Huner N., Öquist G. Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence // Planta. 2002. Vol. 215. N 3. P. 457–465.; Zhang C., Atherton J., Penuelas J., Filella I., Kolari P., Aalto J., Ruhanen H., Back J., Porcar-Castell A. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? // Plant Cell Environ. Vol. 42. N 12. P. 3264–3279.

  8. 8
    Academic Journal

    Συνεισφορές: The research was carried with the support of the Interdisciplinary Scientific and Educational School of Moscow State University. M.V. Lomonosov “The Future of the Planet and Global Environmental Changes”, the Russian Science Foundation (project number 20-64-46018) and the Russian Foundation for Basic Research (project number 20-04-00465)., Работа выполнена при поддержке Междисциплинарной научно-образовательной школы МГУ имени М.В. Ломоносова «Будущее планеты и глобальные изменения окружающей среды», Российского научного фонда (проект № 20-64-46018) и Российского фонда фундаментальных исследований (проект № 20-04-00465).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 3 (2022); 180-187 ; Вестник Московского университета. Серия 16. Биология; Том 77, № 3 (2022); 180-187 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1162/596; Krasnova E.D., Pantyulin A.N., Belevich T.A., Voronov D.A., Demidenko N.A., Zhitina L.S., Ilyash L.V., Kokryatskaya N.M., Lunina O.N., Mardashova M.V., Prudkovsky A. A., Savvichev A.S., Filippov A.S., Shevchenko V.P. Multidisciplinary studies of the separating lakes at different stage of isolation from the White Sea performed in march 2012 // Oceanology. 2013. Vol. 53. N 5. P. 714–717.; Krasnova E.D. Ecology of meromictic lakes of Russia. 1. Coastal marine waterbodies // Water Resources. 2021. Vol. 48. N 3. P. 427–438.; Krasnova E.D., Pantyulin A.N., Matorin D.N., Todorenko D.A., Belevich T.A., Milyutina I.A., Voronov D.A. Blooming of the Cryptomonad alga Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) in the redox zone of the basins separating from the White Sea // Microbiology. 2014. Vol. 83. N 3. P. 270–277.; Krasnova E., Voronov D., Frolova N., Pantyulin A., Samsonov T. Salt lakes separated from the White Sea // EARSeL eProceedings. 2015. Vol. 14. P. 8–22.; Krasnova E., Matorin D., Belevich T., Efimova L., Kharcheva A., Kokryatskaya N., Losyuk G., Todorenko D., Voronov D., Patsaeva S. The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea // Chin. J. Oceanol. Limnol. 2018. N 6. P. 1–16.; Lunina O.N., Savvichev A.S., Kuznetsov B.B., Pimenov N.V., Gorlenko V.M. Anoxigenic phototrophic bacteria of the Kislo-Sladkoe stratified lake (White Sea, Kandalaksha Bay) // Microbiology. 2013. Vol. 82. N 6. P. 815–832.; Falkowski P.G., Raven J.A. Aquatic photosynthesis. USA: Princeton University Press, 2007. 488 pp.; Suggett D.J., Prášil O., Borowitzka M.A. Chlorophyll a fluorescence in aquatic sciences: methods and applications. Dordrecht: Springer, 2010. 326 pp.; Маторин Д.Н., Рубин А.Б. Флуоресценция хлорофилла высших растений и водорослей. Ижевск-Москва: Ижевский институт компьютерных исследований, 2012. 256 с.; Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll a fluorescence transient // Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol. 19 / Eds. C. Papageorgiou and Govindjee. Dordrecht: Springer, 2004. P. 321–362.; Lazár D., Schansker G. Models of chlorophyll a fluorescence transients // Photosynthesis in silico / Eds. A. Laisk, L. Nedbal, and Govindjee. Dordrecht: Springer, 2009. P. 85–123.; Kalaji H.M., Schansker G., Ladle R. J., Kalaji V., Bosa K., Allakhverdiev S., Elsheery N.I. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues // Photosynth. Res. 2014. Vol. 122. N 2. P. 121–158.; Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview // Chlorophyll a fluorescence. advances in photosynthesis and respiration / Eds. G.C. Papageorgiou and Govindjee. Dordrecht: Springer, 2004. P. 279–319.; Serôdio J., Vieira S., Cruz S., Barroso F. Short-term variability in the photosynthetic activity of micro-phytobenthos as detected by measuring rapid light curves using variable fluorescence // Mar. Biol. 2005. Vol. 146. P. 903–914.; Ralph P.J., Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity // Aquat Bot. 2005. Vol. 82. N 3. P. 222–237.; Matorin D., Antal T., Ostrowska M., Rubin A., Ficek D., Majchrowski R. Chlorophyll fluorimetry as a method for studying light absorption by photosynthetic pigments in marine algae // Oceanologia. 2004. Vol. 46. N 4. P. 519–531.; Mosharov S.A., Sergeeva V.M., Sazhin A.F., Kremenetskiy V.V., Stepanova S.V. Assessment of phytoplankton photosynthetic efficiency based on measurement of fluorescence parameters and radiocarbon uptake in the Kara Sea // Estuar. Coast. Shelf Sci. 2019. Vol. 218. P. 59–69.; Chow W.S., Aro E.-M. Photoinactivation and mechanisms of recovery // Photosystem II. Advances in photosynthesis and respiration / Eds. T.J. Wydrzynski, K. Satoh, and J.A. Freeman. Dordrecht: Springer. 2005. P. 627–648.; Vavilin D.V, Polynov V.A, Matorin D.N, Venediktov P.S. Sublethal concentrations of copper stimulate photosystem II photoinhibition in Chlorella pyrenoidosa // J. Plant Physiol. 1995. Vol. 146. N 5–6. P. 609–614.

  9. 9
  10. 10
    Academic Journal

    Συνεισφορές: This work was supported by the Russian Foundation for Basic Research (grant No. 18-04-00481)

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 24, № 8 (2020); 813-820 ; Вавиловский журнал генетики и селекции; Том 24, № 8 (2020); 813-820 ; 2500-3259 ; 10.18699/VJ20.67

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2840/1449; Achard P., Renou J-P., Berthomé R., Harberd N.P., Genschik P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 2008;18: 656-660. DOI 10.1016/j.cub.2008.04.034.; Bickford С.B. Ecophysiology of leaf trichomes. Funct. Plant Biol. 2016;43(9):807-814. Available at: https://digital.kenyon.edu/biology_publications/85.; Cao X., Jiang F., Wang X., Zang Y., Wu Z. Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica. 2015;205:569-584. DOI 10.1007/s10681-0151433-0.; Dobrovolskaya O.B., Pshenichnikova T.A., Arbuzova V.S., Lohwasser U., Röder M.S., Börner A. Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica. 2007;155(3):285-293. DOI 10.1007/s10681-006-9329-7.; Doroshkov A.V., Afonnikov D.A., Dobrovolskaya O.B., Pshenichnikova T.A. Interactions between leaf pubescence genes in bread wheat as assessed by high throughput phenotyping. Euphytica. 2016;207: 491-500. DOI 10.1007/s10681-015-1520-2.; Doroshkov A.V., Pshenichnikova T.A., Afonnikov D.A. Morphological and genetic characteristics of leaf hairiness in wheat (Triticum aestivum L.) as analyzed by computer aided phenotyping. Russian J. Genet. 2011;47:739-743. DOI 10.1134/S1022795411060093.; Ehleringer J., Björkman O., Mooney H. Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science. 1976; 192(4237):376-377. Available at: https://doi.org/10.1126/science.192.4237.376.; Foyer C.H., Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011;155: 93-100. DOI 10.1104/pp.110.166181.; Gallie D.R. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J. Exp. Bot. 2013; 64(2):433-43. DOI 10.1093/jxb/ers330.; Gan Y., Liu C., Yu H., Broun P. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development. 2007; 134(11):2073-2081. DOI 10.1242/dev.005017.; Goltsev V.N., Kalaji H.M., Paunov M., Baba W., Horaczek T., MojskiJ., Kociel H., Allakhverdiev S.I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ. J. Plant Physiol. 2016;63:869-893. DOI 10.1134/S1021443716050058.; Hamaoka N., Yasui H., Yamagata Y., Inoue Y., Furuya N., Araki T., Ueno O., Yoshimura A. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice. Rice. 2017;10(1):20. DOI 10.1186/s12284-017-0158-1.; Hammer O., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.; Ilyina L.G. Breeding of spring bread wheat in southeastern regions. Saratov: Saratov University Publ., 1989. (in Russian); Ishikawa T., Shigeoka S. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem. 2008;72:11431154. DOI 10.1271/bbb.80062.; Karabourniotis G., Liakopoulos G., Nikolopoulos D., Bresta P. Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. J. For. Res. 2020;31:1-12. DOI 10.1007/s11676-019-01034-4.; Konrad W., Burkhardt J., Ebner M., Roth-Nebelsick A. Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology. 2015;8:480-492. DOI 10.1002/eco.1518.; Lichtenthaler H.K., Buschmann C., Knapp M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorometer. Photosynthetica. 2005;43:379-393. DOI 10.1007/s11099-005-0062-6.; Maistrenko O.I. Identification and localization of genes controlling leaf pubescence of young common wheat plants. Russian J. Genet. 1976; 12(1):5-15.; Osipova S., Permyakov A., Permyakova M., Pshenichnikova T., Verkhoturov V., Rudikovsky A., Rudikovskaya E., Shishparenok A., Doroshkov A., Börner A. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions. J. Appl. Genet. 2016;6:553-559. DOI 10.1007/s13353-015-0315-4.; Pattanaik S., Patra B., Singh S.K., Yuan L. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front. Plant Sci. 2014;5:259. DOI 10.3389/fpls.2014.00259.; Pesch M., Hülskamp M. Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr. Opin. Genet. Dev. 2004;14:422-427. DOI 10.1016/j.gde.2004.06.007.; Pesch M., Hülskamp M. One, two, three. models for trichome patterning in Arabidopsis? Curr. Opin. Plant Biol. 2009;12(5):587-592. DOI 10.1016/j.pbi.2009.07.015.; Pshenichnikova T.A., Doroshkov A.V., Osipova S.V., Permyakov A.V., Permyakova M.D., Efimov V.M., Afonnikov D.A. Quantitative characteristics of pubescence in wheat (Triticum aestivum L.) are associated with the parameters of gas exchange and chlorophyll fluorescence under conditions of normal and limited water supply. Planta. 2019;249(3):839-847. DOI 10.1007/s00425-018-3049-9.; Pshenichnikova T.A., Doroshkov A.V., Simonov A.V., Afonnikov D.A., Börner A. Diversity of leaf pubescence in bread wheat and relative species. Genet. Resour. Crop Evol. 2017;64:1761-1773. DOI 10.1007/s10722-016-0471-3.; Pshenichnikova T.A., Lapochkina I.F., Shchukina L.V. The inheritance of morphological and biochemical traits introgressed into common wheat (Triticum aestivum L.) from Aegilops speltoides Tausch. Genet. Resour. Crop. Evol. 2007;54:287. DOI 10.1007/s10722-0054499-z.; Qi T., Huang H., Wu D., Yan, Qi Y., Song S, Xie D. Arabidopsis DELLA and JAZ proteins bind the WD-Repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell. 2014;26(3):1118-1133. DOI 10.1105/tpc.113.121731.; Strasser R.J., Tsimilli-Michael M., Sriyastaya A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G.C., Govindjee (Eds.). Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. Springer, Dordrecht, 2004;19:321-362.; Taketa S., Chang C.L., Ishii M., Takeda K. Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar ‘Hong-mang-mai’. Euphytica. 2002;125:141-147. DOI 10.1023/A:1015812907111.; Tóth S.Z., Schansker G., Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. Physiol. Plant. 2013;148(2): 161-175. DOI 10.1111/ppl.12006.; Wang Y., Hou J., Liu H., Li T., Wang K., Hao Ch., Liu H., Zhang X. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J. Exp. Bot. 2019; 70(5):1497-1511. DOI 10.1093/jxb/erz032.; Zhang B., Schrader A. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis. Plants. 2017;6(4):65. DOI 10.3390/plants6040065.; https://vavilov.elpub.ru/jour/article/view/2840

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 4 (2018); 247-253 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 4 (2018); 247-253 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/658/448; Bakonyi J., Apony I., Fisch G. Diseases caused by Bipolaris sorokiniana and Drechslera tritici-repentis in Hungary // Helminthosporium blights of wheat: spot blotch and tan spot / Eds. E. Duveiller, H.J. Dubin, and J. Reeves. Mexico City: CIMMYT, 1997. P. 80–85.; Kumar J., Schäfer P., Hückelhoven R., Langen G., Baltruscha H., Stein E., Kogel K.H. Bipolaris sorokiniana, a cereal pathogen of global concern: Cytological and molecular approaches towards better control // Mol. Plant Pathol. 2002. Vol. 3. N 4. P. 185–195.; Гольцев В.Н., Каладжи М.Х., Кузманова М.А., Аллахвердиев С.И. Переменная и замедленная флуоресценция хлорофилла a – теоретические основы и практическое приложение в исследовании растений // М.–Ижевск: ИКИ-РХД, 2014. 220 с.; Маторин Д.Н., Рубин А.Б. Флуоресценция хлорофилла высших растений и водорослей // М.–Ижевск: ИКИ-РХД, 2012. 256 с.; Christova I., Stefanovb D., Velinovc T., Goltsev V., Georgievab K., Abrachevaa P., Genovab Y., Christov N. The symptomless leaf infection with grapevine leafroll associated virus 3 in grown in vitro plants as a simple model system for investigation of viral effects on photosynthesis // J. Plant Physiol. 2007. Vol. 164. N 9. P. 1124–1133.; Granum E., Pérez-Bueno M., Calderón C.E., Ramos C., Vicente A., Cazorla F. M., Barón M. Metabolic responses of avocado plants to stress induced by Rosellinia necatrix analysed by fluorescence and thermal imaging // Eur. J. Plant Pathol. 2015. Vol. 142. N 3. P. 625–632.; Rai M.K., Shende S., Strasser R.J. JIP test for fast fluorescence transients as a rapid and sensitive technique in assessing the effectiveness of arbuscular mycorrhizal fungi in Zea mays: Analysis of chlorophyll a fluorescence // Plant Biosyst. 2008. Vol. 142. N 2. P. 191–198.; Scholes J.D., Rolfe S.A. Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence // Planta. 1996. Vol. 199. N 4. P. 573–582.; Yan K., Han G., Ren C., Zhao S., Wu X., Bian T. Fusarium solani infection depressed photosystem performance by inducing foliage wilting in apple seedlings // Front. Plant Sci. 2018. Vol. 9:479.; Scholes J.D., Farrar J.F. Increased rates of photosynthesis in localized regions of a barley leaf infected with brown rust // New Phytol. 1986. Vol. 104. N 4. P. 601–612.; Bassanezi R.B., Amorim L., Filho A.B., Berger R.D. Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics // J. Phytopathol. 2002. Vol. 150. N 1. P. 37–47.; Kuckenberg J., Tartachnyk I., Noga G. Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves // Precis. Agric. 2009. Vol. 10. N 1. P. 34–44.; Tartachnyk I.I., Rademacher I., K hbauch W. Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence // Precis. Agric. 2006. Vol. 7. N 4. P. 281–293.; Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis // BBA-Bioenergetics. 2010. Vol. 1797. N 6–7. P. 1313–1326.; Bulychev A.A., Osipov V.A., Matorin D.N., Vredenberg W.J. Effects of far-red light on fluorescence induction in infiltrated pea leaves under diminished ΔpH and Δφ components of the proton motive force // J. Bioenerg. Biomembr. 2013. Vol. 45. N 1–2. P. 37–45.; Lazár D., Schansker G. Models of chlorophyll a fluorescence transients // Photosynthesis in silico / Eds. A. Laisk, L. Nedbal, and Govindjee. Dordrecht: Springer, 2009. P. 85–123.; Briquet M., Vilre D., Goblet P., Mesa M., Elo M.C. Plant cell membranes as biochemical targets of the phytotoxin helminthosporol // J. Bioenerg. Biomembr. 1998. Vol. 30. N 3. P. 285–295.; Веселовский В.А., Веселова Т.В. Люминесценция растений. Теоретические и практические аспекты // М.: Наука, 1990. 220 c.; Чаморовский С.К., Mаторин Д.Н. Влияние антагонистов кальмодулина на замедленную флуоресценцию хлоропластов и водорослей // Биохимия. 1984. Т. 49. № 13. С. 2029–2034.

  17. 17
    Academic Journal

    Συνεισφορές: Минобрнауки

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 3 (2018); 146-152 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 3 (2018); 146-152 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/623/434; Grossman A.R., Aksoy M. Algae in a phosphorus-limited landscape // Annual plant reviews. Vol. 48. Phosphorus metabolism in plants / Eds. W. Plaxton and H. Lambers. John Wiley & Sons, 2015. P. 337–374.; Solovchenko A., Verschoor A.M., Jablonowski N.D., Nedbal L. Phosphorus from wastewater to crops: An alternative path involving microalgae // Biotechnol. Adv. 2016. Vol. 34. N 5. P. 550–564.; Schreiber C., Schiedung H., Harrison L., Briese C., Ackermann B., Kant J., Schrey S.D., Hofmann D., Singh D., Ebenhöh O., Amelung W., Schurr U., Mettler-Altmann T., Huber G., Jablonowski N. D., Nedbal L. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants // J. Appl. Phycol. 2018. DOI 10.1007/s10811-018-1390-9.; Cembella A.D., Antia N.J., Harrison P.J. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part I // Crit. Rev. Microbiol. 1982. Vol. 10. N 4. P. 317–391.; Antal T.K., Matorin D.N., Ilyash L.V., Volgusheva A.A., Osipov V.I., Konyuhov I.V., Krendeleva T.E., Rubin A.B. Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer // Photosynth. Res. 2009. Vol. 102. N. 1. P. 67–76.; Maxwell K., Johnson G. Chlorophyll fluorescence — a practical guide // J. Exp. Bot. 2000. Vol. 51. N 345. P. 659–668.; Matorin D.N., Antal T.K., Ostrowska M., Rubin A.B., Ficek D., Majchrowski R. Chlorophyll fluorimetry as a method for studying light absorption by photosynthetic pigments in marine algae // Oceanologia. 2004. Vol. 46. N 4. P. 519–531.; Solovchenko A., Gorelova O., Selyakh I., Pogosyan S., Baulina O., Semenova L., Chivkunova O., Voronova E., Konyukhov I., Scherbakov P. A novel CO2-tolerant symbiotic Desmodesmus (Chlorophyceae, Desmodesmaceae): Acclimation to and performance at a high carbon dioxide level // Algal Res. 2015. Vol. 11. P. 399–410.; Solovchenko A., Pogosyan S., Chivkunova O., Selyakh I., Semenova L., Voronova E., Scherbakov P., Konyukhov I., Chekanov K., Kirpichnikov M., Lobakova E. Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence // Algal Res. 2014. Vol. 6. Part B. P. 234–241.; Solovchenko A., Merzlyak M., Khozin-Goldberg I., Cohen Z., Boussiba S. Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light // J. Phycol. 2010. Vol. 46. N 4. P. 763–772.; Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria // J. Gen. Microbiol. 1979. Vol. 111. N 1. P. 1–61.; Nagul E.A., McKelvie I.D., Worsfold P., Kolev S.D. The molybdenum blue reaction for the determination of orthophosphate revisited: opening the black box // Analyt. Chim. Acta. 2015. Vol. 890. P. 60–82.; Merzlyak M.N., Naqvi K.R. On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis // J. Photochem. Photobiol. B. Biol. 2000. Vol. 58. N 2–3. P. 123–129.; Solovchenko A., Khozin-Goldberg I., Cohen Z., Merzlyak M. Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa // J. Appl. Phycol. 2009. Vol. 21. N 3. P. 361–366.; Merzlyak M.N., Chivkunova O.B., Maslova I.P., Naqvi K.R., Solovchenko A.E., Klyachko-Gurvich G.L. Light absorption and scattering by cell suspensions of some cyanobacteria and microalgae // Russ. J. Plant Physiol. 2008. Vol. 55. N 3. P. 464–470.; Aitchison P., Butt V. The relation between the synthesis of inorganic polyphosphate and phosphate uptake by Chlorella vulgaris // J. Exp. Bot. 1973. Vol. 24. N 3. P. 497–510.; Ruban A. V. Non-photochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protection against photodamage // Plant Physiol. 2016. Vol. 170. N 4. P. 1903–1916.; Horton P. Developments in research on non-photochemical fluorescence quenching: Emergence of key ideas, theories and experimental approaches // Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria / Eds. B. Demmig-Adams, G. Garab,W. Adams III, and Govindjee. Dordrecht: Springer Netherlands, 2014. P. 73–95.; Shibata K. Dual wavelength scanning of leaves and tissues with opal glass // Biochim. Biophys. Acta. 1973. Vol. 304. N 2. P. 249–259.

  18. 18
  19. 19
  20. 20