Showing 1 - 18 results of 18 for search '"ФЕМТОСЕКУНДНАЯ СПЕКТРОСКОПИЯ"', query time: 0.63s Refine Results
  1. 1
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 57, № 1 (2021); 99-107 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 57, № 1 (2021); 99-107 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2021-57-1

    File Description: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/571/477; Генерация фемтосекундных импульсов в среднем ИК- и ТГц-диапазонах в кристаллах GaSe1–х Teх / Д. М. Лубенко [и др.] // Изв. Рос. акад наук. Сер. физ. – 2015. – Т. 79, №; – С. 300–304. 2. Ding, Y. J. Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: A novel approach / Y. J. Ding, W. Shi // Laser Phys. – 2006. – Vol. 16, № 4. – P. 562–570. https://doi. org/10.1134/s1054660x06040050; Wei Shi. A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications / Wei Shi, Y. J. Ding // App. Phys. Lett. – 2004. – Vol. 84, № 10. – P. 1635–1637. https://doi. org/10.1063/1.1649802; Limiting pump intensity for sulfur-doped gallium selenide crystals / J. Guo[et al.] // Laser Phys. Lett. –2014. – Vol. 11, № 5. – P. 055401 (6 p). https://doi.org/10.1088/1612-2011/11/5/055401; Impact of fs and ns pulses on indium and sulfur doped gallium selenide crystals // Z.-S. Feng [et al.] // AIP Advances – 2014. – Vol. 4, № 3. – P. 037104. https://doi.org/10.1063/1.4868626; Widely linear and non-phase-matched optical-to-terahertz conversion on GaSe:Te crystals / Wei-Chen Chu [et al.] // Opt. Lett. – 2012 – Vol. 37, № 5. – P. 945–947. https://doi.org/10.1364/ol.37.000945; Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents / V. I. Stsiapura [et al.] // J. Phys. Chem. A. – 2010. – Vol. 114, № 32. – P. 8345−8350. https://doi.org/10.1021/jp105186z; Zotova, I. B. Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals / I. B. Zotova, Y. J. Ding // Opt. Lett. – 2001 – Vol. 40, № 36. – P. 6654–6658. https://doi.org/10.1364/ao.40.006654; https://vestifm.belnauka.by/jour/article/view/571

  2. 2
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 65, № 3 (2021); 281-289 ; Доклады Национальной академии наук Беларуси; Том 65, № 3 (2021); 281-289 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2021-65-3

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/973/970; Chou, K. Forster resonance energy transfer between quantum dot donors and quantum dot acceptors / K. Chou, A. Dennis // Sensors. – 2015. – Vol. 15, N 6. – P. 13288–13325. https://doi.org/10.3390/s150613288; Electronic processes within quantum dot-molecule complexes / R. D. Harris [et al.] // Chem. Rev. – 2016. – Vol. 116, N 21. – P. 12865–12919. https://doi.org/10.1021/acs.chemrev.6b00102; Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye / M. S. Smirnov [et al.] // J. Lumin. – 2016. – Vol. 176. – P. 77–85. https://doi.org/10.1016/j.jlumin.2016.03.015; CdTe quantum dot/dye hybrid system as photosensitizer for photodynamic therapy / A. Rakovich [et al.] // Nanoscale Research Letters. – 2010. – Vol. 5, N 4. – P. 753–760. https://doi.org/10.1007/s11671-010-9553-x; Photoexcitation dynamics in hybrid associates of Ag2S quantum dots with methylene blue / M. S. Smirnov [et al.] // Journal of Luminescence. – 2021. – Vol. 232. – Art. 117794. https://doi.org/10.1016/j.jlumin.2020.117794; Multiple Exciton Dissociation in CdSe Quantum Dots by Ultrafast Electron Transfer to Adsorbed Methylene Blue / J. Huang [et al.] // J. Am. Chem. Soc. – 2010. – Vol. 132, N 13. – P. 4858–4864. https://doi.org/10.1021/ja100106z; A thin CdSe shell boosts the electron transfer from CdTe quantum dots to methylene blue / L. Dworak [et al.] // Nanoscale. – 2018. – Vol. 10, N 4. – P. 2162–2169. https://doi.org/10.1039/c7nr08287h; Yang, Y. Ultrafast Charge Separation and Recombination Dynamics in Lead Sulfide Quantum Dot-Methylene Blue Complexes Probed by Electron and Hole Intraband Transitions / Y. Yang, W. Rodríguez-Cordoba, T. Lian // J. Am. Chem. Soc. – 2011. – Vol. 133, N 24. – P. 9246–9249. https://doi.org/10.1021/ja2033348; Yang, Ye. Multiple exciton dissociation and hot electron extraction by ultrafast interfacial electron transfer from PbS QDs / Ye Yang, Tianquan Lian // Coordination Chemistry Reviews. – 2014. – Vol. 263–264. – P. 229–238. https://doi.org/10.1016/j.ccr.2013.11.013; Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue / D. Severino [et al.] // Photochemistry and Photobiology. – 2007. – Vol. 77, N 5. – P. 459–468. https://doi.org/10.1562/0031-8655(2003)0770459ioncio2.0.co2; Gak, V. Yu. Triplet-excited dye molecules (eosine and methylene blue) quenching by H2O2 in aqueous solutions / V. Yu. Gak, V. A. Nadtochenko, J. Kiwi // Journal of Photochemistry and Photobiology A: Chemistry. – 1998. – Vol. 116. – P. 57–62. https://doi.org/10.1016/s1010-6030(98)00230-5; Decay of electronic excitations in colloidal thioglycolic acid (TGA)-capped CdS/ZnS quantum dots / M. S. Smirnov [et al.] // J. Nanopart. Res. – 2017. – Vol. 19, N 11. – Art. 376. https://doi.org/10.1007/s11051-017-4067-4; Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents / V. I. Stsiapura [et al.] // J. Phys. Chem. A. – 2010. – Vol. 114, N 32. – P. 8345−8350. https://doi.org/10.1021/jp105186z; Dimeric and other forms of methylene blue: Absorption and fluorescence of the pure monomer1 / G. N. Lewis [et al.] // J. Am. Chem. Soc. – 1943. – Vol. 65, N 6. – P. 1150–1154. http://doi.org/10.1021/ja01246a037; Nekrasov, A. D. Effect of multiply charged paramagnetic metal cations on J-aggregation of thiacyanine dyes / A. D. Nekrasov, B. I. Shapiro // High Energy Chemistry. – 2011. – Vol. 45, N 2. – P. 133–139. https://doi.org/10.1134/s001814391102010x; Solvent effect on the electronic spectra of azine dyes under alkaline condition / S. Basu [et al.] // J. Phys. Chem. A. – 2007. – Vol. 111, N 4. – P. 578–583. http://doi.org/10.1021/jp065740u; https://doklady.belnauka.by/jour/article/view/973

  3. 3
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 56, № 4 (2020); 470–479 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 56, № 4 (2020); 470–479 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2020-56-4

    File Description: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/555/461; Leznoff, C. C. Phthalocyanines: properties and applications / C. C. Leznoff, A. B. P. Lever. – Weinheim: VCH, 1996. – Vol. 4. – 536 p.; Hohnholz, D. Applications of phthalocyanines in organic light emitting devices / D. Hohnholz, S. Steinbrecherb, M. Hanack // J. Mol. Struct. – 2000. – Vol. 521, № 1/3. – P. 231–237. https://doi.org/10.1016/s0022-2860(99)00438-x; 4.2% efficient organic photovoltaic cells with low series resistances / J. Xue [et al.] // Appl. Phys. Lett. – 2004. – Vol. 84, № 16. – P. 3013–3015. https://doi.org/10.1063/1.1713036; Van Flassen, E. Explanation of the low oxigen sensitivity of thin film phthalocyanine gas sensors / E. Van Flassen, H. Kerp // Sens. Actuators B: Chemical. – 2003. – Vol. 88, № 3. – P. 329–333. https://doi.org/10.1016/s0925-4005(02)00379-9; Surface-enhanced non-linear Raman scattering at the single-molecule level / K. Kneipp [et al.] // Chem. Phys. – 1999. – Vol. 247, № 1. – P. 155–162. https://doi.org/10.1016/s0301-0104(99)00165-2; Optimization of nanoparticle size for plasmonic enhancement of fluorescence / O. Stranik [et al.] // Plasmonics. – 2007. – Vol. 2, № 1. – P. 15–22. https://doi.org/10.1007/s11468-006-9020-9; Замковец, А. Д. Влияние эффектов ближнего поля на спектральные свойства слоистых нанокомпозитов серебро-фталоцианин меди / А. Д. Замковец, А. Н. Понявина // Журн. приклад. спектроскопии. – 2012. – Т. 79, № 6. – C. 907–912.; Plasmon-Related Modification of Spectral Kinetic Properties of Copper Phthalocyanine Thin Films in the Presence of Silver Nanoparticles / O. V. Buganov [et al.] // J. App. Spectrosc. – 2014. – Vol. 81, № 1. – P. 92–96. https://doi.org/10.1007/s10812-014-9892-y; Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents / V. I. Stsiapura [et al.] // J. Phys. Chem. A. – 2010. – Vol. 114, № 32. – P. 8345−8350. https://doi.org/10.1021/jp105186z; Sergeeva, N. N. Photochemical Transformations Involving Porphyrins and Phthalocyanines / N. N. Sergeeva, M. O. Senge // CRC Handbook of Organic Photochemistry and Photobiology. – 2012 – P. 831–879. https://doi.org/10.1201/b12252-35; Mack, J. Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations / J. Mack, M. J. Stillman // Coord. Chem. Rev. – 2001. – Vol. 219, № 221. – P. 993–1032. https://doi.org/10.1016/s0010-8545(01)00394-0; Влияние структуры молекул фталоцианинов меди на характер их упорядочения в тонких пленках, спектры фотолюминесценции и поглощения / В. Л. Берковиц [и др.] // Физика твердого тела. – 2007. – Т. 49, № 2. – С. 262–266.; Vincett, P. S. Phosphorescence and Fluorescence of Phthalocyanines / P. S. Vincett, E. M. Voigt, K. E. Rieckhoff // J. Chem. Phys. – 1971. –Vol. 55, № 8. – P. 4131–4140. https://doi.org/10.1063/1.1676714; https://vestifm.belnauka.by/jour/article/view/555

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18