Showing 1 - 20 results of 685 for search '"ФАЗОВЫЕ РАВНОВЕСИЯ"', query time: 0.69s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: The work was conducted within the framework of the State Assignment of the Russian Federation, grant No. FSFZ-2023-0003., Работа проведена в рамках выполнения государственного задания Российской Федерации, грант № FSFZ-2023-0003.

    Source: Fine Chemical Technologies; Vol 20, No 5 (2025); 407-429 ; Тонкие химические технологии; Vol 20, No 5 (2025); 407-429 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2299/2159; https://www.finechem-mirea.ru/jour/article/view/2299/2160; Тимофеев В.С., Серафимов Л.А., Тимошенко А.В. Принципы технологии основного органического и нефтехимического синтеза. М.: Высшая школа; 2010. 408 с. ISBN 978-5-06-006067-6; Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. Л.: Химия; 1975. 240 с.; Фролкова А.К. Разделение азеотропных смесей. Физикохимические основы и технологические приемы: монография. М.: ВЛАДОС; 2010. 192 с. ISBN 978-5-691-01743-8; Zhigang L., Chengyue L., Biaohua C. Extractive Distillation: A Review. Sep. Purif. Rev. 2003;32(2):121–213. https://doi.org/10.1081/SPM-120026627; Gerbaud V., Rodriguez-Donis I., Hegely L., Lang P., Denes F., You X. Review of Extractive Distillation. Process design, operation, optimization and control. Chem. Eng. Res. Des. 2019;141:229–271. https://doi.org/10.1016/j.cherd.2018.09.020; Hilal N., Yousef G., Langston P. The reduction of extractive agent in extractive distillation and auto-extractive distillation. Chemical Engineering and Processing: Process Intensification. 2002;41(8): 673–679. https://doi.org/10.1016/S0255-2701(01)00187-8; Анохина Е.А. Энергосбережение в процессах экстрактивной ректификации. Тонкие химические технологии. 2013;8(5):3–19.; Раева В.М., Сазонова А.Ю., Себякин А.Ю., Кудрявцева Д.Ю. Критерий выбора потенциальных разделяющих агентов экстрактивной дистилляции. Тонкие химические технологии. 2011;6(4):20–27.; Фролкова А.В., Меркульева А.Д., Гаганов И.С. Синтез схем разделения расслаивающихся смесей: современное состояние проблемы. Тонкие химические технологии. 2018;13(3): 5–22. https://doi.org/10.32362/24106593-2018-13-3-5-22; Фролкова А.В., Фролкова А.К., Подтягина А.В., Спирякова В.В. Энергосбережение в схемах, основанных на сочетании ректификации и расслаивания. Теор. основы хим. технологии. 2018;52(5):489–496. https://doi.org/10.1134/S0040357118050032; Sosa J.E., Araújo J.M.M., Amado-González E., Pereiro A.B. Separation of azeotropic mixtures using protic ionic liquids as extraction solvents. J. Mol. Liquids. 2019;297:111733. https://doi.org/10.1016/j.molliq.2019.111733; Patel K., Panchal N., Ingle Dr.Pr. Review of Extraction Techniques Extraction Methods: Microwave, Ultrasonic, Pressurized Fluid, Soxhlet Extraction, Etc. International Journal of Advanced Research in Chemical Science (IJARCS). 2018;6(3):6–21. https://doi.org/10.20431/2349-0403.0603002; Silvestre Cr.I.C., Santos J.L.M., Lima J.L.F.C., Zagatto E.A.G. Liquid–liquid extraction in flow analysis: A critical review. Anal. Chim. Acta. 2009;652(1–2):54–65. https://doi.org/10.1016/j.aca.2009.05.042; Носов Г.А., Михайлов М.В., Абсаттаров А.И. Разделение смесей путем сочетания процессов ректификации и фракционной крислаллизации. Тонкие химические технологии. 2017;12(3): 44–51. https://doi.org/10.32362/2410-6593-2017-12-3-44-51; Berry D.A, Ng K.M. Synthesis of crystallization-distillation hybrid separation processes. AIChE J. 1997;43(7):1751–1762. https://doi.org/10.1002/aic.690430712; Cisternas L.A., Vasquez C.M., Swaney R.E. On the Design of Crystallization-Based Separation Processes: Review and Extension. AIChE J. 2006;52(5):1754–1769. https://doi.org/10.1002/aic.10768; Серафимов Л.А. Современное состояние термодинамикотопологического анализа фазовых диаграмм. Теор. основы хим. технологии. 2009;43(3):284–294.; Kiss А.А., Suszwalak D. J-.P.C. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep. Purif. Technol. 2012;86:70–78. https://doi.org/10.1016/j.seppur.2011.10.022; Frolkova A.V., Frolkova A.K., Gaganov I.S. Comparison of Extractive and Heteroazeotropic Distillation of High-Boiling Aqueous Mixtures. ChemEngineering 2022;6(5):83. https://doi.org/10.3390/chemengineering6050083; Chen Y.-Ch., Yu B.-Y., Hsu Ch.-Ch., Chien I-L. Comparison of heteroazeotropic and extractive distillation for the dehydration of propylene glycol methyl ether. Chem. Eng. Res. Des. 2016;111:184–195. https://doi.org/10.1016/j.cherd.2016.05.003; Zhao L., Lyu X., Wang W., Shan J., Qiu T. Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/ water separation. Comput. Chem. Eng. 2017;100:27–37 https://doi.org/10.1016/j.compchemeng.2017.02.007; Фролкова А.В., Фролкова А.К., Гаганов И.С. Комбинирование специальных приемов при разработке схем разделения смеси метанол + вода + метилметакрилат. Химическая технология. 2023;24(8):314–320. https://doi.org/10.31044/1684-5811-2023-24-8-314-320; Серафимов Л.А. Правило азеотропии и классификация многокомпонентных смесей VII. Диаграммы трехкомпонентных смесей. Журн. физ. химии. 1970;44(4):1021–1027.; Клинов А.В., Фазлыев А.Р., Хайруллина А.Р., Алексеев К.А., Латыпов Д.Р. Экстрактивная ректификация смеси этанол – вода с использованием этиленгликоля. Вестник технологического университета. 2023;26(1): 44–47. https://doi.org/10.55421/1998-7072_2023_26_1_44; Фролкова А.К., Фролкова А.В., Раева В.М., Жучков В.И. Особенности дистилляционного разделения многокомпонентных смесей. Тонкие химические технологии. 2022;17(3): 87–106. https://doi.org/10.32362/2410-6593-2022-17-2-87-106; Frolkova A., Frolkova A., Gaganov I. Extractive and Auto-Extractive Distillation of Azeotropic Mixtures. Chem. Eng. Technol. 2021;44(8):1397–1402. https://doi.org/10.1002/ceat.202100024; Luo H., Liang K., Li W., Ming Xia Y., Xu C. Comparison of Pressure-Swing Distillation and Extractive Distillation Methods for Isopropyl Alcohol/Diisopropyl Ether Separation. Ind. Eng. Chem. Res. 2014;53(39):15167–15182. https://doi.org/10.1021/ie502735g; Lladosa E., Montón J.B., Burguet M. Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressureswing distillation: Computer simulation and economic optimization. Chem. Eng. Process.: Process Intensif. 2011;50(11–12): 1266–1274. https://doi.org/10.1016/j.cep.2011.07.010; Wang X., Xie L., Tian P., Tian G. Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/N-propanol. Chem. Eng. Process.: Process Intensif. 2016;110:172–187. https://doi.org/10.1016/j.cep.2016.10.009; Ghuge Pr.D., Mali N.A., Joshi S.S. Comparative Analysis of Extractive and Pressure Swing Distillation for Separation of THF-Water Separation. Comput. Chem. Eng. 2017;103:188–200. http://dx.doi.org/10.1016/j.compchemeng.2017.03.019; Muñoz R., Montón J.B., Burguet M.C., de laTorre J. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. Sep. Purif. Technol. 2006;50(2):175–183. https://doi.org/10.1016/j.seppur.2005.11.022; Cao Y., Hu J., Jia H., Bu G., Zhu Zh., Wang Y. Comparison of pressureswing distillation and extractive distillation with varied-diameter column in economics and dynamic control. J. Process Control. 2017;49:9–25. https://doi.org/10.1016/j.jprocont.2016.11.005; Luyben W.L. Comparison of pressure-swing and extractivedistillation methods for methanol-recovery systems in the TAME reactive-distillation process. Ind. Eng. Chem. Res. 2005;44(15):5715–5725. https://doi.org/10.1021/ie058006q; Modla G., Lang P. Removal and Recovery of Organic Solvents from Aqueous Waste Mixtures by Extractive and Pressure Swing Distillation. Ind. Eng. Chem. Res. 2012;51(35): 11473–11481. https://doi.org/10.1021/ie300331d; Luyben W.L. Comparison of extractive distillation and pressure swing distillation for acetone-methanol separation. Ind. Eng. Chem. Res. 2008;47(8):2696−2707. https://doi.org/10.1021/ie701695u; LuybenW.L. Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Comput. Chem. Eng. 2013;50:1–7. https://doi.org/10.1016/j.compchemeng.2012.10.014; Hosgor E., Kucuk T., Oksal I.N., Kaymak D.B. Design and control of distillation processes for methanol–chloroform separation. Comput. Chem. Eng. 2014;67:166–177. https://doi.org/10.1016/j.compchemeng.2014.03.026; Фролкова А.В., Шашкова Ю.И., Фролкова А.К., Маевский М.А. Сравнение альтернативных методов разделения смеси метилацетат – метанол – уксусная кислота – уксусный ангидрид. Тонкие химические технологии. 2019;14(5): 51–60. https://doi.org/10.32362/2410-6593-2019-14-5-51-60; Qin Y., Zhuang Y., Wang Ch., Dong Y., Zhang L., Liu L., Du J. Comparison of Pressure-Swing Distillation and Extractive Distillation for the Separation of the Non-Pressure-Sensitive Azeotropes. In: Proceedings of the 24th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. 2021. URL: https://www.researchgate.net/publication/355982388_Comparison_of_Pressure-Swing_Distillation_and_Extractive_Distillation_for_the_Separation_of_the_Non-Pressure-Sensitive_Azeotropes. Accessed September 08, 2025.; Раева В.М., Капранова А.С. Сравнение эффективности экстрактивных агентов при разделении смеси ацетон – метанол. Химическая промышленность сегодня. 2015;3:33–46.; Guang C., Shi X., Zhang Z., Wang C., Wang C., Gao J. Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/ water mixtures. Chem. Eng. Res. Design. 2019;143:249–260. https://doi.org/10.1016/j.cherd.2019.01.021; Cui Y., Shi X., Guang C., Zhang Z., Wang C., Wang C. Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater. Process Saf. Environ. Protection. 2018;122:1–12. https://doi.org/10.1016/j.psep.2018.11.017; Tripodi A., Compagnoni M., Ramis G., Rossetti I. Pressureswing or extraction-distillation for the recovery of pure acetonitrile from ethanol ammoxidation process: A comparison of efficiency and cost. Chem. Eng. Res. Design. 2017;127: 92–102. https://doi.org/10.1016/j.cherd.2017.09.018; Zhu Z., Wang Y., Hu J., Qi X., Wang Y. Extractive distillation process combined with decanter for separating ternary azeotropic mixture of toluene-methanol-water. Chem. Eng. Trans. 2017;61:763–768. https://doi.org/10.3303/CET1761125; Гаганов И.С., Белим С.С., Фролкова А.В., Фролкова А.К. Разработка схем разделения смеси получения фенола на основе анализа диаграмм фазового равновесия. Теор. основы хим. технологии. 2023;57(1):38–47. https://doi.org/10.31857/S0040357123010049; Новрузова А.Н., Фролкова А.В. Сравнение технологических схем разделения смеси ацетонитрил – вода, основанных на разных массообменных процессах. В сб.: Химия и химическая технология: достижения и перспективы: Сборник тезисов I Международной VII Всероссийской конференции. 2024. C. 0234.1–0234.6.; Yu B.-Y., Huang R., Zhong X.-Y., Lee M.-J., Chien I.-L. Energy-Efficient Extraction-Distillation Process for Separating Diluted Acetonitrile-Water Mixture: Rigorous Design with Experimental Verification from Ternary Liquid-Liquid Equilibrium Data. Ind. Eng. Chem. Res. 2017;56(51):15112–15121. https://doi.org/10.1021/acs.iecr.7b04408; Mahdi T., Ahmad A. Nasef M.M., Ripin A. State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Sep. Purif. Rev. 2015;44(4):308–330. https://doi.org/10.1080/15422119.2014.963607; Daviou M.C., Hoch P.M., Eliceche A.M. Design of membrane modules used in hybrid distillation/pervaporation systems. Ind. Eng. Chem. Res. 2004;43(13):3403–3412. https://doi.org/10.1021/ie034259c; Naidu Y., Malik R.K. A generalized methodology for optimal configurations of hybrid distillation–pervaporation processes. Chem. Eng. Res. Design. 2011;89(8):1348–1361. https://doi.org/10.1016/j.cherd.2011.02.025; Kookos I.K. Optimal design of membrane/distillation column hybrid processes. Ind. Eng. Chem. Res. 2003;42(8): 1731–1738. https://doi.org/10.1021/ie020616s; Hoof V.V., Van den Abeele L., Buekenhoudt A., Dotremont C., Leysen R. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Sep. Purif. Technol. 2004;37(1): 33–49. https://doi.org/10.1016/j.seppur.2003.08.003; Nangare D.M., Suseeladevi M. Hybrid pervaporation/ distillation process for ethanol – water separation effect of distillation column side stream. Asian J. Sci. Technol. 2017;8(11):6522–6525.; Koczka K., Mizsey P., Fonyo Zs. Rigorous modelling and optimization of hybrid separation processes based on pervaporation. Open Chemistry. 2005;5(4):1124–1147. https://doi.org/10.2478/s11532-007-0050-8; Han G.L., Zhang Q., Zhong J., Shao H. Separation of Dimethylformamide/H2O Mixtures Using Pervaporation-distillation Hybrid Process. Adv. Mater. Res. 2011;233–235:866–869. https://doi.org/10.4028/www.scientific.net/AMR.233-235.866; Hassankhan B., Raisi A. Separation of isobutanol/water mixtures by hybrid distillationpervaporation process: Modeling, simulation and economic comparison. Chem. Eng. Process.: Process Intensif. 2020;155:108071. https://doi.org/10.1016/j.cep.2020.108071; Zong Ch., Guo Q., Shen B., Yang X., Zhou H., Jin W. Heat-Integrated Pervaporation−Distillation Hybrid System for the Separation of Methyl Acetate−Methanol Azeotropes. Ind. Eng. Chem. Res. 2021;60(28):10327–10337. https://doi.org/10.1021/acs.iecr.1c01513; Penkova A.V., Polotskaya G.A., Toikka A.M. Separation of acetic acid–methanol–methyl acetate–water reactive mixture. Chem. Eng. Sci. 2013;101:586–592. https://doi.org/10.1016/j.ces.2013.05.055; Тойкка А.М., Самаров А.А., Тойкка М.А. Фазовое и химическое равновесие в многокомпонентных флюидных системах с химической реакцией. Успехи химии. 2015;84(4):378–392. https://doi.org/10.1070/RCR4515; Wang Y., Zhang Z., Zhang H., Zhang Q. Control of heat integrated pressure-swing-distillation process for separating azeotropic mixture of tetrahydrofuran and methanol. Ind. Eng. Chem. Res. 2015;54(5):1646–1655. https://doi.org/10.1021/ie505024q; Zhu Z., Wang L., Ma Y., Wang W., Wang Y. Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation. Comput. Chem. Eng. 2015;76: 137–149. https://doi.org/10.1016/j.compchemeng.2015.02.016; Анохина Е.А., Тимошенко А.В. Синтез схем ректификации со связанными тепловыми и материальными потоками. Тонкие химические технологии. 2017;12(6):46–70. https://doi.org/10.32362/2410-6593-2017-12-6-46-70; Анохина Е.А., Тимошенко А.В. Влияние количества и уровня бокового отбора на расход экстрактивного агента в комплексах экстрактивной ректификации с частично связанными тепловыми и материальными потоками. Теор. основы хим. технологии. 2023;57(2):177–187. https://doi.org/10.31857/S0040357123010013; Yu B., Wang Q., XuC. Design and control of distillation system for methylal/methanol separation. Part 2: pressure swing distillation with full heat integration. Ind. Eng. Chem. Res. 2012;51(3):1293–1310. https://doi.org/10.1021/ie201949q; Shirsat S.P. Modeling, simulation and control of an internally heat integrated pressure swing distillation process for bioethanol separation. Comput. Chem. Eng. 2013;53:201–202. https://doi.org/10.1016/j.compchemeng.2013.01.009; Liu G., Chen Z., Huang K., Shi Z., Chen H., Wang S. Studies of the externally heat-integrated double distillation columns (EHIDDiC). Asia-Pacific J. Chem. Eng. 2011;6(3):327–337. https://doi.org/10.1002/apj.566; Huang K., Liu W., Ma J., Wang S. Externally heat-integrated double distillation column (EHIDDiC): basic concept and general characteristics. Ind. Eng. Chem. Res. 2010;49(3): 1333–1350. https://doi.org/10.1021/ie901307j; Rudakov D.G., Klauzner P.S., Ramochnikov D.A., Anokhina E.A., Timoshenko A.V. Efficiency of Using Heat Pumps in the Extractive Rectification of an Allyl Alcohol– Allyl Acetate Mixture Depending on the Composition of the Feed. Part 2. Application of Heat Pumps in Column Complexes with Partially Coupled Heat and Material Flows. Theor. Found. Chem. Eng. 2024;58(1):192–201. https://doi.org/10.1134/S0040579524700337; Клаузнер П.С., Рудаков Д.Г., Анохина Е.А., Тимошенко А.В. Закономерности применения тепловых насосов в экстрактивной ректификации. Теор. основы хим. технологии. 2022;56(3):313–325. https://doi.org/10.31857/S0040357122030071; Wang Y., Zhang Z., Xu D., Liu W., Zhu Z. Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures. J. Process. Control. 2016;42:59–76. https://doi.org/10.1016/j.jprocont.2016.04.006; Luyben W.L. Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chem. Eng. Res. Des. 2016;106:253–262. https://doi.org/10.1016/j.cherd.2015.11.021; Gil I.D., Gómez J.M., Rodríguez G. Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer. Comput. Chem. Eng. 2012;39:129–142. https://doi.org/10.1016/j.compchemeng.2012.01.006; Qin J., Ye Q., Xiong X., Li N. Control of benzene-cyclohexane separation system via extractive distillation using sulfolane as entrainer. Ind. Eng. Chem. Res. 2013;52(31):10754–10766. https://doi.org/10.1021/ie401101c; Wei H.-M., Wang F., Zhang J.-L., Liao B., Zhao N., Xiao F., Wei W., Sun Y. Design and control of dimethyl carbonate-methanol separation via pressure-swing distillation. Ind. Eng. Chem. Res. 2013;52(33):11463–11478. https://doi.org/10.1021/ie3034976; Fan Z., Zhang X., Cai W., Wang F. Design and control of extraction distillation for dehydration of tetrahydrofuran. Chem. Eng. Technol. 2013;36(5):829–839. https://doi.org/10.1002/ceat.201200611

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20