Εμφανίζονται 1 - 20 Αποτελέσματα από 135 για την αναζήτηση '"ФАКТОР РОСТА ЭНДОТЕЛИЯ СОСУДОВ"', χρόνος αναζήτησης: 0,90δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 5 (2025); 727-736 ; Акушерство, Гинекология и Репродукция; Vol 19, No 5 (2025); 727-736 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2597/1396; van Hinsbergh V.W., Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78(2):203–12. https://doi.org/10.1093/cvr/cvm102.; Papetti M., Herman I.M. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70. https://doi.org/10.1152/ajpcell.00389.2001.; Abulafia O., Triest W.E., Sherer D.M. Angiogenesis in malignancies of the female genital tract. Gynecol Oncol. 1999;72(2):220–31. https://doi.org/10.1006/gyno.1998.5152.; Рахимбаева Г.С., Собирова Д.С. Клинико-нейроиммунологические корреляции при постинсультной эпилепсии на примере нейронспецифической енолазы и фактора роста эндотелия сосудов. Эпилепсия и пароксизмальные состояния. 2024;16(4):316–26. https://doi.org/10.17749/2077-8333/epi.par.con.2024.205.; Zhang X., Nie D., Chakrabarty S. Growth factors in tumor microenvironment. Front Biosci. 2010;15(1):151–65. https://doi.org/10.2741/3612.; Kut C., Mac Gabhann F., Popel A.S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer. 2007;97(7):978–85. https://doi.org/10.1038/sj.bjc.6603923.; Charnock-Jones D.S., Sharkey A.M., Rajput-Williams J. et al. Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod. 1993;48(5):1120–8. https://doi.org/10.1095/biolreprod48.5.1120.; Dobrzycka B., Mackowiak-Matejczyk B., Kinalski M., Terlikowski S.J. Pretreatment serum levels of bFGF and VEGF and its clinical significance in endometrial carcinoma. Gynecol Oncol. 2013;128(3):454–60. https://doi.org/10.1016/j.ygyno.2012.11.035.; Tal R., Segars J.H. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy. Hum Reprod Update. 2014;20(2):194–216. https://doi.org/10.1093/humupd/dmt042.; Vodolazkaia A., Yesilyurt B.T., Kyama C.M. et al. Vascular endothelial growth factor pathway in endometriosis: genetic variants and plasma biomarkers. Fertil Steril. 2016;105(4):988–96. https://doi.org/10.1016/j.fertnstert.2015.12.016.; Hyder S.M., Huang J.C., Nawaz Z. et al. Regulation of vascular endothelial growth factor expression by estrogens and progestins. Environ Health Perspect. 2000;108 Suppl 5:785–90. https://doi.org/10.1289/ehp.00108s5785.; Eatock M.M., Schätzlein A., Kaye S.B. Tumour vasculature as a target for anticancer therapy. Cancer Treat Rev. 2000;26(3):191–204. https://doi.org/10.1053/ctrv.1999.0158.; Lappano R., Todd L.A., Stanic M. et al. Multifaceted interplay between hormones, growth factors and hypoxia in the tumor microenvironment. Cancers (Basel). 2022;14(3):539. https://doi.org/10.3390/cancers14030539.; Heits F., Wiedemann G.J., Jelkmann W. Vascular endothelial growth factor VEGF stimulates angiogenesis in good and bad situations. Dtsch Med Wochenschr. 1998;123(9):259–65. (In German). https://doi.org/10.1055/s-2007-1023947.; Бицадзе В.О., Слуханчук Е.В., Солопова А.Г. и др. Роль микроокружения в росте и распространении опухоли. Акушерство, Гинекология и Репродукция. 2024;18(1):96–111. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.489.; Kang Y., Li H., Liu Y., Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol. 2024;150(5):221. https://doi.org/10.1007/s00432-024-05714-5.; Trifanescu O.G., Gales L.N., Tanase B.C. et al. Prognostic role of vascular endothelial growth factor and correlation with oxidative stress markers in locally advanced and metastatic ovarian cancer patients. Diagnostics (Basel). 2023;13(1):166. https://doi.org/10.3390/diagnostics13010166.; Obermair A., Tempfer C., Hefler L. et al. Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with suspected ovarian cancer. Br J Cancer. 1998;77(11):1870–4. https://doi.org/10.1038/bjc.1998.311.; Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25. https://doi.org/10.1210/edrv.18.1.0287.; Lee C., Kim M.J., Kumar A. et al. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther. 2025;10(1):170. https://doi.org/10.1038/s41392-025-02249-0.; Джалилова Д.Ш., Макарова О.В. HIF-опосредованные механизмы взаимосвязи устойчивости к гипоксии и опухолевого роста (обзор). Биохимия. 2021;86(10):1403–22. https://doi.org/10.31857/S0320972521100018.; Kraft A., Weindel K., Ochs A. et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85(1):178–87.; Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83–92. https://doi.org/10.2147/HP.S93413.; Mao C.L., Seow K.M., Chen K.H. The utilization of bevacizumab in patients with advanced ovarian cancer: a systematic review of the mechanisms and effects. Int J Mol Sci. 2022;23(13):6911. https://doi.org/10.3390/ijms23136911.; Salgado R., Benoy I., Bogers J. et al. Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study. Angiogenesis. 2001;4(1):37–43. https://doi.org/10.1023/a:1016611230747.; Scapini P., Calzetti F., Cassatella M.A. On the detection of neutrophil-derived vascular endothelial growth factor (VEGF). J Immunol Methods. 1999;232(1–2):121–9. https://doi.org/10.1016/s0022-1759(99)00170-2.; Angelo L.S., Kurzrock R. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin Cancer Res. 2007;13(10):2825–30. https://doi.org/10.1158/1078-0432.CCR-06-2416.; Ташкина Е.А., Леплина О.Ю., Баторов Е.В. и др. Экспрессия рецепторов к сосудисто-эндотелиальному фактору роста-1 (VEGFR-1) и их роль в регуляции пролиферации T-лимфоцитов. Российский иммунологический журнал. 2019;22(2–2):942–4. https://doi.org/10.31857/S102872210006534-2.; Gorenjak V., Vance D.R., Petrelis A.M. et al. Peripheral blood mononuclear cells extracts VEGF protein levels and VEGF mRNA: Associations with inflammatory molecules in a healthy population. PLoS One. 2019;14(8):e0220902. https://doi.org/10.1371/journal.pone.0220902.; Losordo D.W., Isner J.M. Estrogen and angiogenesis: A review. Arterioscler Thromb Vasc Biol. 2001;21(1):6–12. https://doi.org/10.1161/01.atv.21.1.6.; Monteiro R., Teixeira D., Calhau C. Estrogen signaling in metabolic inflammation. Mediators Inflamm. 2014;2014:615917. https://doi.org/10.1155/2014/615917.; Гридасова О.С. Роль личной гигиены в ведении пациенток с вульвовагинальной атрофией. Реабилитология. 2025;3(1):22–8. https://doi.org/10.17749/2949-5873/rehabil.2025.29.; Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Концепция тромбовоспаления как основы тромботических осложнений, прогрессии опухоли и метастазирования у онкогинекологических больных. Акушерство, Гинекология и Репродукция. 2024;18(4):450–63. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.542.; https://www.gynecology.su/jour/article/view/2597

  3. 3
    Academic Journal

    Πηγή: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3320/2221; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15950; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15951; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15952; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15953; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15954; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15955; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15964; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/16015; McNamara K., Alzubaidi H., Jackson J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? J. Integr. Pharm. Res. Pract., 2019, Vol. 8, pp. 1-11.; Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr., 2006, Vol. 83, pp. 456-460.; Alfaddagh A., Martin S.S., Leucker T.M., Michos E.D., Blaha M.J., Lowenstein C.J., Jones S.R., Toth P.P. Inflammation and cardiovascular disease: from mechanisms to therapeutics. Am. J. Prev. Cardiol., 2020, Vol. 4, pp. 100-130.; Sun H.J., Wu Z.Y., Nie X.W., Bian J.S. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front. Pharmacol., 2020; Vol. 10, pp. 1568-1583.; Cervantes Gracia K., Llanas-Cornejo D., Husi H. CVD and oxidative stress. J. Clin. Med., 2017, Vol. 6, no. 2, no. 1-22.; Artiach G., Sarajlic P., Bäck M. Inflammation and its resolution in coronary artery disease: a tightrope walk between omega-6 and omega-3 polyunsaturated fatty acids. Kardiol. Pol., 2020, Vol. 78, no. 2, pp. 93-95.; Sarajlic P., Artiach G., Larsson S., Bäck M. Dose-dependent risk reduction for myocardial infarction with eicosapentaenoic acid: a meta-analysis and meta-regression including STRENGTH trial. Cardiovasc. Drugs Ther., 2021, Vol. 35, pp. 1079-1081.; Watson C.J., Webb N.J., Bottomley M.J., Brenchley P.E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine, 2000, Vol. 12, no. 8, pp. 1232-1235. https://doi.org/10.1006/cyto.2000.0692.; Renner W., Kotschan S., Hoffmann C., Obermayer-Pietsch B., Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. Journal of vascular research, 2000, Vol. 37, no. 6, pp. 443-448. https://doi.org/10.1159/000054076.; Pare-Brunet L., Glubb D., Evans P., Berenguer-Llergo A., Etheridge A.S., Skol A.D., et al. Discovery and functional assessment of gene variants in the vascular endothelial growth factor pathway. Human mutation, 2014, Vol. 35, no. 2, pp. 227–235. https://doi.org/10.1002/humu.22475.; Choi S.H., Ruggiero D., Sorice R., Song C., Nutile T., Vernon Smith A., et al. Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies. PLoS Genet., 2016, Vol. 12, no. 2, e1005874. https://doi.org/10.1371/journal.pgen.1005874.; Ku D.D., Zaleski J.K., Liu S., Brock T.A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 1993, Vol. 265, no. 2, pp. 586-592.; Ghazizadeh H., Avan A., Fazilati M., Azimi-Nezhad M., Tayefi M., Ghasemi F, et al. Association of rs6921438 A; Eaton C.B., Gramling R., Parker D.R., Roberts M.B., Lu B., Ridker P.M. Prospective association of vascular endothelial growth factor-A (VEGF-A) with coronary heart disease mortality in southeastern New England. Atherosclerosis, 2008, Vol. 200, no. 1, pp, 221-227. https://doi.org/10.1016/j.atherosclerosis.2007.12.027.; Leung D.W., Cachianes G., Kuang W.J., Goeddel D.V., Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989, Vol. 246, no. 4935, pp. 1306–1309. https://doi.org/10.1126/science.2479986.; Marks E.C.A., Wilkinson T.M., Frampton C.M., Skelton L., Pilbrow A.P., Yandle T.G., et al. Plasma levels of soluble VEGF receptor isoforms, circulating pterins and VEGF system SNPs as prognostic biomarkers in patients with acute coronary syndromes. BMC Cardiovasc. Disord., 2018, Vol. 18, no. 1, pp. 169. https://doi.org/10.1186/s12872-018-0894-1.; Matsumoto K., Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J. Biochem., 2014, Vol. 156, no. 1, pp. 1-10. https://doi.org/10.1093/jb/mvu031.; Yla-Herttuala S., Rissanen T.T., Vajanto I., Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 2007, Vol. 49, no. 10, pp. 1015-1026. https://doi.org/10.1016/j.jacc.2006.09.053.; Han X., Liu L., Niu J., Yang J., Zhang Z. Association between VEGF polymorphisms (936c/t, -460t/c and -634g/c) with haplotypes and coronary heart disease susceptibility. Int. J. Clin. Exp. Pathol., 2015, Vol. 8, no. 1, pp. 922-927.; Kalayi Nia S., Ziaee S., Boroumand M.A., Sotudeh Anvari M., Pourgholi L., Jalali A. The impact of vascular endothelial growth factor +405 C/G polymorphism on long-term outcome and severity of coronary artery disease. J. Clin. Lab. Anal., 2017, Vol. 31, no. 4, pp. 1-8. https://doi.org/10.1002/jcla.22066.; Matsumoto T., Mugishima H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J. Atheroscler. Thromb., 2006, Vol. 13, no. 3, pp. 130-135. https://doi.org/10.5551/jat.13.130,16.; Inoue M., Itoh H., Ueda M., Naruko T., Kojima A., Komatsu R., et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation, 1998, Vol. 98, no. 20, pp. 2108-2116. https://doi.org/10.1161/01.cir.98.20.2108.; Howell W.M., Ali S., Rose-Zerilli M.J., Ye S. VEGF polymorphisms and severity of atherosclerosis. Journal of medical genetics, 2005, Vol. 42, no. 6, pp. 485-490. https://doi.org/10.1136/jmg.2004.025734.; ErZen B., Silar M., Sabovic M. Stable phase post-MI patients have elevated VEGF levels correlated with inflammation markers, but not with atherosclerotic burden. BMC Cardiovasc Disord. 2014, Vol. 14, p. 166. https://doi.org/10.1186/1471-2261-14-166.; Meier P., Gloekler S., Zbinden R., Beckh S., de Marchi S.F., Zbinden S., et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation, 2007, Vol. 116, no. 9, pp. 975-983. https://doi.org/10.1161/CIRCULATIONAHA.107.703959.; Ma W.Q., Wang Y., Han X.Q., Zhu Y, Liu N.F. Association of genetic polymorphisms in vascular endothelial growth factor with susceptibility to coronary artery disease: a meta-analysis. BMC medical genetics, 2018, Vol. 19, no. 1, p. 108. https://doi.org/10.1186/s12881-018-0628-3.; Zhao X., Meng L., Jiang J., Wu X. Vascular endothelial growth factor gene polymorphisms and coronary heart disease: a systematic review and meta-analysis. Growth Factors, 2018, Vol. 36, no. 3-4, pp. 153-63.; Cui Q.T., Li Y., Duan C.H., Zhang W., Guo X.L. Further evidence for the contribution of the vascular endothelial growth factor gene in coronary artery disease susceptibility. Gene, 2013, Vol. 521, no. 2, pp. 217–221. https://doi.org/10.1016/j.gene.2013.03.091; Dong P.P. Association of vascular endothelial growth factor expression and polymorphisms with the risk of gestational diabetes mellitus. J. Clin. Lab. Anal., 2019, Vol. 33, no. 2, e22686. https://doi.org/10.1002/jcla.22686.; Al-Habboubi H.H., Sater M.S., Almawi A.W., Al-Khateeb G.M., Almawi W.Y. Contribution of VEGF polymorphisms to variation in VEGF serum levels in a healthy population. Eur. Cytokine Netw., 2011, Vol. 22, no. 3, pp. 154-158. https://doi.org/10.1684/ecn.2011.0289.; Osadnik T., Strzelczyk J.K., Regula R., Bujak K., Fronczek M., Gonera M., et al. The Relationships between Polymorphisms in Genes Encoding the Growth Factors TGF-beta1, PDGFB, EGF, bFGF and VEGF-A and the Restenosis Process in Patients with Stable Coronary Artery Disease Treated with Bare Metal Stent. PloS one, 2016, Vol. 11, no. 3, e0150500. https://doi.org/10.1371/journal.pone 0150500.; Yadav B.K., Yadav R., Chang H., Choi K., Kim J.T., Park M.S., et al. Genetic Polymorphisms rs699947, rs1570360, and rs3025039 on the VEGF Gene Are Correlated with Extracranial Internal Carotid ArteryStenosis and Ischemic Stroke. Ann. Clin. Lab. Sci., 2017; Vol. 47, no. 2, pp. 144-155.; Liu D., et al. Medicine, 2016, Vol. 95, p. 19, DOI:10.1097/MD.0000000000003413.; Wang E., Wang Z., Liu S., et al. Polymorphisms of VEGF, TGFbeta1, TGFbetaR2 and conotruncal heart defects in a Chinese population. Mol. Biol. Rep., 2014, Vol. 41, pp. 1763-1770.; Griffin H.R., Hall D.H., Topf A., et al. Genetic variation in VEGF does not contribute significantly to the risk of congenital cardiovascular malformation. PLoSOne, 2009, Vol. 4, e4978.; Palmer B.R., Paterson M.A., Frampton C.M., Pilbrow A.P., Skelton L., Pemberton C.J., et al. (2021) Vascular endothelial growth factor-A promoter polymorphisms, circulating VEGF-A and survival in acute coronary syndromes. PLoS ONE, 2021, Vol. 16, no. 7, e0254206. https://doi.org/10.1371/journal.pone.0254206.; Li H., Kantoff P.W., Ma J., Stampfer M.J., George D.J. Prediagnostic plasma vascular endothelial growth factor levels and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev., 2005; Vol. 14, no. 6, pp. 1557-1561. https://doi.org/10.1158/1055-9965.EPI-04-0456.; Carilho R., de Carvalho M., Swash M., Pinto S., Pinto A., Costa J. Vascular endothelial growth factor and amyotrophic lateral sclerosis: the interplay with exercise and noninvasive ventilation. Muscle Nerve, 2014, Vol. 49, no. 4, pp. 545-550. https://doi.org/10.1002/mus.23955.; Eaton C.B., Gramling R., Parker D.R., Roberts M.B., Lu B., Ridker P.M. Prospective association of vascular endothelial growth factor-A (VEGF-A) with coronary heart disease mortality in southeastern New England. Atherosclerosis, 2008, Vol. 200, no. 1, pp. 221-227. https://doi.org/10.1016/j.atherosclerosis.2007.12.027.; Pia Davidsson, Susanna Eketjäll, Niclas Eriksson, Anna Walentinsson, Richard C. Becker, Anders Cavallin, Anna Bogstedt, Anna Collén, Claes Held, Stefan James, Agneta Siegbahn, Ralph Stewart, Robert F. Storey8, Harvey White, and Lars Wallentin. Vascular endothelial growth factor-D plasma levels and VEGFD genetic variants are independently associated with outcomes in patients with cardiovascular disease. Cardiovascular Research, 2023, Vol. 119, pp. 1596-1605. https://doi.org/10.1093/cvr/cvad039.; Gudjonsson A., Gudmundsdottir V., Axelsson G.T., Gudmundsson E.F., Jonsson B.G., Launer L.J., Lamb J.R., Jennings L.L., Aspelund T., Emilsson V., Gudnason V. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat. Commun., 2022, Vol. 13, no. 1, p. 480.; Meng F., Jing X., Song G., Jie L., Shen F. Prox1 induces new lymphatic vessel formation and promotes nerve reconstruction in a mouse model of sciatic nerve crush injury. J. Anat., 2020, Vol. 237, pp. 933-940.; Ahmed S., Ahmed A., Säleby J., Bouzina H., Lundgren J., Rådegran G. Elevated plasma tyrosine kinases VEGF-D and HER4 in heart failure patients decrease after heart transplantation in association with improved haemodynamics. Heart Vessels, 2020, Vol. 35, no. 6, pp. 786-799.; Mountain D.J., Singh M., Singh K. Downregulation of VEGF-D expression by interleukin-1beta in cardiac microvascular endothelial cells is mediated by MAPKs and PKCalpha/beta1. J. Cell. Physiol., 2008, Vol. 215, pp. 337-343.; Zhao T., Zhao W., Meng W., Liu C., Chen Y., Bhattacharya S.K., Sun Y. Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts. Mol. Cell. Biochem. 2016, Vol. 413, pp. 127-135.; Borné Y., Gränsbo K., Nilsson J., Melander O., Orho-Melander M., Smith J.G., Engström G. Vascular endothelial growth factor D, pulmonary congestion, and incidence of heart failure. J. Am. Coll. Cardiol., 2018, Vol. 71, pp. 580-582.; Berntsson J., Smith J.G., Johnson L.S.B., Söderholm M., Borné Y., Melander O., Orho-Melander M., Nilsson J., Engström G. Increased vascular endothelial growth factor D is associated with atrial fibrillation and ischaemic stroke. Heart, 2019, Vol. 105, pp. 553-558.; Säleby J., Bouzina H., Lundgren J., Rådegran G. Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension. Scand. Cardiovasc. J., 2017, Vol. 51, pp. 261-270.; Säleby J., Bouzina H., Ahmed S., Lundgren J., Rådegran G. Plasma receptor tyrosine kinase RET in pulmonary arterial hypertension diagnosis and differentiation. ERJ Open. Res., 2019, Vol. 5, e00037–02019.; Seyama K., Kumasaka T., Souma S., Sato T., Kurihara M., Mitani K., Tominaga S., Fukuchi Y. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat. Res. Biol., 2006, Vol. 4, no. 3, pp. 143-152.; https://www.mimmun.ru/mimmun/article/view/3320

  4. 4
    Academic Journal

    Συνεισφορές: Работа выполнена за счет гранта Академии наук Республики Татарстан, предоставленного молодым кандидатам наук (постдокторантам) в целях защиты докторской диссертации, выполнения научно-исследовательских работ, а также выполнения трудовых функций в научных и образовательных организациях Республики Татарстан в рамках Государственной программы Республики Татарстан «Научно-технологическое развитие Республики Татарстан»

    Πηγή: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 91-93 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 91-93

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-64-5; https://phsreda.com/e-articles/10716/Action10716-138758.pdf; Ефимов Г.А. Особенности ангиогенеза при геморрагической лихорадке с почечным синдромом / Г.А. Ефимов, А.Ю. Попова, В.В. Малеев [и др.] // Инфекционные болезни. – 2007. – №5. – С. 23–28. EDN IBMTVN; Кучерук В.И. Геморрагическая лихорадка с почечным синдромом / В.И. Кучерук, В.Г. Акимкин, В.В. Малеев // Эпидемиология и инфекционные болезни. – 2002. – №4. – С. 25–30.; Малеев В.В. Клинико-патогенетические особенности геморрагической лихорадки с почечным синдромом / В.В. Малеев, А.Ю. Попова, Л.В. Попова [и др.] // Терапевтический архив. – 2005. – №1. – С. 35–40.; Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis // Kidney International. 1999. Vol. 56. Pp. 794–814.; Freedman S.B. Therapeutic Angiogenesis for Coronary Artery Disease / S.B. Freedman, J.M. Isner // Ann. Intern. Med. 2002. Vol. 132. Pp. 54–71.; Isner J.M. Angiogenesis and cardiovascular disease / J.M. Isner, P. Vale, D.W. Losordo // Dialogues in Cardiovascular Medicine. 2001. Vol. 6. №3.; Krock B.L. Hypoxia-induced angiogenesis: good and evil / B.L. Krock, N. Skuli, M.C. Simon // Genes & Cancer. 2011. Vol. 2 (12). Pp. 1117–1133.; Madeddu P. Therapeutic angiogenesis and vasculogenesis for tissue regeneration // Experimental Physiology. 2004. Vol. 90.3. Pp. 315–326.; Salafutdinov I.I. Differences in the Serum VEGF Are Not Associated with Differences in Cytokine Isoforms in Nephropathia Epidemica / I.I. Salafutdinov, E.V. Martynova, S.F. Khaiboullina [et al.] // BioNanoScience. 2017. Vol. 7. Pp. 313–315. DOI:10.1007/s12668-016-0340-8. EDN XNACCS; Sylven C. Angiogenic Gene Therapy // Drugs of Today. 2002. Vol. 38 (12). Pp. 819–827.; Weis S.M. Pathophysiological consequences of VEGF-induced vascular permeability / S.M. Weis, D.A. Cheresh // Nature. 2005. Vol. 437 (7058). Pp. 497–504.; Zhao F. Protective effects of vascular endothelial growth factor in cultured brain endothelial cells against hypoglycemia / F. Zhao [et al.] // Metabolic Brain Disease. 2015. Vol. 30 (4). Pp. 999–1007. DOI 10.1007/s11011-015-9659-z. EDN ATPHSG; https://phsreda.com/article/138758/discussion_platform

  5. 5
  6. 6
    Academic Journal

    Συνεισφορές: This research was supported by Russian State Funded Budget Project of ICBFM SB RAS (reg. No. 121031300045-2)., Работа выполнена по государственному заданию в рамках бюджетной темы ИХБФМ СО РАН «Фундаментальные основы здоровьесбережения» № 121031300045-2.

    Πηγή: Siberian journal of oncology; Том 23, № 4 (2024); 172-185 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 172-185 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3203/1262; Abdelmaksoud N.M., El-Mahdy H.A., Ismail A., Elsakka E.G.E., El-Husseiny A.A., Khidr E.G., Ali E.M., Rashed M.H., El-Demerdash F.E., Doghish A.S. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: a spotlight on the convergence of signaling pathways. Pathol Res Pract. 2023; 244. doi:10.1016/j.prp.2023.154411.; Khan N.A., Elsori D., Rashid G., Tamanna S., Chakraborty A., Farooqi A., Kar A., Sambyal N., Kamal M.A. Unraveling the relationship between the renin-angiotensin system and endometrial cancer: a comprehensive review. Front Oncol. 2023; 13. doi:10.3389/fonc.2023.1235418.; Al-Kuraishy H.M., Al-Maiahy T.J., Al-Gareeb A.I., Alexiou A., Papadakis M., Saad H.M., Batiha G.E. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken). 2024; 7(1). doi:10.1002/cnr2.1920.; Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249–57. doi:10.1038/35025220.; Yetkin-Arik B., Kastelein A.W., Klaassen I., Jansen C.H.J.R., Latul Y.P., Vittori M., Biri A., Kahraman K., Griffioen A.W., Amant F., Lok C.A.R., Schlingemann R.O., van Noorden C.J.F. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim Biophys Acta Rev Cancer. 2021; 1875(1). doi:10.1016/j.bbcan.2020.188446.; Semenza G.L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3(10): 721–32. doi:10.1038/nrc1187.; Bhosale N.M., Arakeri S.U., Reddy A.K., Mudanur S.R. Endometrial blood vessel morphometry in patients presenting with abnormal uterine bleeding. Indian J Pathol Microbiol. 2022; 65(4): 844–50. doi:10.4103/ ijpm.ijpm_89_21.; Pijnenborg J.M., Wijnakker M., Hagelstein J., Delvoux B., Groothuis P.G. Hypoxia contributes to development of recurrent endometrial carcinoma. Int J Gynecol Cancer. 2007; 17(4): 897–904. doi:10.1111/j.1525-1438.2007.00893.x.; Yunusova N.V., Kondakova I.V., Kolomiets L.A., Afanas’ev S.G., Kishkina A.Y., Spirina L.V. The role of metabolic syndrome variant in the malignant tumors progression. Diabetes Metab Syndr. 2018; 12(5): 807–12. doi:10.1016/j.dsx.2018.04.028.; Wang P.P., He X.Y., Wang R., Wang Z., Wang Y.G. High leptin level is an independent risk factor of endometrial cancer: a meta-analysis. Cell Physiol Biochem. 2014; 34(5): 1477–84. doi:10.1159/000366352.; Ellis P.E., Barron G.A., Bermano G. Adipocytokines and their relationship to endometrial cancer risk: A systematic review and meta-analysis. Gynecol Oncol. 2020; 158(2): 507–16. doi:10.1016/j.ygyno.2020.05.033.; Boroń D., Nowakowski R., Grabarek B.O., Zmarzły N., Opławski M. Expression Pattern of Leptin and Its Receptors in Endometrioid Endometrial Cancer. J Clin Med. 2021; 10(13): 2787. doi:10.3390/jcm10132787.; Kang Y.E., Kim J.M., Joung K.H., Lee J.H., You B.R., Choi M.J., Ryu M.J., Ko Y.B., Lee M.A., Lee J., Ku B.J., Shong M., Lee K.H., Kim H.J. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction. PLoS One. 2016; 11(4). doi:10.1371/journal.pone.0154003.; Zhou W., Guo S., Gonzalez-Perez R.R. Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer. 2011; 104(1): 128–37. doi:10.1038/sj.bjc.6606013.; Gonzalez-Perez R.R., Lanier V., Newman G. Leptin’s Pro-Angiogenic Signature in Breast Cancer. Cancers (Basel). 2013; 5(3): 1140–62. doi:10.3390/cancers5031140.; Park H.Y., Kwon H.M., Lim H.J., Hong B.K., Lee J.Y., Park B.E., Jang Y., Cho S.Y., Kim H.S. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001; 33(2): 95–102. doi:10.1038/emm.2001.17.; Guo S., Liu M., Wang G., Torroella-Kouri M., Gonzalez-Perez R.R. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta. 2012; 1825(2): 207–22. doi:10.1016/j.bbcan.2012.01.002.; Baumann K.E., Siamakpour-Reihani S., Dottino J., Dai Y., Bentley R., Jiang C., Zhang D., Sibley A.B., Zhou C., Berchuck A., Owzar K., Bae-Jump V., Secord A.A. High-fat diet and obesity are associated with differential angiogenic gene expression in epithelial ovarian cancer. Gynecol Oncol. 2023; 179: 97–105. doi:10.1016/j.ygyno.2023.11.002.; Michalczyk K., Niklas N., Rychlicka M., Cymbaluk-Płoska A. The Influence of Biologically Active Substances Secreted by the Adipose Tissue on Endometrial Cancer. Diagnostics (Basel). 2021; 11(3): 494. doi:10.3390/diagnostics11030494.; Yu Z., Zhang Q., Wei S., Zhang Y., Zhou T., Zhang Q., Shi R., Zinovkin D., Pranjol Z.I., Zhang J., Wang H. CD146+CAFs promote progression of endometrial cancer by inducing angiogenesis and vasculogenic mimicry via IL-10/JAK1/STAT3 pathway. Cell Commun Signal. 2024; 22(1): 170. doi:10.1186/s12964-024-01550-9.; Ротин Д.Л., Титов К.С., Казаков А.М. Васкулогенная мимикрия при меланоме: молекулярные механизмы и клиническое значение. Российский биотерапевтический журнал. 2019; 18(1): 16–24. doi:10.17650/1726-9784-2019-18-1-16-24.; Лапкина Е.З., Есимбекова А.Р., Рукша Т.Г. Васкулогенная мимикрия. Архив патологии. 2023; 85(6): 62–9. doi:10.17116/patol20238506162.; Hashimoto I., Kodama J., Seki N., Hongo A., Miyagi Y., Yoshinouchi M., Kudo T. Macrophage infiltration and angiogenesis in endometrial cancer. Anticancer Res. 2000; 20(6C): 4853–6.; Soeda S., Nakamura N., Ozeki T., Nishiyama H., Hojo H., Yamada H., Abe M., Sato A. Tumor-associated macrophages correlate with vascular space invasion and myometrial invasion in endometrial carcinoma. Gynecol Oncol. 2008; 109(1): 122–8. doi:10.1016/j.ygyno.2007.12.033.; Espinosa I., José Carnicer M., Catasus L., Canet B., D’angelo E., Zannoni G.F., Prat J. Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role. Am J Surg Pathol. 2010; 34(11): 1708–14. doi:10.1097/PAS.0b013e3181f32168.; Pugh C.W., Ratcliffe P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003; 9(6): 677–84. doi:10.1038/nm0603-677.; Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Antiand Pro-Angiogenic Therapies. Genes Cancer. 2011; 2(12): 1097–105. doi:10.1177/1947601911423031.; Nishida N., Yano H., Nishida T., Kamura T., Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006; 2(3): 213–9. doi:10.2147/vhrm.2006.2.3.213.; Wang J., Taylor A., Showeil R., Trivedi P., Horimoto Y., Bagwan I., Ewington L., Lam E.W., El-Bahrawy M.A. Expression profiling and significance of VEGF-A, VEGFR2, VEGFR3 and related proteins in endometrial carcinoma. Cytokine. 2014; 68(2): 94–100. doi:10.1016/j.cyto.2014.04.005.; Bottaro D.P., Liotta L.A. Cancer: Out of air is not out of action. Nature. 2003; 423(6940): 593–5. doi:10.1038/423593a.; Guo S., Colbert L.S., Fuller M., Zhang Y., Gonzalez-Perez R.R. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta. 2010; 1806(1): 108–21. doi:10.1016/j.bbcan.2010.04.004.; Mori H., Nishida H., Kusaba T., Kawamura K., Oyama Y., Daa T. Clinicopathological correlations of endometrioid and clear cell carcinomas in the uterus and ovary. Medicine (Baltimore). 2023; 102(37). doi:10.1097/MD.0000000000035301.; Wang X.X., Hua T., Wang H.B. Estrogen receptor-related receptor γ uppresses hypoxia-induced angiogenesis by regulating VEGFA in endometrial cancer. Gynecol Endocrinol. 2023; 39(1). doi:10.1080/09513590.2023.2264411.; Mieszało K., Ławicki S., Szmitkowski M. Przydatność oznaczania metaloproteinaz (MMPs) i ich inhibitorów (TIMPs) w diagnostyce nowotworów narządu rodnego [The utility of metalloproteinases (MMPs) and their inhibitors (TIMPs) in diagnostics of gynecological malignancies]. Pol Merkur Lekarski. 2016; 40(237): 193–7. Polish.; Ewington L., Taylor A., Sriraksa R., Horimoto Y., Lam E.W., El-Bahrawy M.A. The expression of interleukin-8 and interleukin-8 receptors in endometrial carcinoma. Cytokine. 2012; 59(2): 417–22. doi:10.1016/j. cyto.2012.04.036.; Kotowicz B., Fuksiewicz M., Jonska-Gmyrek J., Berezowska A., Radziszewski J., Bidzinski M., Kowalska M. Clinical significance of pretreatment serum levels of VEGF and its receptors, IL-8, and their prognostic value in type I and II endometrial cancer patients. PLoS One. 2017; 12(10). doi:10.1371/journal.pone.0184576.; Kim C.S., Park H.S., Kawada T., Kim J.H., Lim D., Hubbard N.E., Kwon B.S., Erickson K.L., Yu R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond). 2006; 30(9): 1347–55. doi:10.1038/sj.ijo.0803259.; Ozalp S., Yalcin O.T., Acikalin M., Tanir H.M., Oner U., Akkoyunlu A. Microvessel density (MVD) as a prognosticator in endometrial carcinoma. Eur J Gynaecol Oncol. 2003; 24(3–4): 305–8.; Wang J.Z., Xiong Y.J., Man G.C.W., Chen X.Y., Kwong J., Wang C.C. Clinicopathological and prognostic significance of blood microvessel density in endometrial cancer: a meta-analysis and subgroup analysis. Arch Gynecol Obstet. 2018; 297(3): 731–40. doi:10.1007/s00404-018-4648-1.; Kaku T., Kamura T., Kinukawa N., Kobayashi H., Sakai K., Tsuruchi N., Saito T., Kawauchi S., Tsuneyoshi M., Nakano H. Angiogenesis in endometrial carcinoma. Cancer. 1997; 80(4): 741–7. doi:10.1002/(sici)1097-0142(19970815)80:43.0.co;2-t.; Kilinç E., Bahar A.Y. The Value of Intratumoral and Extratumoral Microvessel Density for the Tumor-dominated Area in the Endometrial Carcinoma. Appl Immunohistochem Mol Morphol. 2022; 30(7): 501–8. doi:10.1097/PAI.0000000000001044.; Watanabe M., Aoki Y., Kase H., Tanaka K. Heparanase expression and angiogenesis in endometrial cancer. Gynecol Obstet Invest. 2003; 56(2): 77–82. doi:10.1159/000072821.; Wagatsuma S., Konno R., Sato S., Yajima A. Tumor angiogenesis, hepatocyte growth factor, and c-Met expression in endometrial carcinoma. Cancer. 1998; 82(3): 520–30. doi:10.1002/(sici)1097-0142-(19980201)82:33.0.co;2-3.; Ozuysal S., Bilgin T., Ozan H., Kara H.F., Oztürk H., Ercan I. Angiogenesis in endometrial carcinoma: correlation with survival and clinicopathologic risk factors. Gynecol Obstet Invest. 2003; 55(3): 173–7. doi:10.1159/000071533.; Erdem O., Erdem M., Dursun A., Akyol G., Erdem A. Angiogenesis, p53, and bcl-2 expression as prognostic indicators in endometrial cancer: comparison with traditional clinicopathologic variables. Int J Gynecol Pathol. 2003; 22(3): 254–60. doi:10.1097/01.PGP.0000070850.25718. A5.; Drocaş I., Crăiţoiu Ş., Stepan A.E., Iliescu D.G., Drocaş I.A., Stepan M.D. The analysis of hormonal status and vascular and cell proliferation in endometrioid endometrial adenocarcinomas. Rom J Morphol Embryol. 2022; 63(1): 113–20. doi:10.47162/RJME.63.1.11.; Guşet G., Costi S., Lazăr E., Dema A., Cornianu M., Vernic C., Păiuşan L. Expression of vascular endothelial growth factor (VEGF) and assessment of microvascular density with CD34 as prognostic markers for endometrial carcinoma. Rom J Morphol Embryol. 2010; 51(4): 677–82.; Erdem O., Taskiran C., Onan M.A., Erdem M., Guner H., Ataoglu O. CD105 expression is an independent predictor of survival in patients with endometrial cancer. Gynecol Oncol. 2006; 103(3): 1007–11. doi:10.1016/j. ygyno.2006.06.010.; Saad R.S., Jasnosz K.M., Tung M.Y., Silverman J.F. Endoglin (CD105) expression in endometrial carcinoma. Int J Gynecol Pathol. 2003; 22(3): 248–53. doi:10.1097/01.PGP.0000070852.25718.37.; Ferrara N., Kerbel R.S. Angiogenesis as a therapeutic target. Nature. 2005; 438(7070): 967–74. doi:10.1038/nature04483.; Oza A.M., Selle F., Davidenko I., Korach J., Mendiola C., Pautier P., Chmielowska E., Bamias A., DeCensi A., Zvirbule Z., González-Martín A., Hegg R., Joly F., Zamagni C., Gadducci A., Martin N., Robb S., Colombo N. Efficacy and Safety of Bevacizumab-Containing Therapy in Newly Diagnosed Ovarian Cancer: ROSiA Single-Arm Phase 3B Study. Int J Gynecol Cancer. 2017; 27(1): 50–8. doi:10.1097/IGC.0000000000000836.; van Beijnum J.R., Nowak-Sliwinska P., Huijbers E.J., Thijssen V.L., Griffioen A.W. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev. 2015; 67(2): 441–61. doi:10.1124/pr.114.010215.; Dizon D.S., Sill M.W., Schilder J.M., McGonigle K.F., Rahman Z., Miller D.S., Mutch D.G., Leslie K.K. A phase II evaluation of nintedanib (BIBF-1120) in the treatment of recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study. Gynecol Oncol. 2014; 135(3): 441–5. doi:10.1016/j.ygyno.2014.10.001.; Hong X., Qiu S., Wu X., Chen S., Chen X., Zhang B., He A., Xu Y., Wang J., Gao Y., Xu X., Sun L., Zhang Y., Xiang L., Zhou J., Guan Q., Zhu Y., Liu H., Xu H., Zhou Y., Chen B., Shen Y. Efficacy and Safety of Anlotinib in Overall and Disease-Specific Advanced Gynecological Cancer: A Real-World Study. Drug Des Devel Ther. 2023; 17: 2025–33. doi:10.2147/DDDT.S408304.; Coleman R.L., Sill M.W., Lankes H.A., Fader A.N., Finkler N.J., Hoffman J.S., Rose P.G., Sutton G.P., Drescher C.W., McMeekin D.S., Hu W., Deavers M., Godwin A.K., Alpaugh R.K., Sood A.K. A phase II evaluation of aflibercept in the treatment of recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2012; 127(3): 538–43. doi:10.1016/j.ygyno.2012.08.020.; Zou Y., Xu Y., Chen X., Zheng L. Advances in the application of immune checkpoint inhibitors in gynecological tumors. Int Immunopharmacol. 2023; 117. doi:10.1016/j.intimp.2023.109774.; Harmsen M.J., Arduç A., Bleeker M.C.G., Juffermans L.J.M., Griffioen A.W., Jordanova E.S., Huirne J.A.F. Increased Angiogenesis and Lymphangiogenesis in Adenomyosis Visualized by Multiplex Immunohistochemistry. Int J Mol Sci. 2022; 23(15). doi:10.3390/ijms23158434.; Майбородин И.В., Красильников С.Э., Козяков А.Е., Бабаянц Е.В., Кулиджанян А.П. Целесообразность изучения опухолевого ангиогенеза как прогностического фактора развития рака. Новости хирургии. 2015; 23(3): 339–47. doi:10.18484/2305-0047.2015.3.339.; Майбородин И.В., Козяков А.Е., Бабаянц Е.В., Красильников С.Э. Ангиогенез в лимфатических узлах при развитии рака в регионе лимфосбора. Новости хирургии. 2016; 24(6): 579–85. doi:10.18484/2305-0047.2016.6.579.; Maghraby H.K., Elsarha A.I., Saad R.S. Peritumoral lymphatic vessel density as a prognostic parameter in endometrial carcinoma: an immunohistochemical study. Indian J Pathol Microbiol. 2010; 53(3): 465–9. doi:10.4103/0377-4929.68278.; Jumaah A.S., Al-Haddad H.S., McAllister K.A., Yasseen A.A. The clinicopathology and survival characteristics of patients with POLE proofreading mutations in endometrial carcinoma: A systematic review and metaanalysis. PLoS One. 2022; 17(2). doi:10.1371/journal.pone.0263585.; Li L.L., Li H., Li J., Zhang X.B., Wang Z.Q., Shen D.H., Wang J.L. [Risk factor analysis of lymph node metastasis in endometrial carcinoma combined with molecular types]. Zhonghua Fu Chan Ke Za Zhi. 2023; 58(10): 733–41. Chinese. doi:10.3760/cma.j.cn112141-20230317-00125.; Ju W., Park H.M., Lee S.N., Sung S.H., Kim S.C. Loss of hMLH1 expression is associated with less aggressive clinicopathological features in sporadic endometrioid endometrial adenocarcinoma. J Obstet Gynaecol Res. 2006; 32(5): 454–60. doi:10.1111/j.1447-0756.2006.00438.x.; Peiró G., Diebold J., Lohse P., Ruebsamen H., Lohse P., Baretton G.B., Löhrs U. Microsatellite instability, loss of heterozygosity, and loss of hMLH1 and hMSH2 protein expression in endometrial carcinoma. Hum Pathol. 2002; 33(3): 347–54. doi:10.1053/hupa.2002.32220.; Honoré L.H., Hanson J., Andrew S.E. Microsatellite instability in endometrioid endometrial carcinoma: correlation with clinically relevant pathologic variables. Int J Gynecol Cancer. 2006; 16(3): 1386–92. doi:10.1111/j.1525-1438.2006.00535.x.; Stewart C.J., Amanuel B., Grieu F., Carrello A., Iacopetta B. KRAS mutation and microsatellite instability in endometrial adenocarcinomas showing MELF-type myometrial invasion. J Clin Pathol. 2010; 63(7): 604–8. doi:10.1136/jcp.2009.069500.; Crumley S., Kurnit K., Hudgens C., Fellman B., Tetzlaff M.T., Broaddus R. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. Mod Pathol. 2019; 32(3): 396–404. doi:10.1038/s41379-018-0148-x.; Morin P.J. beta-catenin signaling and cancer. Bioessays. 1999; 21(12): 1021–30. doi:10.1002/(SICI)1521-1878(199912)22:13.0.CO;2-P.; Bolivar A.M., Luthra R., Mehrotra M., Chen W., Barkoh B.A., Hu P., Zhang W., Broaddus R.R. Targeted next-generation sequencing of endometrial cancer and matched circulating tumor DNA: identification of plasma-based, tumor-associated mutations in early stage patients. Mod Pathol. 2019; 32(3): 405–14. doi:10.1038/s41379-018-0158-8.; Watanabe T., Nanamiya H., Kojima M., Nomura S., Furukawa S., Soeda S., Tanaka D., Isogai T., Imai J.I., Watanabe S., Fujimori K. Clinical relevance of oncogenic driver mutations identified in endometrial carcinoma. Transl Oncol. 2021; 14(3). doi:10.1016/j.tranon.2021.101010.; van den Heerik A.S.V.M., Aiyer K.T.S., Stelloo E., Jürgenliemk-Schulz I.M., Lutgens L.C.H.W., Jobsen J.J., Mens J.W.M., van der SteenBanasik E.M., Creutzberg C.L., Smit V.T.H.B.M., Horeweg N., Bosse T. Microcystic elongated and fragmented (MELF) pattern of invasion: Molecular features and prognostic significance in the PORTEC-1 and -2 trials. Gynecol Oncol. 2022; 166(3): 530–7. doi:10.1016/j.ygyno.2022.06.027.; Kurnit K.C., Fellman B.M., Mills G.B., Bowser J.L., Xie S., Broaddus R.R. Adjuvant treatment in early-stage endometrial cancer: context-dependent impact of somatic CTNNB1 mutation on recurrence-free survival. Int J Gynecol Cancer. 2022; 32(7): 869–74. doi:10.1136/ ijgc-2021-003340.; Kurnit K.C., Kim G.N., Fellman B.M., Urbauer D.L., Mills G.B., Zhang W., Broaddus R.R. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod Pathol. 2017; 30(7): 1032–41. doi:10.1038/modpathol.2017.15.; Lane D.P., Benchimol S. p53: oncogene or anti-oncogene? Genes Dev. 1990; 4(1): 1–8. doi:10.1101/gad.4.1.1.; Hollstein M., Sidransky D., Vogelstein B., Harris C.C. p53 mutations in human cancers. Science. 1991; 253(5015): 49–53. doi:10.1126/science.1905840.; Kumari P., Sharma I., Saha S.C., Srinivasan R., Sharma A. Promoter methylation status of key genes and its implications in the pathogenesis of endometriosis, endometrioid carcinoma of ovary and endometrioid endometrial cancer. J Cancer Res Ther. 2022; 18(Supplement): 328–34. doi:10.4103/jcrt.JCRT_1704_20.; Brett M.A., Atenafu E.G., Singh N., Ghatage P., Clarke B.A., Nelson G.S., Bernardini M.Q., Köbel M. Equivalent Survival of p53 Mutated Endometrial Endometrioid Carcinoma Grade 3 and Endometrial Serous Carcinoma. Int J Gynecol Pathol. 2021; 40(2): 116–23. doi:10.1097/PGP.0000000000000674.; Miyasaka A., Oda K., Ikeda Y., Sone K., Fukuda T., Inaba K., Makii C., Enomoto A., Hosoya N., Tanikawa M., Uehara Y., Arimoto T., Kuramoto H., Wada-Hiraike O., Miyagawa K., Yano T., Kawana K., Osuga Y., Fujii T. PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer. Gynecol Oncol. 2015; 138(1): 174–80. doi:10.1016/j.ygyno.2015.04.015.; https://www.siboncoj.ru/jour/article/view/3203

  7. 7
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 68, № 2 (2024); 138-147 ; Доклады Национальной академии наук Беларуси; Том 68, № 2 (2024); 138-147 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1184/1185; Adam, D. J. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial / D. J. Adam, J. D. Beard, Т. Cleveland // Lancet. – 2005. – Vol. 366, N 9501. – Р. 1925–1934. https://doi.org/10.1016/s0140-6736(05)67704-5; Григорьева, А. И. Хронические облитерирующие заболевания артерий нижних конечностей. Современное амбулаторное лечение / А. И. Григорьева // Моск. хирург. журн. – 2022. – Спецвыпуск. – С. 43–51. https://doi.org/10.17238/2072-3180-2022-43-51; Скворцов, В. В. Современные аспекты диагностики и лечения облитерирующего атеросклероза артерий нижних конечностей / В. В. Скворцов, А. В. Сабанов, А. А. Еременко // Лечащий врач. – 2023. – Т. 26, № 6. – С. 55–60. https://doi.org/10.51793/os.2023.26.6.008; Богдан, В. Г. Стимуляция ангиогенеза в комплексном лечении пациентов с хронической артериальной недостаточностью нижних конечностей / В. Г. Богдан, С. Г. Лепешко // Военная медицина. – 2017. – № 2. – С. 117–119.; Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia / M. R. Kibbe [et al.] // Gene Therapy. – 2016. – Vol. 23, N 3. – Р. 306–312. https://doi.org/10.1038/gt.2015.110; Червяков, Ю. В. Эффективность генной терапии и стандартного консервативного лечения хронической ишемии нижних конечностей атеросклеротического генеза / Ю. В. Червяков, О. Н. Власенко // Вестн. хирургии им. И. И. Грекова. – 2018. – Т. 177, № 2. – С. 64–69. https://doi.org/10.24884/0042-4625-2018-177-2-64-69; Gene-based therapies in patients with critical limb ischemia / Р. Kitrou [et al.] // Expert Opin. Biol. Ther. – 2017. – Vol. 17, N 4. – P. 449–456. https://doi.org/10.1080/14712598.2017.1289170; Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia / R. Morishita [et al.] // Arterioscler. Thromb. Vasc. Biol. – 2011. – Vol. 31, N 3. – Р. 713–720. https://doi.org/10.1161/atvbaha.110.219550; Double VERF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus / P. Barc [et al.] // J. Cardiovasc. Transl. Res. – 2021. – Vol. 14, N 3. – P. 409–415. https://doi.org/10.1007/s12265-020-10066-9; Giacca, M. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond / M. Giacca, S. Zacchigna // Gene Ther. – 2012. – Vol. 19, N 6. – Р. 622–629. https://doi.org/10.1038/gt.2012.17; Опыт применения терапевтического ангиогенеза препаратом «Неоваскулген» у пациентов с нешунтабельным поражением артерий нижних конечностей / В. Ю. Михайличенко [и др.] // Тавр. мед.-биол. вестн. – 2022. – Т. 25, № 2. – С. 55–60.; Randall, L. O. A method for measurement of analgesic activity on inflamed tissue / L. O. Randall, J. J. Selitto // Arch. Int. Pharmacodyn. Ther. – 1957. – Vol. 111, N 4. – Р. 409–419.; https://doklady.belnauka.by/jour/article/view/1184

  8. 8
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 68, № 3 (2024); 220-228 ; Доклады Национальной академии наук Беларуси; Том 68, № 3 (2024); 220-228 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1194/1195; Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries / H. Sung [et al.] // CA Cancer J. Clin. – 2021. – Vol. 71, N 3. – P. 209–249. https://doi.org/10.3322/caac.21660; Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries / C. Allemani [et al.] // Lancet. – 2018. – Vol. 391, N 10125. – P. 1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3; Folkman, J. Angiogenesis: an organizing principle for drug discovery? / J. Folkman // Nature Reviews Drug Discovery. – 2007. – Vol. 6. – P. 273–286. https://doi.org/10.1038/nrd2115; Carmeliet, P. Molecular mechanisms and clinical applications of angiogenesis / Р. Carmeliet, R. K. Jain // Nature. – 2011. – Vol. 473. – P. 298–307. https://doi.org/10.1038/nature10144; VEGF receptor signalling – in control of vascular function / A. K. Olsson [et al.] // Nat. Rev. Mol. Cell. Biol. – 2006. – Vol. 7. – P. 359–371. https://doi.org/10.1038/nrm1911; Mathew, C. C. The isolation of high molecular weight eucaryotic DNA / C. C. Mathew // Methods in Molecular Biology: Nucleic Acids / ed. J. M. N. J. Walker. – Clifton, 1984. – Vol. 2, N 4. – P. 31–34. https://doi.org/10.1385/0-89603-064-4:31; Clinical and morphological characteristics of NSCLC and VEGF gene polymorphism / M. N. Shapetska [et al.] // Int. J. Adv. Res. – 2016. – Vol. 4. – P. 1802–1813. https://doi.org/10.21474/ijar01/1657; Association of vascular endothelial growth factor – a gene polymorphisms and haplotypes with breast cancer metastases / U. Langsenlehner [et al.] // Acta Oncol. – 2015. – Vol. 54, N 3. – P. 368–376. https://doi.org/10.3109/0284186x.2014.948056; VEGF gene polymorphisms and susceptibility to rheumatoid arthritis / S. W. Han [et al.] // Rheumatology. – 2004. – Vol. 43, N 9. – P. 1173–1177. https://doi.org/10.1093/rheumatology/keh281; Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection / M. Shahbazi [et al.] // J. Am. Soc. Nephrol. – 2002. – Vol. 13, N 1. – P. 260–264. https://doi.org/10.1681/asn.v131260; A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels / W. Renner [et al.] // J. Vasc. Res. – 2000. – Vol. 37, N 6. – P. 443–448. https://doi.org/10.1159/000054076; Functional interaction between p/CAF and human papillomavirus E2 protein / D. Lee [et al.] // J. Biol. Chem. – 2002. – Vol. 277, N 8. – P. 6483–6489. https://doi.org/10.1074/jbc.m105085200; Маркеры ангиогенеза при опухолевом росте / Н. А. Нефедова [и др.] // Архив патологии. – 2016. – Т. 78, № 2. – С. 55–62. https://doi.org/10.17116/patol201678255-62; Treatment Strategies of Gastric Cancer-Molecular Targets for Anti-angiogenic Therapy: a State-of-the-art Review / M. Tyczyńska [et al.] // J. Gastrointest Cancer. – 2021. – Vol. 52. – P. 476–488. https://doi.org/10.1007/s12029-021-00629-7; Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08 / C. J. Allegra [et al.] // J. Clin. Oncol. – 2011. – Vol. 29, N 1. – P. 11–16. https://doi.org/10.1200/jco.2010.30.0855; Bergers, G. Modes of resistance to anti-angiogenic therapy / G. Bergers, D. Hanahan // Nat. Rev. Cancer. – 2008. – Vol. 8. – P. 592–603. https://doi.org/10.1038/nrc2442; https://doklady.belnauka.by/jour/article/view/1194

  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Πηγή: Rational Pharmacotherapy in Cardiology; Vol 19, No 2 (2023); 203-208 ; Рациональная Фармакотерапия в Кардиологии; Vol 19, No 2 (2023); 203-208 ; 2225-3653 ; 1819-6446

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2841/2418; https://www.rpcardio.com/jour/article/downloadSuppFile/2841/781; https://www.rpcardio.com/jour/article/downloadSuppFile/2841/782; Кириченко Ю.Ю., Ильгисонис И.С., Иванова Т.В. и др. Кардиоваскулотоксические проявления противоопухолевой терапии: влияние на ремоделирование миокарда и сосудистого русла. Кардиоваскулярная Терапия и Профилактика. 2021;20(7):2923. DOI:10.15829/1728- 8800-2021-2923.; Lyon AR, Lopez-Fernandez T, Couch SM, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;23(10):e333-e465. DOI:10.1093/eurheartj/ehac244.; Osterlund P, Kinos S, Pfeiffer P, et.al. Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: a multicentre retrospective observational cohort study. ESMO Open. 2022;7(3):100427. DOI:10.1016/j.esmoop.2022.100427.; Peng J, Dong C, Wang C, et.al. Cardiotoxicity of 5-fluorouracil and capecitabine in Chinese patients: a prospective study. Cancer Commun. 2018;38(1):22. DOI:10.1186/s40880-018-0292-1.; Visvikis A, Kyvelou SM, Pietri P, et.al. Cardiotoxic Profile and Arterial Stiffness of Adjuvant Chemotherapy for Colorectal Cancer. Cancer Manag Res. 2020;12:1175-85. DOI:10.2147/CMAR.S223032.; Campia U, Moslehi JJ, Amiri-Kordestani R, et al. Cardio-Oncology: Vascular and Metabolic Perspectives. Circulation. 2019;139(13):e579-e602. DOI:10.1161/CIR.0000000000000641.; Филатова А.Ю., Виценя М.В., Потехина А.В., и др. Атеросклероз брахиоцефальных артерий и артериальная жесткость у больных раком молочной железы. Кардиология. 2019;59(1S):43-52.; Shah CP, Mareb JS. Cardiotoxicity due to targeted anticancer agents: a growing challenge. Ther Adv Cardiovasc Dis. 2019;13:1753944719843435. DOI:10.1177/1753944719843435.; Touyz RM, Herrmann SMS, Herrmann J. Vascular toxicities with VEGF inhibitor therapies–focus on hypertension and arterial thrombotic events. J Am Soc Hypertens. 2018;12(6):409-25. DOI:10.1016/j.jash.2018.03.008.; Li M, Kroetz DL. Bevacizumab-Induced Hypertension: Clinical Presentation and Molecular Understanding. Pharmacol Ther. 2018;182:152-60. DOI:10.1016/j.pharmthera.2017.08.012.; Cohen JB, Geara AS, Hogan JJ, et al. Hypertension in Cancer Patients and Survivors Epidemiology, Diagnosis, and Management. JACC Cardio Oncol. 2019;1(2):238-51. DOI:10.1016/j.jaccao.2019. 11.009.; Catino AB, Hubbard RA, Chirinos JA, et al. Longitudinal assessment of vascular function with sunitinib in patients with metastatic renal cell carcinoma. Circ Heart Fail. 2018;11(3):e 004408. DOI:10.1161/CIRCHEARTFAILURE.117.004408.; Bottinor WJ, Shuey MM, Manouchehri A, et al. Renin-Angiotensin-Aldosterone System Modulates Blood Pressure Response During Vascular Endothelial Growth Factor Receptor Inhibition. JACC Cardi Oncol. 2019;1(1):14-23. DOI:10.1016/j.jaccao.2019.07.002.; Res E, Kyvelou SM, Vlachopoulos C, et al. Metastatic malignancies and the effect on arterial stiffness and blood pressure levels: the possible role of chemotherapy. Onco Targets Ther. 2018:11:6785-93. DOI:10.2147/OTT.S156318.; Макеева Л.М., Емелина Е.И., Быкова А.В. и др. Сравнительный анализ нарушений сердечно-сосудистой системы у пациентов с хроническим миелолейкозом на фоне лечения ингибиторами тирозинкиназы. Клиническая Онкогематология. 2020;13(1):104-11. DOI:10.21320/2500-2139-2020-13-1-104-111.; Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia. 2017;31(11):2388-97. DOI:10.1038/leu.2017.245.; Kim AS, Khorana AA, McCrae KR. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res. 2020;225:33-53. DOI:10.1016/j.trsl.2020.06.012.; Плохова Е. В., Дундуа Д. П. Проблема тромбоза у пациентов со злокачественными заболеваниями. Кардиология. 2018;58(S9):19-28. DOI:10.18087/cardio.2523.; Chang HM, Okwuosa TM, Scarabelli T, et al. Cardiovascular Complications of Cancer Therapy. Journal of the American College of Cardiology. 2017;70(20):2552-65. DOI:10.1016/j.jacc.2017. 09.1095.; Matsumura C, Chisaki Y, Sakimoto S, et al. Evaluation of thromboembolic events in cancer patients receiving bevacizumab according to the Japanese Adverse Drug Event Report database. J Oncol Pharm Pract. 2018;24(1):22-7. DOI:10.1177/1078155216679025.; Васюк Ю.А., Гендлин Г.Е., Емелина Е.И. и др. Согласованное мнение российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии. Российский Кардиологический Журнал 2021;26(9): 4703. DOI:10.15829/1560-4071-2021-4703.; Navi BB, Reiner AS, Kamel H, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70(8):926-38. DOI:10.1016/j.jacc.2017.06.047.; Lee I, Adimadhyam S, Nutescu EA, et al. Bevacizumab Use and the Risk of Arterial and Venous Thromboembolism in Patients with High-Grade Gliomas: A Nested Case-Control Study. Pharmacotherapy. 2019;39(9):921-8. DOI:10.1002/phar.2310.; https://www.rpcardio.com/jour/article/view/2841

  13. 13
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 16, No 1 (2022); 66-72 ; Акушерство, Гинекология и Репродукция; Vol 16, No 1 (2022); 66-72 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1242/992; van Deutekom A.W., Lewandowski A.J. Physical activity modification in youth with congenital heart disease: a comprehensive narrative review. Pediatr Res. 2020;89(7):1650–8. https://doi.org/10.1038/s41390-020-01194-8.; Lim T.B., Foo S.Y.R., Chen C.K. The role of epigenetics in congenital heart disease. Genes (Basel). 2021;12(3):390. https://doi.org/10.3390/genes12030390.; Reddy D.P., Viswamitra S. Cardiac embryology. In: CT and MRI in ongenital heart diseases. Springer, 2021. 29–54. https://doi.org/10.1007/978-981-15-6755-1_2.; Salman H.E., Alser M., Shekhar A. et al. Effect of left atrial ligation-driven altered inflow hemodynamics on embryonic heart development: Clues for prenatal progression of hypoplastic left heart syndrome. Biomech Model Mechanobiol. 2021;20(2):733–50. https://doi.org/10.1007/s10237-020-01413-5.; Burton G.J., Jauniaux E. Development of the human placenta and fetal heart: synergic or independent? Front Physiol. 2018;9:373. https://doi.org/10.3389/fphys.2018.00373.; Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9–22.; Fowden A., Forhead A., Coan P., Burton G. The placenta and intrauterine programming. J Neuroendocrinol. 2008;20(4):439–50. https://doi.org/10.1111/j.1365-2826.2008.01663.x.; Saleemuddin A., Tantbirojn P., Sirois K. et al. Obstetric and perinatal complications in placentas with fetal thrombotic vasculopathy. Pediatr Dev Pathol. 2010;13(6):459–64. https://doi.org/10.2350/10-01-0774-OA.1.; Verburg B.O., Jaddoe V., Wladimiroff J.W. et al. Fetal hemodynamic adaptive changes related to intrauterine growth: the Generation R Study. Circulation. 2008;117(5):649–59. https://doi.org/10.1161/CIRCULATIONAHA.107.709717.; Matthiesen N.B., Henriksen T.B., Agergaard P. et al. Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924 422 liveborn infants. Circulation. 2016;134(20):1546–56. https://doi.org/10.1161/CIRCULATIONAHA.116.021793.; Khong T.Y., Mooney E.E., Ariel I. et al. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140(7):698–713. https://doi.org/10.5858/arpa.2015-0225-CC.; Rychik J., Goff D., McKay E. et al. Characterization of the placenta in the newborn with congenital heart disease: distinctions based on type of cardiac malformation. Pediatr Cardiol. 2018;39(6):1165–71. https://doi.org/10.1007/s00246-018-1876-x.; Johnson J.A., Canavan T. Placental expression of vascular endothelial growth factor in patients with hypoplastic left heart syndrome. J Am Coll Cardiol. 2020;75(11 Suppl 1):630. https://doi.org/10.1016/s0735-1097(20)31257-2.; Barker D.J., Godfrey K.M., Gluckman P.D. et al. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–41. https://doi.org/10.1016/0140-6736(93)91224-a.; Menendez-Castro C., Rascher W., Hartner A. Intrauterine growth restriction-impact on cardiovascular diseases later in life. Mol Cell Pediatr. 2018;5(1):4. https://doi.org/10.1186/s40348-018-0082-5.; Zhao F., Lei F., Yan X. et al. Protective effects of hydrogen sulfide against cigarette smoke exposure-induced placental oxidative damage by alleviating redox imbalance via Nrf2 pathway in rats. Cell Physiol Biochem. 2018;48(5):1815–28. https://doi.org/10.1159/000492504.; Lu L., Kingdom J., Burton G.J., Cindrova-Davies T. Placental stem villus arterial remodeling associated with reduced hydrogen sulfide synthesis contributes to human fetal growth restriction. Am J Pathol. 2017;187(4):908–20. https://doi.org/10.1016/j.ajpath.2016.12.002.; Shen Y., Shen Z., Luo S. et al. The cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential. Oxid Med Cell Longev. 2015;2015:925167. https://doi.org/10.1155/2015/925167.; Russell M.W., Moldenhauer J.S., Rychik J. et al. Damaging variants in proangiogenic genes impair growth in fetuses with cardiac defects. J Pediatr. 2019;213:103–9. https://doi.org/10.1016/j.jpeds.2019.05.013.; Laakkonen J.P., Lähteenvuo J., Jauhiainen S. et al. Beyond endothelial cells: vascular endothelial growth factors in heart, vascular anomalies and placenta. Vascul Pharmacol. 2019;112:91–101. https://doi.org/10.1016/j.vph.2018.10.005.; Llurba E., Sanchez O., Ferrer Q. et al. Maternal and foetal angiogenic imbalance in congenital heart defects. Eur Heart J. 2014;35(11):701–7. https://doi.org/10.1093/eurheartj/eht389.; Brodwall K., Leirgul E., Greve G. et al. Possible common aetiology behind maternal preeclampsia and congenital heart defects in the child: a cardiovascular diseases in Norway project study. Paediatr Perinat Epidemiol. 2016;30(1):76–85. https://doi.org/10.1111/ppe.12252.; Hertig A., Berkane N., Lefevre G. et al. Maternal serum sFlt1 concentration is an early and reliable predictive marker of preeclampsia. Clin Chem. 2004;50(9):1702–3. https://doi.org/10.1373/clinchem.2004.036715.; Cahill L.S., Stortz G., Chandran A.R. et al. Wave reflections in the umbilical artery measured by Doppler ultrasound as a novel predictor of placental pathology. EBioMedicine. 2021;67:103326. https://doi.org/10.1016/j.ebiom.2021.103326.; Yagel S., Cohen S.M., Goldman-Wohl D. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascularplacental-fetal array. Am J Obstet Gynecol. 2021 Mar 9;S0002- 9378(20)31197-2. https://doi.org/10.1016/j.ajog.2020.10.023. [Online ahead of print].; Hanna J., Goldman-Wohl D., Hamani Y. et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12(9):1065–74. https://doi.org/10.1038/nm1452.; Tayade C., Hilchie D., He H. et al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol. 2007;178(7):4267–75. https://doi.org/10.4049/jimmunol.178.7.4267.; Yagel S. The developmental role of natural killer cells at the fetal-maternal interface. Am J Obstet Gynecol. 2009;201(4):344–50. https://doi.org/10.1016/j.ajog.2009.02.030.; Hanna J., Wald O., Goldman-Wohl D. et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood. 2003;102(5):1569–77. https://doi.org/10.1182/blood-2003-02-0517.; Gamliel M., Goldman-Wohl D., Isaacson B. et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity. 2018;48(5):951–62.e5. https://doi.org/10.1016/j.immuni.2018.03.030.; Goldman-Wohl D., Gamliel M., Mandelboim O., Yagel S. Learning from experience: cellular and molecular bases for improved outcome in subsequent pregnancies. Am J Obstet Gynecol. 2019;221(3):183–93. https://doi.org/10.1016/j.ajog.2019.02.037.; https://www.gynecology.su/jour/article/view/1242

  14. 14
    Academic Journal

    Συνεισφορές: Исследование выполнено при поддержке Российского научного фонда (грант № 19-15-00442)

    Πηγή: Siberian journal of oncology; Том 20, № 4 (2021); 64-72 ; Сибирский онкологический журнал; Том 20, № 4 (2021); 64-72 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1866/885; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4; 144(5): 646–74. doi:10.1016/j.cell.2011.02.013.; Heath V.L., Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol. 2009 Jul; 6(7): 395–404. doi:10.1038/nrclinonc.2009.52.; Yang J.C. Bevacizumab for patients with metastatic renal cancer: an update. Clin Cancer Res. 2004 Sep 15; 10(18 Pt 2): 6367S–70S. doi:10.1158/1078-0432.CCR-050006.; Deprimo S.E., Bello C.L., Smeraglia J., Shalinsky D.R., Freddo J., Baum C.M., Spinella D.G. Soluble protein biomarkers of pharmacodynamic activity of the multi-targeted kinase inhibitor SU11248 in patients with metastatic renal cell cancer. Cancer Res. 2005; 65: 108–108.; Detre S., Saclani Jotti G., Dowsett M. A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol. 1995 Sep; 48(9): 876–8. doi:10.1136/jcp.48.9.876.; Minardi D., Santoni M., Lucarini G., Mazzucchelli R., Burattini L., Conti A., Bianconi M., Scartozzi M., Milanese G., Primio R.D., Montironi R., Cascinu S., Muzzonigro G. Tumor VEGF expression correlates with tumor stage and identifies prognostically different groups in patients with clear cell renal cell carcinoma. Urol Oncol. 2015 Mar; 33(3): 113.e1–7. doi:10.1016/j.urolonc.2014.06.014.; Minardi D., Lucarini G., Santoni M., Mazzucchelli R., Burattini L., Pistelli M., Bianconi M., Di Primio R., Scartozzi M., Montironi R., Cascinu S., Muzzonigro G. VEGF expression and response to sunitinib in patients with metastatic clear cell renal cell carcinoma. Anticancer Res. 2013 Nov; 33(11): 5017–22.; Lkhagvadorj S., Oh S.S., Lee M.R., Jung J.H., Chung H.C., Cha S.K., Eom M. VEGFR-1 Expression Relates to Fuhrman Nuclear Grade of Clear Cell Renal Cell Carcinoma. J Lifestyle Med. 2014 Mar; 4(1): 64–70. doi:10.15280/jlm.2014.4.1.64.; Jacobsen J., Grankvist K., Rasmuson T., Bergh A., Landberg G., Ljungberg B. Expression of vascular endothelial growth factor protein in human renal cell carcinoma. BJU Int. 2004 Feb; 93(3): 297–302. doi:10.1111/j.1464-410x.2004.04605.x.; Ortega N., Hutchings H., Plouët J. Signal relays in the VEGF system. Front Biosci. 1999 Feb 1; 4: D141–52.; Tsuchiya N., Sato K., Akao T., Kakinuma H., Sasaki R., Shimoda N., Satoh S., Habuchi T., Ogawa O., Kato T. Quantitative analysis of gene expressions of vascular endothelial growth factor-related factors and their receptors in renal cell carcinoma. Tohoku J Exp Med. 2001 Oct; 195(2): 101–13. doi:10.1620/tjem.195.101.; Kluger H.M., Siddiqui S.F., Angeletti C., Sznol M., Kelly W.K., Molinaro A.M., Camp R.L. Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells. Lab Invest. 2008 Sep; 88(9): 962–72. doi:10.1038/labinvest.2008.65.; Eronat O., Kandemir O., Onursever A. The expression level of vascular endothelial growth factor receptor-2, vascular endothelial growth factor receptor-3, and insulin-like growth factor II mRNA binding protein 3 in renal cell carcinoma: Can these markers indicate poor prognosis in immunohistochemical examination? Clin Cancer Investig J. 2018; 7: 14. doi:10.4103/ccij.ccij_84_17.; https://www.siboncoj.ru/jour/article/view/1866

  15. 15
    Academic Journal

    Πηγή: National Journal glaucoma; Том 20, № 1 (2021); 55-64 ; Национальный журнал Глаукома; Том 20, № 1 (2021); 55-64 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/316/324; Рыков С.А., Новак Н.В. Эффективность комбинированного метода хирургического лечения вторичной неоваскулярной глаукомы. Офтальмология. Восточная Европа. 2018; 8(2):206-211.; Бабушкин А.Э. К вопросу о лечении неоваскулярной глаукомы. Точка зрения. Восток – Запад. 2019; 2:120-123. doi:10.25276/2410-1257-2019-2-120-123; Зотов А.С., Ефремова Т.Г., Нестерова Е.С., Солодкова Е.Г., Балалин С.В. Применение ингибиторов ангиогенеза в комплексном лечении неоваскулярной глаукомы. Современные технологии в офтальмологии. 2019; 4(29):108-111. doi:10.25276/2312-4911-2019-4-108-111; Карпилова М.А., Дуржинская М.Х. Анти-VEGF-препараты в лечении неоваскулярной глаукомы. Вестник офтальмологии. 2019; 135(5-2):299-304. doi:10.17116/oftalma2019135052299; Sun C., Zhang H., Jiang J., Li Y., Nie C., Gu J., Luo L., Wang Z. Angiogenic and inflammatory biomarker levels in aqueous humor and vitreous of neovascular glaucoma and proliferative diabetic retinopathy. Int Ophthalmol. 2019 Dec 4. doi:10.1007/s10792-019-01207-4; Du J., Patrie J.T., Prum B.E., Netland P.A., Shildkrot Y.E. Effects of intravitreal anti-VEGF therapy on glaucoma-like progression in susceptible eyes. J Glaucoma. 2019; 28(12):1035-1040. doi:10.1097/IJG.0000000000001382; Chen H.J., Ma Z.Z., Li Y., Wang C.G. Change of Vascular Endothelial Growth Factor levels following vitrectomy in eyes with proliferative diabetic retinopathy. J Ophthalmol. 2019; Oct 23;2019:6764932. doi:10.1155/2019/6764932; Sun C., Zhang H.S., Yan Y.J., Zhao T., Li A.H., Tang Y., Wang Z.J. Early vitrectomy combined with pan retinal photocoagulation, antivascular endothelial growth factor, and gradual cyclophotocoagulation for treatment of neovascular glaucoma. Chin Med J (Engl). 2019; 132(20):2518-2520. doi:10.1097/CM9.0000000000000482; Rong A.J., Swaminathan S.S., Vanner E.A., Parrish R.K. 2nd. Predictors of neovascular glaucoma in central retinal vein occlusion. Am J Ophthalmol. 2019; 204:62-69. doi:10.1016/j.ajo.2019.02.038; Sakamoto M., Hashimoto R., Yoshida I., Ubuka M., Maeno T. Risk factors for neovascular glaucoma after vitrectomy in eyes with proliferative diabetic retinopathy. Clin Ophthalmol. 2018; 12:2323-2329. doi:10.2147/OPTH.S184959.; Seibold L.K., Sherwood M.B., Kahook M.Y. Wound modulation after filtration surgery. Surv Ophthalmol. 2012; 57(6):530–550. doi:10.1016/j.survophthal.2012.01.008; Saeedi O.J., Jefferys J.L., Solus J.F., Jampel H.D., Quigley H.A. Risk factors for adverse consequences of low intraocular pressure after trabeculectomy. J Glaucoma. 2014; 23(1):e60–8. doi:10.1097/IJG.0000000000000008; Daneshvar R. Anti-VEGF agents and glaucoma filtering surgery. J Ophthalmic Vis Res. 2013; 8(2):182–186. PMID: 23943695; Park S.C., Su D., Tello C. Anti-VEGF therapy for the treatment of glaucoma: a focus on ranibizumab and bevacizumab. Expert Opin Biol Ther. 2012; 12(12):1641–1647. doi:10.1517/14712598.2012.721772; SooHoo J.R., Seibold L.K., Kahook M.Y. Recent advances in the management of neovascular glaucoma. Semin Ophthalmol. 2013; 28(3):165–172. doi:10.3109/08820538.2012.730103; Kim M., Lee C., Payne R., Yue B.Y., Chang J.H., Ying H. Angiogenesis in glaucoma filtration surgery and neovascular glaucoma: a review. Surv Ophthalmol. 2015; 60(6):524–535. doi:10.1016/j.survophthal.2015.04.003; Kitnarong N., Sriyakul C., Chinwattanakul S. A prospective study to evaluate intravitreous ranibizumab as adjunctive treatment for trabeculectomy in neovascular glaucoma. Ophthalmol Ther. 2015; 4(1):33–41. doi:10.1007/s40123-015-0033-3; SooHoo J.R., Seibold L.K., Pantcheva M.B., Kahook M.Y. Aflibercept for the treatment of neovascular glaucoma. Clin Exp Ophthalmol. 2015; 43(9):803–807. doi:10.1111/ceo.12559; Magdelaine-Beuzelin C., Pinault C., Paintaud G., Watier H. Therapeutic antibodies in ophthalmology: old is new again. MAbs. 2010; 2(2):176–180. doi:10.4161/mabs.2.2.11205; Simha A., Braganza A., Abraham L., Samuel P., Lindsley K. Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev. 2013; 10:CD007920. doi:10.1002/14651858; Waisbourd M., Shemesh G., Kurtz S., Rachmiel R., Moisseiev E., ZayitSoudri S., Loewenstein A., Barequet I. Topical bevacizumab for neovascular glaucoma: a pilot study. Pharmacology. 2014; 93(3-4): 108–112. doi:10.1159/000358600; Duch S., Buchacra O., Milla E., Andreu D., Tellez J. Intracameral bevacizumab (Avastin) for neovascular glaucoma: a pilot study in 6 patients. J Glaucoma. 2009; 18(2):140–143. doi:10.1097/IJG.0b013e318170a747; Luke J., Nassar K., Luke M., Grisanti S. Ranibizumab as adjuvant in the treatment of rubeosis iridis and neovascular glaucoma — results from a prospective interventional case series. Graefes Arch Clin Exp Ophthalmol. 2013; 251(10):2403–2413. doi:10.1007/s00417-013-2428-y; Grover S., Gupta S., Sharma R., Brar V.S., Chalam K.V. Intracameral bevacizumab effectively reduces aqueous vascular endothelial growth factor concentrations in neovascular glaucoma. Br J Ophthalmol. 2009; 93(2):273–274. doi:10.1136/bjo.2008.145714; Sugimoto Y., Mochizuki H., Okumichi H., Takumida M., Takamatsu M., Kawamata S., Kiuchi Y. et al. Effect of intravitreal bevacizumab on iris vessels in neovascular glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2010; 248(11):1601–1609. doi:10.1007/s00417-010-1406-x; Muhsen S., Compan J., Lai T., Kranemann C., Birt C. Postoperative adjunctive bevacizumab versus placebo in primary trabeculectomy surgery for glaucoma. Int J Ophthalmol. 2019; 12(10):1567-1574. doi:10.18240/ijo.2019.10.08; Elwehidy A.S., Bayoumi N.H., Badawi A.E., Hagras S.M., Abdelkader A. Intravitreal ranibizumab with panretinal photocoagulation followed by trabeculectomy versus visco-trabeculotomy in management of neovascular glaucoma. Asia Pac J Ophthalmol (Phila). 2019; 8(4):308-313. doi:10.1097/APO.0000000000000248; Li Z., Van Bergen T., Van de Veire S., Van de Vel I., Moreau H., Dewerchin M., Maudgal P.C., Zeyen T., Spileers W., Moons L., Stalmans I. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2009; 50(11):5217–5225. doi:10.1167/iovs.08-2662; Memarzadeh F., Varma R., Lin L.T., Parikh J.G., Dustin L., Alcaraz A., Eliott D. Postoperative use of bevacizumab as an antifibrotic agent in glaucoma filtration surgery in the rabbit. Invest Ophthalmol Vis Sci. 2009; 50(7):3233–3237. doi:10.1167/iovs.08-2441; Ozgonul C., Mumcuoglu T., Gunal A. The effect of bevacizumab on wound healing modulation in an experimental trabeculectomy model. Curr Eye Res. 2014; 39(5):451–459. doi:10.3109/02713683.2013.851704; Sengupta S., Venkatesh R., Ravindran R.D. Safety and efficacy of using off-label bevacizumab versus mitomycin C to prevent bleb failure in a single-site phacotrabeculectomy by a randomized controlled clinical trial. J Glaucoma. 2012; 21(7):450–459. doi:10.1097/IJG.0b013e31821826b2; Tai T.Y., Moster M.R., Pro M.J., Myers J.S., Katz L.J. Needle bleb revision with bevacizumab and mitomycin C compared with mitomycin C alone for failing filtration blebs. J Glaucoma. 2015; 24(4):311–315. doi:10.1097/IJG.0b013e31829f9bd3; Pro M.J., Freidl K.B., Neylan C.J., Sawchyn A.K., Wizov S.S., Moster M.R. Ranibizumab versus mitomycin C in primary trabeculectomy — a pilot study. Curr Eye Res. 2015; 40(5):510–515. doi:10.3109/02713683.2014.935441; Nilforushan N., Yadgari M., Kish S.K., Nassiri N. Subconjunctival bevacizumab versus mitomycin C adjunctive to trabeculectomy. Am J Ophthalmol. 2012; 153(2):352–7.e1. doi:10.1016/j.ajo.2011.08.005; Akkan J.U., Cilsim S. Role of subconjunctival bevacizumab as an adjuvant to primary trabeculectomy: a prospective randomized comparative 1-year follow-up study. J Glaucoma. 2015; 24(1):1–8. doi:10.1097/IJG.0b013e318287abf3; Nomoto H., Shiraga F., Kuno N., Kimura E., Fujii S., Shinomiya K., Nugent A.K., Hirooka K., Baba T. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest Ophthalmol Vis Sci. 2009; 50(10):4807–13. doi:10.1167/iovs.08-3148; Jurkowska-Dudzinґska J., Kosior-Jarecka E., Zarnowski T. Comparison of the use of 5-flfluorouracil and bevacizumab in primary trabeculectomy: results at 1 year. Clin Exp Ophthalmol. 2012; 40(4):e135– 42. doi:10.1111/j.1442-9071.2011.02608.x; Vandewalle E., Abegão Pinto L., Van Bergen T., Spielberg L., Fieuws S., Moons L., Spileers W., Zeyen T., Stalmans I. et al. Intracameral bevacizumab as an adjunct to trabeculectomy: a 1-year prospective, randomised study. Br J Ophthalmol. 2014; 98(1):73–78. doi:10.1136/bjophthalmol-2013-303966; Hau S., Barton K. Corneal complications of glaucoma surgery. Curr Opin Ophthalmol. 2009; 20(2):131–136. doi:10.1097/ICU.0b013e328325a54b; Yoeruek E., Spitzer M.S., Tatar O., Aisenbrey S., Bartz-Schmidt K.U., Szurman P. Safety profifile of bevacizumab on cultured human corneal cells. Cornea. 2007; 26(8):977–982. doi:10.1097/ICO.0b013e3180de1d0a; Bochmann F., Kaufmann C., Becht C.N., Guber I., Kaiser M., Bachmann L.M., Thiel M.A. et al. ISRCTN12125882-inflfluence of topical anti-VEGF Ranibizumab) on the outcome of filtration surgery for glaucoma-study protocol. BMC Ophthalmol. 2011; 11:1. doi:10.1186/1471-2415-11-1; Kano M.R., Morishita Y., Iwata C., Iwasaka S., Watabe T., Ouchi Y., Miyazono K., Miyazawa K. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci. 2005; 118(Pt 16):3759–68. doi:10.1242/jcs.02483; Liu X., Du L., Li N. The effects of bevacizumab in augmenting trabeculectomy for glaucoma: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016; 95(15):e3223. doi:10.1097/MD.0000000000003223; https://www.glaucomajournal.ru/jour/article/view/316

  16. 16
    Academic Journal

    Πηγή: Bukovinian Medical Herald; Vol. 15 No. 3(59) (2011); 210-212 ; Буковинский медицинский вестник; Том 15 № 3(59) (2011); 210-212 ; Буковинський медичний вісник; Том 15 № 3(59) (2011); 210-212 ; 2413-0737 ; 1684-7903

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://e-bmv.bsmu.edu.ua/article/view/233012

  17. 17
    Academic Journal

    Πηγή: Буковинський медичний вісник; Том 15 № 3(59) (2011); 210-212
    Буковинский медицинский вестник; Том 15 № 3(59) (2011); 210-212
    Bukovinian Medical Herald; Vol. 15 No. 3(59) (2011); 210-212

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://e-bmv.bsmu.edu.ua/article/view/233012

  18. 18
  19. 19
  20. 20
    Academic Journal

    Συνεισφορές: Исследование выполнено при поддержке Российского научного фонда (грант № 19-15-00442).

    Πηγή: Cancer Urology; Том 16, № 1 (2020); 17-26 ; Онкоурология; Том 16, № 1 (2020); 17-26 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2020-16-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1020/1148; Lawindy S.M., Kurian T., Kim T. et al. Important surgical considerations in the management of renal cell carcinoma (RCC) with inferior vena cava (IVC) tumour thrombus. BJU Int 2012;110(7):926–39. DOI:10.1111/j.1464-410X.2012.11174.x.; Wagner B., Patard J.J., Méjean A. et al. Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur Urol 2009;55(2):452–9. DOI:10.1016/j.eururo.2008.07.053.; Давыдов М.И., Матвеев В.Б., Волкова М.И. и др. Резекция нижней полой вены у больных раком почки с массивным опухолевым тромбозом. Онкоурология 2018;14(2):15–25. DOI:10.17650/1726-9776-2018-14-2-15-25.; Abel E.J., Thompson R.H., Margulis V. et al. Perioperative outcomes following surgical resection of renal cell carcinoma with inferior vena cava thrombus extending above the hepatic veins: a contemporary multicenter experience. Eur Urol 2014;66(3):584–92. DOI:10.1016/j.eururo.2013.10.029.; Kirkali Z., Van Poppel H. A critical analysis of surgery for kidney cancer with vena cava invasion. Eur Urol 2007;52(3):658–62. DOI:10.1016/j.eururo.2007.05.009.; Detre S., Saclani Jotti G., Dowsett M. A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol 1995;48(9):876–8. DOI:10.1136/jcp.48.9.876.; Tsimafeyeu I., Zolotareva T., Varlamov S. et al. Five-year survival of patients with metastatic renal cell carcinoma in the Russian Federation: results from the RENSUR5 registry. Clin Genitourin Cancer 2017;15(6):e1069–72. DOI:10.1016/j.clgc.2017.07.017.; Tsimafeyeu I., Demidov L., Ta H. et al. Fibroblast growth factor pathway in renal cell carcinoma. J Clin Oncol 2011;28(15_suppl):4621. DOI:10.1200/jco.2010.28.15_suppl.4621.; Porta C., Paglino C., Imarisio I. et al. Changes in circulating pro-angiogenic cytokines, other than VEGF, before progression to sunitinib therapy in advanced renal cell carcinoma patients. Oncology 2013;84(2):115–22. DOI:10.1159/000342099.; aule B., Bastien L., Deslandes E. et al. Soluble isoforms of vascular endothelial growth factor are predictors of response to sunitinib in metastatic renal cell carcinomas. PLoS One 2010;5(5):e10715. DOI:10.1371/journal.pone.0010715.; Tsimafeyeu I., Zaveleva E., Stepanova E., Low W. OM-RCA-01, a novel humanized monoclonal antibody targeting fibroblast growth factor receptor 1, in renal cell carcinoma model. Invest New Drugs 2013;31(6):1436–43. DOI:10.1007/s10637-013-0017-x.; Tsimafeyeu I., Volkova M., Olshanskaia A. et al. Expression of receptor tyrosine kinases on peripheral blood mononuclear cells and tumor-infiltrating lymphocytes in patients with renal cell carcinoma and healthy donors. Oncology 2020. DOI:10.1159/000505373. Online first.; Horstmann M., Merseburger A.S., von der Heyde E. et al. Correlation of bFGF expression in renal cell cancer with clinical and histopathological features by tissue microarray analysis and measurement of serum levels. J Cancer Res Clin Oncol 2005;131(11):715–22. DOI:10.1007/s00432-005-0019-y.; Fujimoto K., Ichimori Y., Yamaguchi H. et al. Basic fibroblast growth factor as a candidate tumor marker for renal cell carcinoma. Jpn J Cancer Res 1995; 86(2):182–6. DOI:10.1111/j.13497006.1995.tb03037.x.; Duensing S., Grosse J., Atzpodien J. Increased serum levels of basic fibroblast growth factor (bFGF) are associated with progressive lung metastases in advanced renal cell carcinoma patients. Anticancer Res 1995;15(5B):2331–3.; Rasmuson T., Grankvist K., Jacobsen J., Ljungberg B. Impact of serum basic fibroblast growth factor on prognosis in human renal cell carcinoma. Eur J Cancer 2001;37(17):2199–203. DOI:10.1016/s0959-8049(01)00290-8.; Slaton J.W., Inoue K., Perrotte P. et al. Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 2001;158(2):735–43. DOI:10.1016/S0002-9440(10)64016-3.; Kluger H.M., Siddiqui S.F., Angeletti C. et al. Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells. Lab Invest 2008;88(9):962–72. DOI:10.1038/labinvest.2008.65.; Lkhagvadorj S., Oh S.S., Lee M.R. et al. VEGFR-1 expression relates to fuhrman nuclear grade of clear cell renal cell carcinoma. J Lifestyle Med 2014;4(1):64–70. DOI:10.15280/jlm.2014.4.1.64.; Iacovelli R., De Tursi M., Mosillo C. et al. Relationship and predictive role of the dual expression of FGFR and IL-8 in metastatic renal cell carcinoma treated with targeted agents. Anticancer Res 2018;38(5):3105–10. DOI:10.21873/anticanres.12569.; Ho T.H., Liu X.D., Huang Y. et al. The impact of FGFR1 and FRS2α expression on sorafenib treatment in metastatic renal cell carcinoma. BMC Cancer 2015;15:304. DOI:10.1186/s12885-015-1302-1.; https://oncourology.abvpress.ru/oncur/article/view/1020