Εμφανίζονται 1 - 20 Αποτελέσματα από 1.166 για την αναζήτηση '"ФЛУОРЕСЦЕНЦИЯ"', χρόνος αναζήτησης: 0,68δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal
  10. 10
  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal

    Πηγή: Biomedical Photonics; Том 14, № 2 (2025); 21-26 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/718/486; Loschenov V.B., Konov V.I., Prokhorov A.M., Photodynamic Therapy and Fluorescence Diagnostics // Laser Physics. – 2000. – Vol. 10. – Р.11801207.; Budko A.P., Deichman Z.G., Meerovich G.A., Borisova L.M., Мeerovich I.G., Lantsova A.V., Yu K.N., Kulbachevskaya N.Yu., Study of pharmacokinetics of liposomal photosensitiser based on hydroxyaluminium tetra-3-phenylthiophthalocyanine on mice // Biomedical Photonics. – 2019. – Vol. 7. – Р.16-22. https://doi. org/10.24931/2413-9432-2018-7-4-16-22.; Meerovich I.G., Kazachkina N.I., Savitsky A.P., Investigation of the effect of photosensitizer Tiosense on the tumor model mel Kor-TurboRFP expressed red fluorescent protein // Russ J Gen Chem. – 2015. – Vol. 85. – Р. 274-279. https://doi.org/10. 1134/S1070363215010429.; Savitsky A.P., Meerovich I.G., Zherdeva V.V., Arslanbaeva L.R., Burova O.S., Sokolova D.V., Treshchalina E.M., Baryshnikov A.Y., Fiks I.I., Orlova A.G., Kleshnin M.S., Turchin I.V., Sergeev A.M., Three- Dimensional In Vivo Imaging of Tumors Expressing Red Fluores- cent Proteins, in: R.M. Hoffman (Ed.) // In Vivo Cellular Imaging Using Fluorescent Proteins, Humana Press, Totowa, NJ. – 2012. – Р. 97-114. https://doi.org/10.1007/978-1-61779-797-2_7.; Savelieva T.A., Kuryanova M.N., Akhlyustina E.V., Linkov K.G., Meerovich G.A., Loschenov V.B., Attenuation correction technique for fluorescence analysis of biological tissues with significantly dif- ferent optical properties // Front. Optoelectron. – 2020. – Vol. 13. – Р. 360-370. https://doi.org/10.1007/s12200-020-1094-z.; Udeneev A. M. et al. Photo and spectral fluorescence analysis of the spinal cord injury area in animal models // Biomedical Photonics. – 2023. – Т. 12. – №. 3. – С. 15-20. https://doi.org/10.24931/2413-9432-2023-12-3-16-20.; Mironov A.N., ed., Guidelines for conducting preclinical studies of drugs // Grif. – 2012.; Meerovich G., Romanishkin I., Akhlyustina E., Strakhovskaya M., Kogan E., Angelov I., Loschenov V., Borisova E., Photodynamic Action in Thin Sensitized Layers: Estimating the Utilization of Light Energy // J-BPE. – 2021. – Vol. 7. – Р. 040301. https://doi. org/10.18287/JBPE21.07.040301.; Meerovich G.A., Akhlyustina E.V., Tiganova I.G., Lukyanets E.A., Makarova E.A., Tolordava E.R., Yuzhakova O.A., Romanishkin I.D., Philipova N.I., Zhizhimova Yu.S., Romanova Yu.M., Loschenov V.B., Gintsburg A.L., Novel Polycationic Photosensitizers for Anti- bacterial Photodynamic Therapy, in: G. Donelli (Ed.) // Advances in Microbiology, Infectious Diseases and Public Health, Springer International Publishing, Cham. – 2019. – Р. 1-19. https://doi. org/10.1007/5584_2019_431.; Makarov D.A., Kuznetsova N.A., Yuzhakova O.A., Savvina L.P., Kaliya O.L., Lukyanets E.A., Negrimovskii V.M., Strakhovskaya M.G., Effects of the degree of substitution on the physicochemical properties and photodynamic activity of zinc and aluminum phthalocyanine polycations // Russ. J. Phys. Chem. – 2009. – Vol. 83. – Р. 1044-1050. https://doi.org/10.1134/S0036024409060326.; Silva E.F.F., Serpa C., Dąbrowski J.M., Monteiro C.J.P., Formosinho S.J., Stochel G., Urbanska K., Simões S., Pereira M.M., Arnaut L.G., Mechanisms of Singlet-Oxygen and Superoxide-Ion Generation by Porphyrins and Bacteriochlorins and their Implications in Pho- todynamic Therapy // Chem. Eur. J. – 2010. – Vol. 16. – Р. 9273- 9286. https://doi.org/10.1002/chem.201000111.; Paxton F., Solid Angle Calculation for a Circular Disk // Review of Scientific Instruments. – 1959. – Vol. 30. – Р. 254-258. https://doi. org/10.1063/1.1716590.; Makarov V.I., Pominova D.V., Ryabova A.V., Romanishkin I.D., Voitova A.V., Steiner R.W., Loschenov V.B., Theranostic Properties of Crystalline Aluminum Phthalocyanine Nanoparticles as a Pho- tosensitizer // Pharmaceutics. – 2022. – Vol. 14. – Р. 2122. https:// doi.org/10.3390/pharmaceutics14102122.; Lacey J.A., Phillips D., Fluorescence lifetime measurements of disulfonated aluminium phthalocyanine in the presence of micro- bial cells // Photochem Photobiol Sci. – 2002. – Vol. 1. – Р. 378-383. https://doi.org/10.1039/b108831a.; Castano A.P., Demidova T.N., Hamblin M.R., Mechanisms in pho- todynamic therapy: Part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruc- tion // Photodiagnosis Photodyn Ther. – 2005. – Vol. 2. – Р. 91-106. https://doi.org/10.1016/S1572-1000(05)00060-8.; Tominaga T.T., Yushmanov V.E., Borissevitch I.E., Imasato H., Tabak M., Aggregation phenomena in the complexes of iron tetrap- henylporphine sulfonate with bovine serum albumin // Journal of Inorganic Biochemistry. – 1997. – Vol. 65. – Р. 235-244. https://doi. org/10.1016/S0162-0134(96)00137-7.

  14. 14
    Academic Journal

    Πηγή: Biomedical Photonics; Том 14, № 2 (2025); 12-20 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/716/485; Kaprin A.D., Starinsky V.V., Shakhzadova A.O. eds. Malignant neoplasms in Russia in 2020 (morbidity and mortality). M.: P.A. Herzen Moscow Oncology Research Institute. – 2021. (In Russ.); Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA Cancer J Clin. – 2021. – Vol.71. – P. 209-249. https://doi.org/10.3322/caac.21660; Peris K., Fargnoli M.C., Garbe C., Kaufmann R., Bastholt L., Seguin N.B., Bataille V., Marmol V. D., Dummer R., Harwood C.A., Hauschild A., Höller C., Haedersdal M., Malvehy J., Middleton M.R., Morton C.A., Nagore E., Stratigos A.J., Szeimies R.M., Tagliaferri L., Trakatelli M., Zalaudek I., Eg- germont A., Grob J.J. Diagnosis and treatment of basal cell carcinoma: European consensus-based interdisciplinary guidelines // Eur J Cancer. – 2019. – Vol. 118. – P.10-34.; Vornicescu C., Șenilă S.C., Bejinariu N.I., VesaȘ.C., Boșca A.B., Chirilă D.N., MelincoviciC.S., Sorițău O., Mihu C.M. Predictive factors for the recur- rence of surgically excised basal cell carcinomas: A retrospective clini- cal and immunopathological pilot study // Experimental and Thera- peutic Medicine. – 2021. – Vol. 22(5). – P.1336. https://doi.org/10.3892/ etm.2021.10771; Policard A. Etudes sur les aspects offerts par des tumeurs experimen- tales ex aminées a la lumière de Wood // C R Soc Biol. – 1924. – Vol. 91. – P. 1423-1428.; GalkinaE.M., Utz S.R. Fluorescence diagnosis in dermatology (review) // Saratov Journal of Medical Scientific Research. – 2013. – Vol. 9(3). – P. 566-572. (In Russ.); Wizenty J., Schumann T., Theil, D., Stockmann M., Pratschke J., Tacke F., Aigner F., Wuensch T. Recent Advances and the Potential for Clini- cal Use of Autofluorescence Detection of Extra-Ophthalmic Tissues // Molecules. – 2020. – Vol. 25(9). – P. 2095.; Croce A.C., Bottiroli G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis // Eur. J. Histochem. – 2014. – Vol. 58. – P. 2461.; Vo-Dinh T. Biomedical photonics handbook: biomedical diagnostics // CRC press. Boca Raton. – 2014.; McNicholas K., MacGregor M.N., Gleadle J.M. In order for the light to shine so brightly, the darkness must be present-why do cancers fluo- resce with 5-aminolaevulinic acid? // Br J Cancer. – 2019. – Vol. 121(8). – P. 631-639. https://doi.org/10.1038/s41416-019-0516-4.; Pavlova N.N., Thompson C.B. The emerging hallmarks of cancer metabolism // Cell Metab. – 2016. – Vol. 23 (1). – P.27-47. https://doi. org/10.1016/j.cmet.2015.12.006.; Potapov A.A., Goriaĭnov S.A., Loshchenov V.B., Savel'eva T.A., Gavrilov A.G., Okhlopkov V.A., Zhukov V.Iu., Zelenkov P.V., Gol'bin D.A., Shurkhaĭ V.A., Shishkina L.V., Grachev P.V., Kholodtsova M.N., Kuz'min S.G., Voro- zhtsov G.N., Chumakova A.P. Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas // ZhVoprNeirokhirIm N. N. Bur- denko. – 2013. – Vol. 77(2). – P. 3-10. (In Eng., Russ.); Na R., Stender I.M., Wulf H.C. Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence // Acta Derm Venereol. – 2001. – Vol. 81. – P. 246-249. https://doi.org/10.1080/00015550152572859; Hegyi J., Hegyi V., New developments in fluorescence diagnostics. In: Michael R. Hamblin, Pinar Avci, Gaurav K. Gupta, eds // Imaging in Der- matology. Academic Press. – 2016. – P. 89-94. https://doi.org/10.1016/ B978-0-12-802838-4.00009-1; Grusha Ia.O., Kiryushchenkova N.P., Novikov I.A., Fedorov A.A., Ismailo- va D.S. Histological verification of autofluorescence borders of perior- bital skin tumors // Vestnik Oftalmologii. – 2020. – Vol. 136(6). – P. 32-41. (In Russ.) https://doi.org/10.17116/oftalma202013606132; Kienle A., Foschum F., Hohmann A. Light propagation in structural anisotropic media in the steady-state and time domains // Phys. Med. Biol. – 2013. – Vol. 58(17). – P. 6205. https://doi.org/10.1088/0031- 9155/58/17/6205; Jacques S.L. Optical properties of biological tissues: a review // Phys Med Biol. – 2013. – Vol. 58(11). – P. 37-61. https://doi.org/0.1088/0031- 9155/58/11/R37.; Nickell S. et al. Anisotropy of light propagation in human skin // Phys. Med. Biol. – 2000. – Vol. 45. – P. 2873-2886.; Tuchin V.V. Lasers and optical fibers in biomedical studies (2d ed.) // Fizmatlit. – 2010 (In Russ.); Tuchin V.V. Optical biomedical diagnosis // Izvestiya of Saratov Uni- versity. Physics. – 2005. – Vol. 1(5). – P. 39-53. (In Russ.) https://doi. org/10.18500/1817-3020-2005-5-1-39-53.; Anderson RR, Parrish JA. The optics of human skin // J Invest Derma- tol. – 1981. – Vol.77 (1). – P. 13-9. https://doi.org/10.1111/1523-1747. ep12479191.; Colas V., Daul C., Khairallah G., Amouroux M., Blondel W. Spatially re- solved diffuse reflectance and autofluorescence photon depth dis- tribution in human skin spectroscopy: a modeling study // Proc. SPIE 11553.- Optics in Health Care and Biomedical Optics X. – 115531A. https://doi.org/10.1117/12.2575069; Brancaleon L., Durkin A.J., Tu J.H., Menaker G., Fallon J.D., Kollias N. In vivo Fluorescence Spectroscopy of Nonmelanoma Skin Cancer // Pho- tochemistry and Photobiology. –2001. – Vol. 73(2). – P. 178-183. https:// doi.org/10.1562/0031-8655(2001)0732.0.CO;2; Masuda Y., Ogura Y., Inagaki Y., Yasui T., Aizu Y. Analysis of the influence of collagen fibres in the dermis on skin optical reflectance by Monte Carlo simulation in a nine-layered skin model // Skin Res Technol. – 2018. – Vol. 24. – P. 248-255. https://doi.org/10.1111/srt.12421; Smirnova O.D., Rogatkin D., Litvinova K. Collagen as in vivo quantita- tive fluorescent biomarkers of abnormal tissue changes // J. Innov. Opt. Health Sci. – 2012. – Vol. 05(2). – P.1250010.; Yagi R., Kawabata S., Ikeda N. et al. Intraoperative 5-aminolevulinic acid- induced photodynamic diagnosis of metastatic brain tumors with his- topathological analysis // World J SurgOnc – 2017. – Vol. 15 – P. 179. https://doi.org/10.1186/s12957-017-1239-8; Redondo P., Marquina M., Pretel M., Aguado L., Iglesias M.E. Methyl- ALA-Induced Fluorescence in Photodynamic Diagnosis of Basal Cell Carcinoma Prior to Mohs Micrographic Surgery // ArchDermatol. – 2008. – Vol. 144(1). – P. 115-117. https://doi.org/10.1001/archderma- tol.2007.3; Kiryushchenkova N.P., Grusha Y., The use of autofluorescence diagnos- tics in monitoring and evaluating the effectiveness of local chemo- therapy for superficial basal cell carcinoma of the skin (clinical case) // Modern technologies in ophthalmology. – 2020. – Vol. 4 (35). – P. 162-163. (In Russ.) https://doi.org/10.25276/2312-4911-2020-4-162-163; Hefti M., von Campe G., Moschopulosa M., Siegnerb A., Looserc H., Landolt H. 5-aminolaevulinic acid-induced protoporphyrin IX fluores- cence in high-grade glioma surgery // SWISS MED WKLY – 2008. –Vol. 138(11-12). – P. 180-185.; Sapronov M.V., Skornyakova N.M. Computer visualization of Rayleigh scattering indicatrix in dynamic // Scientific visualization. – 2017. – Vol. 3(9). – P. 42-53. (In Russ.); Kalyagina N., Loschenov V., Wolf D., Daul C., Blondel W., Savelieva T. Ex- perimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical mod- el of a bladder wall // Applied Physics B. – 2011. – Vol. 105(3). – P. 631- 639.doi:10.1007/s00340-011-4678-x; Colas V., Amouroux M., Daul C., Perrin-Mozet C., Blondel W. Compara- tive study of optical properties estimation on liquid optical phantoms using spatially-resolved diffuse reflectance spectroscopy and double integrating spheres methods // Proc. SPIE 12147. – Tissue Optics and Photonics II. – P. 1214705. https://doi.org/10.1117/12.2621496

  15. 15
    Academic Journal

    Συνεισφορές: The study was funded by a grant from the Russian Science Foundation (project N 22-72-10117).

    Πηγή: Biomedical Photonics; Том 14, № 3 (2025); 4-13 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/729/501; Foote C.S. Definition of type I and type II photosensitized oxidation // Photochemistry and photobiology. – 1991. – Vol. 54(5). – Р. 659-659. doi:10.1111/j.1751-1097.1991.tb02071.x.; Baptista M.S., Cadet J., Di Mascio P. и др. Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways // Photochemistry and photobiology. – 2017. – Vol. 93(4). – Р. 912-919. doi:10.1111/php.12716.; Li X., Kwon N., Guo T. и др. Innovative strategies for hypoxic‐tumor photodynamic therapy // Angewandte chemie international edition. – 2018. – Vol. 57(36). – Р. 11522-11531. doi:10.1002/anie.201805138.; Zhao X., liu J., Fan J. и др. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application // Chemical society reviews. – 2021. – Vol. 50 (6). – Р. 4185-4219. doi:10.1039/d0cs00173b.; Xu J., Bonneviot L., Guari Y. и др. Matrix effect on singlet oxygen generation using methylene blue as photosensitizer // Inorganics. – 2024. – Vol. 12 (6). – Р. 155. doi:10.3390/inorganics12060155.; Lucky S.S., Soo K.C., Zhang Y. Nanoparticles in photodynamic therapy // Chemical reviews. – 2015. – Vol. 115 (4). – Р. 1990-2042. doi:10.1021/cr5004198.; Филоненко Е.В. Клиническое внедрение и научное развитие фотодинамической терапии в России в 2010-2020 гг. // Biomedical Photonics. – 2021. – Т. 10, № 4. – С. 4-22. doi:10.24931/2413-9432-2021-9-4-4-22.; Семенов Д.Ю., Васильев Ю.Л., Дыдыкин С.С. и др. Антимикробная и антимикотическая фотодинамическая терапия (обзор литературы) // Biomedical Photonics. – 2021. – Т. 10, №1. – С. 25–31. doi:10.24931/2413-9432-2021-10-1-25-31.; Трушина О.И., Филоненко Е.В., Новикова Е.Г. и др. Фотодинамическая терапия в профилактике ВПЧ- индуцированных рецидивов предрака и начального рака шейки матки // Biomedical Photonics. – 2024. – Т. 13, № 3. – С. 42-46. doi:10.24931/241-9432-2024-13-3-42-46.; Цеймах А.Е., Мищенко А.Н., Куртуков В.А. и др. Эффективность паллиативной фотодинамической терапии нерезектабельных злокачественных новообразований желчевыводящей системы. Систематический обзор и метаанализ // Biomedical Photonics. – 2024. – Т. 13, № 2. – С. 34-42. doi:10.24931/2413-9432-2024-13-2-34-42.; Шаназаров Н.А., Зинченко С.В., Кисикова С.Д. и др. Фoтoдинaмическая терапия в лeчении BПЧ-accoцииpoвaннoгo paкa шeйки мaтки: мexaнизмы, пpoблeмы и пepcпeктивы нa бyдyщee // Biomedical Photonics. – 2024. – Т. 13, № 1. – С. 47-55. doi:10.24931/2413-9432-2023-13-1-47-55; Панасейкин Ю.А., Капинус В.Н., Филоненко Е.В. и др. Результаты лечения больных раком полости рта при помощи фотодинамической терапии с фотосенсибилизатором на основе хлорина е6 // Biomedi cal Photonics. – 2024. – Т. 13, № 1. – С. 28-38. doi:10.24931/2413-9432-2023-13-1-28-38.; Taldaev A., Terekhov R., Nikitin I. и др. Methylene blue in anticancer photodynamic therapy: systematic review of preclinical studies // Frontiers in pharmacology. – 2023. – Vol. 14. – Р. 1264961. doi:10.3389/fphar.2023.1264961.; DeRosa M. Photosensitized singlet oxygen and its applications // Coordination chemistry reviews. – 2002. – Vol. 23 (4). – Р. 351-371. doi:10.1016/s0010-8545(02)00034-6.; Redmond R.W., Gamlin J.N. A compilation of singlet oxygen yields from biologically relevant molecules // Photochemistry and photobiology. – 1999. – Vol. 70(4). – Р. 391-475. doi:10.1111/j.1751-1097.1999.tb08240.x.; Tardivo J.P., Del Giglio A., De Oliveira C.S. и др. Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications // Photodiagnosis and photodynamic therapy. – 2005. – Vol. 2(3). – Р. 175–191. doi:10.1016/s1572-1000(05)00097-9.; Medhi D., Hazarika S. Formation of dimer and higher aggregates of methylene blue in alcohol // Spectrochimica acta part a: molecular and biomolecular spectroscopy. – 2025. – Vol. 329. – Р. 125490. doi:10.1016/j.saa.2024.125490.; Junqueira H.C., Severino D., Dias L.G. и др. Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces // Physical chemistry chemical physics. – 2002. – Vol. 4 (11). – Р. 2320-2328. doi:10.1039/b109753a.; Severino D., Junqueira H.C., Gugliotti M. и др. Influence of negatively charged interfaces on the ground and excited state properties of methylene blue // Photochemistry and photobiology. – 2003. – Vol.77(5). – Р. 459-468. doi:10.1562/0031-8655(2003)0772.0.co;2.; Ball D.J., Luo Y., Kessel D. и др. The induction of apoptosis by a positively charged methylene blue derivative // Journal of photochemistry and photobiology b: biology. – 1998. – Vol. 42 (2). – Р. 159-163. doi:10.1016/s1011-1344(98)00061-x.; Curry S. Methemoglobinemia // Annals of emergency medicine. – 1982. – Vol. 11(4). – Р. 214-221. doi:10.1016/s0196-0644(82)80502-7.; Sass M.D., Caruso C.J., Axelrod D.R. Accumulation of methylene blue by metabolizing erythrocytes // The journal of laboratory and clinical medicine. – 1967. – Vol. 69 (3). – Р. 447-455.; Sakai H., Leong C. Prolonged Functional life span of artificial red cells in blood circulation by repeated methylene blue injections // Artificial cells, nanomedicine, and biotechnology. – 2019. – Vol. 47(1). – Р. 3123-3128. doi:10.1080/21691401.2019.1645157.; Sakai H., Li B., Lim W. L. и др. Red blood cells donate electrons to methylene blue mediated chemical reduction of methemoglobin compart-mentalized in liposomes in blood // Bioconjugate chemistry. – 2014. – Vol. 25 (7). – Р. 1301-1310. doi:10.1021/bc500153x.; May J.M., Qu Z., Cobb C.E. Reduction and uptake of methylene blue by human erythrocytes // American journal of physiology-cell physiology. – 2004. – Vol. 286 (6). – Р. 1390-1398. doi:10.1152/ajpcell.00512.2003.; McDonagh E. M., Bautista J. M., Youngster I. и др. Pharmgkb summary: methylene blue pathway // Pharmacogenetics and genomics. – 2013. – Vol. 23(9). – Р. 498-508. doi:10.1097/fpc.0b013e32836498f4.; Harrop Geo. A., Barron E. S. G. Studies on blood cell metabolism // Journal of experimental medicine. – 1928. – Vol. 48 (2). – Р. 207-223. doi:10.1084/jem.48.2.207.; Pominova D., Ryabova A., Skobeltsin A. и др. The use of methylene blue to control the tumor oxygenation level // Photodiagnosis and photodynamic therapy. – 2024. – Vol. 46. – Р. 104047. doi:10.1016/j.pd-pdt.2024.104047.; Pominova D.V., Ryabova A.V., Skobeltsin A.S. и др. Spectroscopic study of methylene blue interaction with coenzymes and its effect on tumor metabolism // Sovremennye tehnologii v medicine. – 2025. – Vol. 17(1). – Р. 18. doi:10.17691/stm2025.17.1.02.; Рябова А.В., Стратонников А.А., Лощенов В. Б. Лазерно-спектроскопический метод оценки эффективности фотосенсибилизаторов в биологических средах // Квантовая электроника. – 2006. – Т. 36, № 6. – С. 562–568. doi:10.1070/qe2006v036n06abeh013291.; Stratonnikov A.A., Loschenov V.B. Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra // Journal of biomedical optics. – 2001. – Vol. 6 (4). – Р. 457. doi:10.1117/1.1411979.; Поминова Д.В., Рябова А.В., Романишкин И.Д. и др. Спектроскопическое исследование фотофизических свойств метиленового синего в биологических средах // Biomedical Photonics. – 2023. – Т. 12, № 2. – С. 34-47. https://doi.org/10.24931/2413-9432-2023-12-2-34-47.; Kalyanaraman B., Darley-Usmar V., Davies K.J.A. и др. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations // Free radical biology and medicine. – 2012. – Vol. 52(1). – Р. 1-6. doi:10.1016/j.freeradbiomed.2011.09.030.; Marques S., Magalhães L., Tóth I. и др. Insights on antioxidant assays for biological samples based on the reduction of copper complexes – the importance of analytical conditions // International journal of molecular sciences. – 2014. – Vol. 15(7). – Р. 11387-11402. doi:10.3390/ijms150711387.; George A., Pushkaran S., Li L. и др. Altered phosphorylation of cytoskeleton proteins in sickle red blood cells: the role of protein kinase c, rac gt-pases, and reactive oxygen species // Blood cells, molecules, and diseases. – 2010. – Vol. 45 (1). – Р. 41-45. doi:10.1016/j.bcmd.2010.02.006.; Gomes A., Fernandes E., Lima J.L.F.C. Fluorescence probes used for detection of reactive oxygen species // Journal of biochemical and biophysical methods. – 2005. – Vol. 65(2-3). – Р. 45-80. doi:10.1016/j.jbbm.2005.10.003.

  16. 16
    Academic Journal

    Πηγή: Medicine in Kuzbass; Том 24, № 3 (2025): сентябрь; 28-34 ; Медицина в Кузбассе; Том 24, № 3 (2025): сентябрь; 28-34 ; 2588-0411 ; 1819-0901

    Περιγραφή αρχείου: application/pdf; text/html

  17. 17
  18. 18
  19. 19
  20. 20