Showing 1 - 20 results of 307 for search '"Ультрафильтрация"', query time: 0.87s Refine Results
  1. 1
    Academic Journal

    Source: Chemistry of plant raw material; No 3 (2025); 342-349
    Химия растительного сырья; № 3 (2025); 342-349

    File Description: application/pdf

  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 69, № 3 (2024); 244-252 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 69, № 3 (2024); 244-252 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2024-69-3

    File Description: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/853/669; Хвостова, М. С. Обращение с радиоактивными отходами на предприятиях атомной отрасли / М. С. Хвостова // Вестн. Рос. ун-та дружбы народов. Сер.: Экология и безопасность жизнедеятельности. – 2013. – № 1. – С. 97–106.; Муратов, О. Э. Методы переработки жидких радиоактивных отходов (аналитический обзор) / О. Э. Муратов, И. К. Степанов, С. М. Царева // Экология промышленного производства. – 2012. – № 3. – С. 30–43.; Поведение продуктов коррозии в первом контуре ЯЭУ с водным теплоносителем / Б. В. Гусев [и др.] // Вестн. С.-Петерб. ун-та. Сер. 4, Физика. Химия. – 2012. – Вып. 4. – С. 110–118.; Влияние эксплуатационных и водно-химических параметров на отложения продуктов коррозии на тепловыделяющих сборках АЭС с ВВЭР / В. Г. Крицкий [и др.] // Теплоэнергетика. – 2011. – № 7. – С. 7–12.; Киров, В. С. Атомные электрические станции: учеб. пособие / В. С. Киров. – Одесса: ОНПУ, 2010. – 216 с.; Старик, И. Е. Основы радиохимии / И. Е. Старик. – М.: Наука, 1969. – 648 с.; Давыдов, Ю. П. Формы нахождения металл-ионов (радионуклидов) в растворах / Ю. П. Давыдов, Д. Ю. Давыдов. – Минск: Беларус. навука, 2011. – 301 с.; Перевощикова, Н. Б. К вопросу о гидролизе ионов железа (III) в водных растворах / Н. Б. Перевощикова, В. И. Корнев // Вестн. Удмурт. ун-та. Сер. Физика и химия. – 2006. – № 8. – С. 189–198.; Влияние коррекционной химической обработки теплоносителя первого контура и рабочих сред второго контура АЭС с ВВЭР, PWR на радиационную безопасность / Т. В. Мальцева [и др.] // Ядерна та радiацiйна безпека. – 2012. – № 4. – С. 37–43.; Kabay, N. Boron Separation Processes / N. Kabay, N. Hilal, M. Bryjak. – Elsevier Inc., 2015. – 390 p. https://doi.org/10.1016/C2013-0-09863-5; Complexation of nikel ions by boric acid or (poly)borates / A. Graff [et al.] // J. Solution Chem. – 2017. – Vol. 46. – P. 25–43. https://doi.org/10.1007/s10953-016-0555-x; Zinc (II)–Boron (III) Aqueous Complex Formation Between 25 and 70 °C // T. Raynaud [et al.] // J. Solution Chem. – 2024. – Vol. 53. – P. 1017–1036. https://doi.org/10.1007/s10953-023-01357-1; Формы нахождения радионуклида кобальта-60 в растворах борной кислоты / А. М. Зарубо [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2020. – Т. 56, № 1. – С. 24–32. https://doi.org/10.29235/1561-8331-2020-56-1-24-32; Karankova, V. Effect of boric acid on 106Ru radionuclide speciation in aqueous solution / V. Karankova, A. Radkevich, N. Varonik // J. Radioanal. Nucl. Chem. – 2023. – Vol. 332. – P. 4561–4566. https://doi.org/10.1007/s10967-023-09158-y; Руководство к практическим занятиям по радиохимии / под ред. Ан. Н. Несмеянова. – 2-е изд. перераб. – М.: Химия, 1980. – 584 с.; Charge Effects in the Fractionation of Natural Organics Using Ultrafiltration / A. I. Schafer [et al.] // Environ. Sci. Technol. – 2002. – Vol. 36, Iss. 12. – P. 2572–2580. https://doi.org/10.1021/es0016708; Beneš, P. Trace Chemistry of Aqueous Solutions: General Chemistry and Radiochemistry / P. Beneš, V. Majer. – Praga: Academia, 1980. – 100 p.; https://vestift.belnauka.by/jour/article/view/853

  6. 6
    Academic Journal

    Contributors: The research was performed within the framework of the project using state support for the development of cooperation between Russian institutions of higher education and real sector of economy with the aim of realization of the complex project on creation of hi-tech production envisaged by the Decree of the Russian Federation Government (April 09, 2010, No. 218) on the theme “Creation of the high-tech import-substituting production of protein ingredients based on dairy raw materials for healthy food products” (Agreement No. 075-11-2022-020, April 07, 2022). The project has been carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation. R&D has been performed in the FSBEI HE Voronezh State University of Engineering Technologies (VSUET)., Работа выполнена в рамках проекта с использованием мер государственной поддержки развития кооперации российской образовательной организации высшего образования и организации реального сектора экономики с целью реализации комплексного проекта по созданию высокотехнологичного производства, предусмотренного ПП Российской Федерации от 09 апреля 2010 г. № 218, по теме «Создание высокотехнологичного импортозамещающего производства белковых ингредиентов на основе молочного сырья для продуктов здорового питания» (соглашение № 075-11-2022-020 от 07.04.2022). Проект выполняется при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Минобрнауки России). НИОКТР проводятся во ФГБОУ ВО «Воронежский государственный университет инженерных технологий» (ВГУИТ).

    Source: Food systems; Vol 7, No 2 (2024); 246-252 ; Пищевые системы; Vol 7, No 2 (2024); 246-252 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-2

    File Description: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/496/323; Мельникова, Е.И., Станиславская, Е.Б. (2022). Перспективные сывороточные ингредиенты для пищевой промышленности. Переработка молока, 11(277), 12-14. https://doi.org/10.33465/2222-5455-2022-11-12-14; Bannikova, A.V., Evdokimov, I.A. (2015). The scientific and practical principles of creating products with increased protein content. Foods and Raw Materials, 3(2), 3-12. https://doi.org/10.12737/13114; Melnikova, E. I., Stanislavskaya, E.B., Fedorova, A. R. (26-29 February, 2020). Modification of the whey protein cluster for the utilization in low-calorie food technology. IOP Conference Series: Earth and Environmental Science. International Conference on Production and Processing of Agricultural Raw Materials. Voronezh, Russian Federation, 2021. https://doi.org/10.1088/1755-1315/640/3/032014; Zhao, C., Chen, N., Ashaolu, T.J. (2022). Whey proteins and peptides in health-promoting functions — A review. International Dairy Journal, 126, Article 105269. https://doi.org/10.1016/j.idairyj.2021.105269; Topel, A. (2007). Chemistry and physics of milk. Behr, 2007. (In German); Гунькова, П. И., Горбатова, К. К. (2015). Биотехнологические свойства белков молока. СПб: ГИОРД, 2015.; Ельчанинов, В.В. (2022). Номенклатура и свойства белков молока коровы (Bos taurus). Барнаул: Издательство Алтайского университета, 2022.; Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U., Soares, B. C. V., Souza, S. L. Q. et al. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science and Technology, 88, 361-372. https://doi.org/10.1016/j.tifs.2019.04.003; Короткий, И. А., Плотников, И. Б., Мазеева, И. А. (2019). Современные тенденции в переработке молочной сыворотки. Техника и технология пищевых производств, 49(2), 227-234. https://doi.org/10.21603/2074-9414-2019-2-227-234; Володин, Д. Н., Гридин, А. С., Евдокимов, И. А. (2020). Перспективы производства сухих белковых ингредиентов на основе молочного сырья. Молочная промышленность, 1, 28-30.; Храмцов, А. Г. (2011). Феномен молочной сыворотки. СПб.: Профессия, 2011.; Володин, Д. Н., Топалов, В. К., Евдокимов, И. А., Куликова, И. К., Шрамко, М. И. (2022). Комплексный подход к производству белковых ингредиентов на основе молочного сырья. Молочная промышленность, 1, 34-36.; Damar, I., Cinar, K., Gulec, H. A. (2020). Concentration of whey proteins by ultrafiltration: Comparative evaluation of process effectiveness based on physicochemical properties of membranes. International Dairy Journal, 111, Article 104823. https://doi.org/10.1016/j.idairyj.2020.104823; Cancino, B., Espina, V., Orellana, C. (2006). Whey concentration using microfiltration and ultrafiltration. Desalination, 200(1-3), 557-558. https://doi.org/10.1016/j.desal.2006.03.463; Reig, М., Vecino, Х., Cortina, J.L. (2021). Use of membrane technologies in dairy industry: An overview. Foods, 10(11), Article 2768. https://doi.org/10.3390/foods10112768; Челноков, В. В., Михайлов, А. В., Заболотная, Е. (2020). Актуальность использования в промышленных масштабах мембранных технологий в Российской Федерации. Успехи в химии и химической технологии, 34(6(229)), 69-71.; Лялин, В. А., Михеев, М. С. (2020). Мембранные технологии и оборудование в молочной промышленности. Переработка молока, 12(254), 28-31.; Tamime, A. Y. (2012). Membrane processing: Dairy and beverage applications. Chichester; Ames, IO: Wiley-Blackwell, 2012.; Steinhauer, T., Leeb, E., Birle, D., Kulozik, U. (2016). Determination of a molecular fouling model for the micro- and ultrafiltration of whey: A recombination study from single whey proteins to complex mixtures. International Dairy Journal, 52, 50-56. https://doi.org/10.1016/j.idairyj.2015.08.006; Володин, Д. Н., Топалов, В.К., Евдокимов, И. А., Куликова, И.К. (2020). Влияние производственных процессов на функционально-технологические свойства концентратов сывороточных белков. Молочная промышленность, 5, 46-49.; Verruck, S., Sartor, S., Marenda, F.B., Barros, E. L. S., Camelo-Silva, C., Canella, M. H. M. et al. (2019). Influence of heat treatment and microfiltration on the milk proteins properties. Advances in Food Technology and Nutritional Sciences, 5(2), 54-66. http://doi.org/10.17140/AFTNSOJ-5-157; Ostertag, F., Krolitzki, E., Berensmeier, S., Hinrichs, J. (2023). Protein valorisation from acid whey — Screening of various micro- and ultrafiltration membranes concerning the filtration performance. International Dairy Journal, 146, Article 105745. https://doi.org/10.1016/j.idairyj.2023.105745; Arunkumar, A. Molitor, M. S., Etzel, M. R. (2016). Comparison of flat-sheet and spiral-wound negatively-charged wide-pore ultrafiltration membranes for whey protein concentration. International Dairy Journal, 56, 129-133. https://doi.org/10.1016/j.idairyj.2016.01.012; Babenyshev, S. P., Evdokimov, I. A., Bratsikhin, A. A., Anisimov, G. S., Zhidkov, V. E., Mamay, D. S. (2019) Experimental determination of parameters for milk whey microfiltration process. Journal of Hygienic Engineering and Design, 28, 85-95.; Mourouzidis-Mourouzis, S. A., Karabelas, A. J. (2006). Whey protein fouling of microfiltration ceramic membranes — Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. https://doi.org/10.1016/j.memsci.2006.05.012; Barukcic, I., Bozanic, R., Kulozik, U. (2014). Effect of pore size and process temperature on flux, microbial reduction and fouling mechanisms during sweet whey cross-flow microfiltration by ceramic membranes. International Dairy Journal, 39(1), 8-15. https://doi.org/10.1016/j.idairyj.2014.05.002; Rezaei, H., Ashtiani, F. Z., Fouladitajar, A. (2011). Effects of operating parameters on fouling mechanism and membrane flux in cross-flow microfiltration of whey. Desalination, 274(1-3), 262-271. https://doi.org/10.1016/j.desal.2011.02.015; Heidebrecht, H.-J., Kulozik, U. (2019). Data concerning the fractionation of individual whey proteins and casein micelles by microfiltration with ceramic gradient membranes. Data in Brief, 25, Article 104102. https://doi.org/10.1016/j.dib.2019.104102; Carter, B., DiMarzo, L., Pranata, J., Barbano, D. M., Drake, M. (2021). Determination of the efficiency of removal of whey protein from sweet whey with ceramic microfiltration membranes. Journal of Dairy Science, 104(7), 7534-7543. https://doi.org/10.3168/jds.2020-18698; Carter, B., DiMarzo, L., Pranata, J., Barbano, D. M., Drake, M. (2021). Efficiency of removal of whey protein from sweet whey using polymeric microfiltration membranes. Journal of Dairy Science, 104(8), 8630-8643. https://doi.org/10.3168/jds.2020-18771; Barukčić, I., Božanić, R., Kulozik, U. (2015). Influence of process temperature and microfiltration pre-treatment on flux and fouling intensity during cross-flow ultrafiltration of sweet whey using ceramic membranes. International Dairy Journal, 51, 1-7. https://doi.org/10.1016/j.idairyj.2015.07.002; Steinhauer, T., Hanély, S., Bogendörfer, K., Kulozik, U. (2015). Temperature dependent membrane fouling during filtration of whey and whey proteins. Journal of Membrane Science, 492, 364-370. https://doi.org/10.1016/j.mem-sci.2015.05.053; Baldasso, C., Barros, T.C., Tessaro, I.C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, 278(1-3), 381-386. https://doi.org/10.1016/j.desal.2011.05.055; https://www.fsjour.com/jour/article/view/496

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: The study was financially supported by the National Academy of Sciences of Belarus (grant no. 2022-27-009)., Исследование выполнено при финансовой поддержке Национальной академии наук Беларуси (грант № 2022-27-009).

    Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 59, № 3 (2023); 225-233 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 59, № 3 (2023); 225-233 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2023-59-3

    File Description: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/828/713; Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus / H. Baumann [et al.] // Nat. Struct. Biol. ‒ 1994. ‒ Vol. 1, № 11. ‒ P. 808‒819. https://doi.org/10.1038/nsb1194-808; An overview of the structures of protein-DNA complexes / N. M. Luscombe [et al.] // Genome Biol. ‒ 2000. ‒ Vol. 1, № 1. ‒ Reviews001. https://doi.org/10.1186/gb-2000-1-1-reviews001; A single-point mutation in the extreme heat- and pressure-resistant sso7d protein from sulfolobus solfataricus leads to a major rearrangement of the hydrophobic core / R. Consonni [et al.] // Biochemistry. ‒ 1999. ‒ Vol. 38, № 39. ‒ P. 12709‒12717. https://doi.org/10.1021/bi9911280; Investigations of Sso7d catalytic residues by NMR titration shifts and electrostatic calculations / R. Consonni [et al.] // Biochemistry. ‒ 2003. ‒ Vol. 42, № 6. ‒ P. 1421‒1429. https://doi.org/10.1021/bi0265168; Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus / V. Granata [et al.] // International Journal of Biological Macromolecules. ‒ 2004. ‒ Vol. 34, № 3. ‒ P. 195‒201. https://doi.org/10.1016/j.ijbiomac.2004.04.002; The Sso7d DNA-binding protein from Sulfolobus solfataricus has ribonuclease activity / E. Shehi [et al.] // FEBS Lett. ‒ 2001. ‒ Vol. 497, № 2–3. ‒ P. 131‒136. https://doi.org/10.1016/s0014-5793(01)02455-3; Annealing of complementary DNA strands above the melting point of the duplex promoted by an archaeal protein / A. Guagliardi [et al.] // J. Mol. Biol. ‒ 1997. ‒ Vol. 267, № 4. ‒ P. 841‒848. https://doi.org/10.1006/jmbi.1996.0873; Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering / H. L. Zhao [et al.] // Protein Expr Purif. ‒ 2008. ‒ Vol. 61, № 1. ‒ P. 73‒77. https://doi.org/10.1016/j.pep.2008.04.013; Thermal unfolding of small proteins with SH3 domain folding pattern / S. Knapp [et al.] // Proteins. ‒ 1998. ‒ Vol. 31, № 3. ‒ P. 309‒319. https://doi.org/10.1002/(sici)1097-0134(19980515)31:3; A 45-Amino-Acid Scaffold Mined from the PDB for High-Affinity Ligand Engineering / M. A. Kruziki [et al.] // Chem. Biol. ‒ 2015. ‒ Vol. 22, № 7. ‒ P. 946‒956. https://doi.org/10.1016/j.chembiol.2015.06.012; DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus / A. Napoli [et al.] // Nucleic Acids Res. ‒ 2002. ‒ Vol. 30, № 12. ‒ P. 2656‒2662. https://doi.org/10.1093/nar/gkf377; Design of pH sensitive binding proteins from the hyperthermophilic Sso7d scaffold / N. Gera [et al.] // PLoS One. ‒ 2012. ‒ Vol. 7, № 11. https://doi.org/10.1371/journal.pone.0048928; Loving, G. S. Monitoring protein interactions and dynamics with solvatochromic fluorophores / G. S. Loving, M. Sainlos, B. Imperiali // Trends Biotechnol. ‒ 2010. ‒ Vol. 28, № 2. ‒ P. 73‒83. https://doi.org/10.1016/j.tibtech.2009.11.002; Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions / S. de Picciotto [et al.] // J. Mol. Biol. ‒ 2016. ‒ Vol. 428, № 20. ‒ P. 4228‒4241. https://doi.org/10.1016/j.jmb.2016.07.004; Activity-based assessment of an engineered hyperthermophilic protein as a capture agent in paper-based diagnostic tests / E. A. Miller [et al.] // Mol. Syst. Des. Eng. ‒ 2016. ‒ Vol. 1, № 4. ‒ P. 377‒381. https://doi.org/10.1039/c6me00032k; 5′-DMT-protected double-stranded DNA: Synthesis and competence to enzymatic reactions / V. V. Shchur [et al.] // Analytical Biochemistry. ‒ 2021. ‒ Vol. 617. ‒ P. 114‒115. https://doi.org/10.1016/j.ab.2021.114115; Gill, S. C. Calculation of protein extinction coefficients from amino acid sequence data / S. C. Gill, P. H. von Hippel // Anal. Biochem. ‒ 1989. ‒ Vol. 182, № 2. ‒ P. 319‒326. https://doi.org/10.1016/0003-2697(89)90602-7; Edmondson, S. P. DNA binding proteins Sac7d and Sso7d from Sulfolobus / S. P. Edmondson, J. W. Shriver // Methods Enzymol. ‒ 2001. ‒ Vol. 334. ‒ P. 129‒145. https://doi.org/10.1016/s0076-6879(01)34463-4; Thermal stability and DNA binding activity of a variant form of the Sso7d protein from the archeon Sulfolobus solfataricus truncated at leucine 54 / E. Shehi [et al.] // Biochemistry. ‒ 2003. ‒ Vol. 42, № 27. ‒ P. 8362‒8368. https://doi.org/10.1021/bi034520t; Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold / N. Gera [et al.] // J. Mol. Biol. ‒ 2011. ‒ Vol. 409, № 4. ‒ P. 601‒616. https://doi.org/10.1016/j.jmb.2011.04.020; Hyperthermostable binding molecules on phage: Assay components for point-of-care diagnostics for active tuberculosis infection / N. Zhao [et al.] // Anal. Biochem. ‒ 2017. ‒ Vol. 521. ‒ P. 59‒71. https://doi.org/10.1016/j.ab.2016.12.021; https://vestichem.belnauka.by/jour/article/view/828

  15. 15
    Conference

    Contributors: Дорофеева, Людмила Ивановна

    File Description: application/pdf

    Relation: Изотопы: технологии, материалы и применение : сборник тезисов докладов VII Международной научной конференции молодых ученых, аспирантов и студентов, г. Томск, 25-28 октября 2021 г.; http://earchive.tpu.ru/handle/11683/69021

  16. 16
  17. 17
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 58, № 1 (2022); 86-93 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 58, № 1 (2022); 86-93 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2022-58-1

    File Description: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/709/656; A safety review of topical bovine thrombin-induced generation of antibodies to bovine proteins / F. A. Ofosu [et al.] // Clinical therapeutics. – 2009. – Vol. 31, N 4. – P. 679–691.; Mann, K. G. The molecular weights of bovine thrombin and its primary autolysis products / K. G. Mann, C. W. Batt // Journal of Biological Chemistry. – 1969. – Vol. 244. – N 23. – P. 6555–6557.; Method of activating prothrombin / Assignee: Immuno Aktiengesellschatft : pat. 5393666 USA, Int.Cl. C 12 N 11/00, C 12 N 11/16, C 12 N 9/00, A 61 K 37/547; publ. date: 28.02.1995.; Prothrombin activation during carbon tetrachloride-induced acute liver injury in mice // Thrombosis research. – 2002. – Vol. 106. – N 4–5. – P. 257–261.; Suttie, J. W. Prothrombin structure, activation, and biosynthesis / J. W. Suttie, C. M. Jackson // Physiological Reviews. – 1977. – Vol. 57. – N 1. – P. 1–70.; Aizawa, P. Large-scale preparation of thrombin from human plasma / P. Aizawa, S. Winge, G. Karlsson // Thrombosis research. – 2008. – Vol. 122. – N 4. – P. 560–567.; Le Bonniec, B. F. Thrombin / B. F. Le Bonniec // Handbook of Proteolytic Enzymes. – Academic Press, 2013. – P. 2915–2932.; Blood plasma fractionation : pat. 4067863 USА. Int.Cl. C 12 N 9/74. / J. G. Watt; publ. date: 14.11.1975.; Burnouf, T. An overview of plasma fractionation / T. Burnouf // Ann Blood. – 2018. – Vol. 3. – P. 33.; Method for activating prothrombin to thrombin : pat. 5677162 USА. Int.Cl. C 12 N 9/74; C 12 N 7104; C 12 N 7/06; A 61 K 38/48. / J. Zou [et al. ]; publ. date: 14.10.1997.; Способ крупномасштабного производства устойчивой при хранении композиции тромбина терапевтической степени чистоты : пат. 2144081 РФ. МПК. C 12 N 9/74; A 61 K 35/16 / З. Проба [и др.]; заявл. 21.0.1995; опубл. 10.01.2000.; Activation of pure prothrombin to thrombin with about 30 % to about 40% sodium citrate : pat. 6245548 USА. Int.Cl. C 12 N 9/74; A 61 K 38/48 / H. Ralston [et al.]; publ. date: 12.06.2001.; One-stage prothrombin assay and compositions useful therein : pat. 4289498 USА. Int.Cl. C 12 N 9/74. / Ortho Diagnostics, Inc.; publ. date: 1987.; Химическая энциклопедия. – М.: БРЭ, 1992. – 641 с.; Process for producing a virus-inactivated thrombin preparation : pat. 5677162 USА. Int.Cl. C 12 N 9/74. / Connolly C. [et al.]; 22.06.2006; publ. date: 07.05.2013.; Allary, M. Isolation of human thrombin by affinity chromatography with silicate to be used in the preparation of biological glue / M. Allary, E. Boschetti, J. L. Lorne //Annales pharmaceutiques francaises. – 1990. – Vol. 48. – N 3. – P. 129–135.; Справочник биохимика / Р. Досон [и др.]. – М.: Мир, 1991. – 443 c.; Баркаган, З. С. Диагностика и контролируемая терапия нарушений гемостаза / З. С. Баркаган, А. П. Момот. – М.: Ньюдиамед, 2001. – 285 с.; Мецлер, Д. Биохимия / Д. Мецлер. – М.: Химия, 1980. – Т. 2. – 609 с.; Овчинников, Ю. А. Биоорганическая химия / Ю. А. Овчинников. – М.: Просвещение, 1987. – 816 с.; Якубке, Х.-Д. Аминокислоты, пептиды, белки / Х.-Д. Якубке, Х. Ешкайт. – М.: Мир, 1985. – 457 с.; Титов, В. Н. Электрофорез белков сыворотки крови / В. Н. Титов, В. А. Амелюшкина. – М.: Мир, 1994. – 463 с.; Suttie, J. W. Prothrombin structure, activation, and biosynthesis / J. W. Suttie, C. M. Jackson // J. Physiological Rev. – 1977. – Vol. 57. – N 1. – P. 1–55.; Черкасов, А. Н. Мембраны и сорбенты в биотехнологии / А. Н. Черкасов, В. А. Пасечник. – Л.: Химия, 1991. – 240 с.; https://vestichem.belnauka.by/jour/article/view/709

  18. 18
    Academic Journal

    Source: Bulletin of Siberian Medicine; Том 21, № 2 (2022); 152-167 ; Бюллетень сибирской медицины; Том 21, № 2 (2022); 152-167 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-2

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4826/3214; Калюжин В.В., Тепляков А.Т., Калюжин О.В. Сердечная недостаточность. М.: Медицинское информационное агентство, 2018:376.; Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016;18(8):891−975. DOI:10.1002/ejhf.592.; Moradi M., Daneshi F., Behzadmehr R., Rafiemanesh H., Bouya S., Raeisi M. Quality of life of chronic heart failure patients: a systematic review and meta-analysis. Heart Fail. Rev. 2020;25:993–1006. DOI:10.1007/s10741-019-09890-2.; Comín-Colet J., Martín Lorenzo T., González-Domínguez A., Oliva J., Jiménez Merino S. Impact of non-cardiovascular comorbidities on the quality of life of patients with chronic heart failure: a scoping review. Health Qual Life Outcomes. 2020;18:329. DOI:10.1186/s12955-020-01566-y.; Калюжин В.В., Тепляков А.Т., Рязанцева Н.В., Беспалова И.Д., Камаев Д.Ю., Калюжина Е.В. Качество жизни больных ишемической болезнью сердца, ассоциированной с метаболическим синдромом: результаты факторного анализа. Терапевтический архив. 2012;84(12):18−22.; Goudot F.X., Thomas S., Foureur N. Patient âgé insuffisant cardiaque, qualité ou quantité de vie? Soins Gerontol. 2020;25(144):38−42. DOI:10.1016/j.sger.2020.06.009.; Калюжин В.В., Тепляков А.Т., Беспалова И.Д., Калюжина Е.В., Терентьева Н.Н., Сибирева О.Ф. и др. Прогрессирующая (advanced) сердечная недостаточность. Бюллетень сибирской медицины. 2021;20(1):129–146. DOI:10.20538/1682-0363-2021-1-129-146.; Koshy A.O., Gallivan E.R., McGinlay M., Straw S., Drozd M., Toms A.G. et al. Prioritizing symptom management in the treatment of chronic heart failure. ESC Heart Fail. 2020;7(5) 2193–2207. DOI:10.1002/ehf2.12875.; Mullens W., Damman K., Harjola V.P., Mebazaa A., BrunnerLa Rocca H.P., Martens P. et al. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019;21(2):137–155. DOI:10.1002/ejhf.1369.; Boorsma E.M., Ter Maaten J.M., Damman K., Dinh W., Gustafsson F., Goldsmith S. et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment. Nat. Rev. Cardiol. 2020;17(10):641−655. DOI:10.1038/s41569-020-0379-7.; Simonavičius J., Knackstedt C., Brunner-La Rocca H.P. Loop diuretics in chronic heart failure: how to manage congestion? Heart Fail Rev. 2019;24(1):17–30. DOI:10.1007/s10741-018-9735-7.; Jardim S.I., Ramos Dos Santos L., Araújo I., Marques F., Branco P., Gaspar A., Fonseca C. A 2018 overview of diuretic resistance in heart failure. Rev. Port. Cardiol. 2018;37(11):935−945. DOI:10.1016/j.repc.2018.03.014.; Бердибеков Б.Ш. Диуретическая терапия при сердечной недостаточности: фокус на резистентность к диуретикам. Креативная кардиология. 2018;12(4):366–382. DOI:10.24022/1997-3187-2018-12-4-366-382.; Felker G.M., Ellison D.H., Mullens W., Cox Z.L., Testani J.M. Diuretic therapy for patients with heart failure: JACC state-ofthe-art review. J. Am. Coll. Cardiol. 2020;75(10):1178–1195. DOI:10.1016/j.jacc.2019.12.059.; Мареев В.Ю., Гарганеева А.А., Агеев Ф.Т., Арутюнов Г.П., Беграмбекова Ю.Л., Беленков Ю.Н. и др. Экспертное мнение по применению диуретиков при хронической сердечной недостаточности. Общество специалистов по сердечной недостаточности. Кардиология. 2020;60(12):13−47. DOI:10.18087/cardio.2020.12.n1427.; Reed B.N., Devabhakthuni S. Diuretic resistance in acute decompensated heart failure: a challenging clinical conundrum. Crit. Care Nurs. Q. 2017;40(4):363–373. DOI:10.1097/CNQ.0000000000000173.; Palazzuoli A., Ruocco G., Paolillo S., Perrone Filardi P. The use of diuretics in heart failure with congestion: we can’t judge a book by its cover. ESC Heart Fail. 2019;6(6):1222–1225. DOI:10.1002/ehf2.12515.; Kazory A., Costanzo M.R. The never-ending quest for the appropriate role of ultrafiltration. Eur. J. Heart Fail. 2019;21(7):949. DOI:10.1002/ejhf.1490.; Фомин В.В., Хамхоева М.С. Резистентность к диуретикам: причины, механизмы, возможности преодоления. Фарматека. 2010;12:19–23.; Cox Z.L., Testani J.M. Loop diuretic resistance complicating acute heart failure. Heart Fail. Rev. 2020;25(1):133–145. DOI:10.1007/s10741-019-09851-9.; Suri S.S., Pamboukian S.V. Optimal diuretic strategies in heart failure. Ann. Transl. Med. 2021;9(6):517. DOI:10.21037/atm20-4600.; Дядык А.И., Куглер Т.Е., Щукина Е.В., Ракитская И.В., Зборовский С.Р., Сулиман Ю.В. Диуретическая резистентность: механизмы, лечебная тактика и профилактика. Фарматека. 2017;18:50−56.; Testani J.M., Brisco M.A., Turner J.M., Spatz E.S., Bellumkonda L., Parikh C.R. et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ. Heart Fail. 2014;7(2):261–270. DOI:10.1161/CIRCHEARTFAILURE.113.000895.; Epstein M., Lepp B.A., Hoffman D.S., Levinson R. Potentiation of furosemide by metolazone in refractory edema. Curr. Ther. Res. 1977;21:656–667.; Kumar D., Bagarhatta R. Fractional excretion of sodium and its association with prognosis of decompensated heart failure patients. J. Clin. Diagn. Res. 2015;9(4):OC01–OC03. DOI:10.7860/JCDR/2015/11532.5736.; Testani J.M., Hanberg J.S., Cheng S., Rao V., Onyebeke C., Laur O. et al. Rapid and highly accurate prediction of poor loop diuretic natriuretic response in patients with heart failure. Circ. Heart Fail. 2016;9(1):e002370. DOI:10.1161/CIRCHEARTFAILURE.115.002370.; Doering A., Jenkins C.A., Storrow A.B., Lindenfeld J., Fermann G.J., Miller K.F. et al. Markers of diuretic resistance in emergency department patients with acute heart failure. Int. J. Emerg. Med. 2017;10(1):17. DOI:10.1186/s12245-017-0143-x.; Ter Maaten J.M., Dunning A.M., Valente M.A., Damman K., Ezekowitz J.A., Califf R.M. et al. Diuretic response in acute heart failure-an analysis from ASCEND-HF. Am. Heart J. 2015;170(2):313–321. DOI:10.1016/j.ahj.2015.05.003.; Cox Z.L., Sarrell B.A., Cella M.K., Tucker B., Arroyo J.P., Umanath K. et al. Multinephron segment diuretic therapy to overcome diuretic resistance in acute heart failure: a single-center experience. J. Card. Fail. 2021:S1071-9164(21)00333-X. DOI:10.1016/j.cardfail.2021.07.016.; Ter Maaten J.M., Valente M.A., Damman K., Cleland J.G., Givertz M.M., Metra M. et al. Combining diuretic response and hemoconcentration to predict rehospitalization after admission for acute heart failure. Circ. Heart Fail. 2016;9(6):e002845. DOI:10.1161/CIRCHEARTFAILURE.115.002845.; Neuberg G.W., Miller A.B., O’Connor C.M., Belkin R.N., Carson P.E., Cropp A.B. et al. PRAISE Investigators. Prospective randomized amlodipine survival evaluation. Diuretic resistance predicts mortality in patients with advanced heart failure. Am. Heart J. 2002;44(1):31–38. DOI:10.1067/mhj.2002.123144.; Trullàs J.C., Casado J., Morales-Rull J.L., Formiga F., Conde-Martel A., Quirós R. et al. Prevalence and outcome of diuretic resistance in heart failure. Intern. Emerg. Med. 2019;14(4):529−537. DOI:10.1007/s11739-018-02019-7.; Côté J.M., Bouchard J., Murray P.T., Beaubien-Souligny W. Diuretic strategies in patients with resistance to loop-diuretics in the intensive care unit: A retrospective study from the MIMIC-III database. J. Crit. Care. 2021;65:282–291. DOI:10.1016/j.jcrc.2021.06.009.; Bellomo R., Prowle J.R., Echeverri J.E. Diuretic therapy in fluid-overloaded and heart failure patients. Contrib. Nephrol. 2010;164:153–163. DOI:10.1159/000313728.; Katz S.D. In search of euvolemia in heart failure. JACC Heart Fail. 2014;2(3):306–307. DOI:10.1016/j.jchf.2014.02.006.; Cox Z.L., Testani J.M. Loop diuretic resistance in a patient with acute heart failure. In: Tamg W.H.W., Verbrugge F.H., Mullens W., eds. Cardiorenal syndrome in heart failure. London, UK: Springer Nature, 2019:153–173.; Elhassan M.G., Chao P.W., Curiel A. The conundrum of volume status assessment: revisiting current and future tools available for physicians at the bedside. Cureus. 2021;13(5):e15253. DOI:10.7759/cureus.15253.; Watson K., Gottlieb S.S. Walking the line of euvolemia. J. Card. Fail. 2014;20(8):623−624. DOI:10.1016/j.cardfail.2014.06.356.; Sokolska J.M., Sokolski M., Zymliński R., Biegus J., Siwołowski P., Nawrocka-Millward S. et al. Distinct clinical phenotypes of congestion in acute heart failure: characteristics, treatment response, and outcomes. ESC Heart Fail. 2020;7(6):3830–3840. DOI:10.1002/ehf2.12973.; Verbrugge F.H. Editor’s choice-diuretic resistance in acute heart failure. Eur. Heart J. Acute Cardiovasc. Care. 2018;7(4):379-389. DOI:10.1177/2048872618768488.; Gupta R., Testani J., Collins S. Diuretic resistance in heart failure. Curr. Heart Fail. Rep. 2019;16(2):57−66. DOI:10.1007/s11897-019-0424-1.; Yang Y.J., Kim J., Kwock C.K. Association of genetic variation in the epithelial sodium channel gene with urinary sodium excretion and blood pressure. Nutrients. 2018;10(5):612. DOI:10.3390/nu10050612.; Kenig A., Kolben Y., Asleh R., Amir O., Ilan Y. Improving diuretic response in heart failure by implementing a patient-tailored variability and chronotherapy-guided algorithm. Front Cardiovasc. Med. 2021;8:695547. DOI:10.3389/fcvm.2021.695547.; Ellison D.H., Felker G.M. Diuretic treatment in heart failure. N. Engl. J. Med. 2017;377(20):1964–1975. DOI:10.1056/NEJMra1703100.; Hoorn E.J., Wilcox C.S., Ellison D.H. Chapter 50. Diuretics. Brenner and Rector’s the kidney eleventh edition. Elsevier, Philadelphia, PA; 2020:1708–1740.; Wilcox C.S., Testani J.M., Pitt B. Pathophysiology of diuretic resistance and its implications for the management of chronic heart failure. Hypertension. 2020;76(4):1045–1054. DOI:10.1161/HYPERTENSIONAHA.120.15205.; Ravera A., Ter Maaten J.M., Metra M. Diuretic resistance and chronic heart failure. In: Tamg W.H.W., Verbrugge F.H., Mullens W., eds. Cardiorenal syndrome in heart failure. London, UK: Springer Nature, 2019:121–135. DOI:10.1007/978-3-030-21033-5_9.; Rao V.S., Planavsky N., Hanberg J.S., Ahmad T., BriscoBacik M.A., Wilson F.P. et al. Compensatory distal reabsorption drives diuretic resistance in human heart failure. J. Am. Soc. Nephrol. 2017;28(11):3414–3424. DOI:10.1681/ASN.2016111178.; Калюжин В.В., Тепляков А.Т., Черногорюк Г.Э., Калюжина Е.В., Беспалова И.Д., Терентьева Н.Н. и др. Хроническая сердечная недостаточность: синдром или заболевание? Бюллетень сибирской медицины. 2020;19(1):134–139. DOI:10.20538/1682-0363-2020-1-134–139.; Ройтберг Г.Е., Струтынский А.В. Внутренние болезни. Сердечно-сосудистая система: учеб. пособие. М.: МЕДпресс-информ, 2019:904.; McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021;42(36):3599– 3726. DOI:10.1093/eurheartj/ehab670.; Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E. Jr., Drazner M.H. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013;62(16):e147–239. DOI:10.1016/j.jacc.2013.05.019.; Lennie T.A., Song E.K., Wu J.R., Chung M.L., Dunbar S.B., Pressler S.J., Moser D.K. Three-gram sodium intake is associated with longer event-free survival only in patients with advanced heart failure. J. Card. Fail. 2011;17(4):325–330. DOI:10.1016/j.cardfail.2010.11.008.; Billingsley H.E., Hummel S.L., Carbone S. The role of diet and nutrition in heart failure: A state-of-the-art narrative review. Prog. Cardiovasc. Dis. 2020;63(5):538−551. DOI:10.1016/j.pcad.2020.08.004.; Burgermaster M., Rudel R., Seres D. Dietary sodium restriction for heart failure: a systematic review of intervention outcomes and behavioral determinants. Am. J. Med. 2020;133(12):1391- 1402. DOI:10.1016/j.amjmed.2020.06.018.; Doukky R., Avery E., Mangla A., Collado F.M., Ibrahim Z., Poulin M.F. et al. Impact of dietary sodium restriction on heart failure outcomes. JACC Heart Fail. 2016;4(1):24–35. DOI:10.1016/j.jchf.2015.08.007.; Мареев В.Ю., Фомин И.В., Агеев Ф.Т., Беграмбекова Ю.Л., Васюк Ю.А., Гарганеева А.А. и др. Клинические рекомендации ОССН – РКО – РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение. Кардиология. 2018;58(S6):8−161. DOI:10.18087/cardio.2475.; Patel Y., Joseph J. Sodium Intake and Heart Failure. Int. J. Mol. Sci. 2020;21(24):9474. DOI:10.3390/ijms21249474.; Международное руководство по сердечной недостаточности; ред. С.Дж. Болл, Р.В.Ф. Кемпбелл, Г.С. Френсис; пер. с англ. М.: Медиа Сфера, 1995:89.; Metra M., Ponikowski P., Dickstein K., McMurray J.J., Gavazzi A., Bergh C.H. et al. .Advanced chronic heart failure: A position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2007;9(6–7):684−694. DOI:10.1016/j.ejheart.2007.04.003.; Bhatt A.S., Yanamandala M., Konstam M.A. For vaptans, as for life, balance is better. Eur. J. Heart Fail. 2021;23(5):751−753. DOI:10.1002/ejhf.2042.; Rodriguez M., Hernandez M., Cheungpasitporn W., Kashani K.B., Riaz I., Rangaswami J. et al. Hyponatremia in heart failure: pathogenesis and management. Curr. Cardiol. Rev. 2019;15(4):252–261. DOI:10.2174/1573403X15666190306111812.; Gunderson E.G., Lillyblad M.P., Fine M., Vardeny O., Berei T.J. Tolvaptan for volume management in heart failure. Pharmacotherapy. 2019;39(4):473−485. DOI:10.1002/phar.2239.; Yetkin E., Cuglan B., Turhan H., Ozturk S. A novel strategy to reduce the readmission rates in congestive heart failure: intermittent empirical intravenous diuretics. Cardiovasc. Endocrinol. Metab. 2020;9(2):60−63. DOI:10.1097/XCE.0000000000000200.; Buckley L.F., Carter D.M., Matta L., Cheng J.W., Stevens C., Belenkiy R.M. et al. Intravenous diuretic therapy for the management of heart failure and volume overload in a multidisciplinary outpatient unit. JACC Heart Fail. 2016;4(1):1−8. DOI:10.1016/j.jchf.2015.06.017.; Halatchev I.G., Wu W.C., Heidenreich P.A., Djukic E., Balasubramanian S., Ohlms K.B. et al. Inpatient versus outpatient intravenous diuresis for the acute exacerbation of chronic heart failure. Int. J. Cardiol. Heart Vasc. 2021;36:100860. DOI:10.1016/j.ijcha.2021.100860.; Verma V., Zhang M., Bell M., Tarolli K., Donalson E., Vaughn J. et al. Outpatient intravenous diuretic clinic: an effective strategy for management of volume overload and reducing immediate hospital admissions. J. Clin. Med. Res. 2021;13(4):245–251. DOI:10.14740/jocmr4499.; Buggey J., Mentz R.J., Pitt B., Eisenstein E.L., Anstrom K.J., Velazquez E.J. et al. A reappraisal of loop diuretic choice in heart failure patients. Am. Heart J. 2015;169(3):323–333. DOI:10.1016/j.ahj.2014.12.009.; Balsam P., Ozierański K., Marchel M., Gawałko M., Niedziela Ł., Tymińska A. et al. Comparative effectiveness of torasemide versus furosemide in symptomatic therapy in heart failure patients: Preliminary results from the randomized TORNADO trial. Cardiol. J. 2019;26(6):661−668. DOI:10.5603/CJ.a2019.0114.; Ozierański K., Balsam P., Kapłon-Cieślicka A., Tymińska A., Kowalik R., Grabowski M. et al. Comparative analysis of longterm outcomes of torasemide and furosemide in heart failure patients in heart failure registries of the European Society of Cardiology. Cardiovasc. Drugs Ther. 2019;33(1):77−86. DOI:10.1007/s10557-018-6843-5.; Verbrugge F.H., Martens P., Ameloot K., Haemels V., Penders J., Dupont M. et al. Acetazolamide to increase natriuresis in congestive heart failure at high risk for diuretic resistance. Eur. J. Heart Fail. 2019;21(11):1415–1422. DOI:10.1002/ejhf.1478.; Gill D., Gadela N.V., Azmeen A., Jaiswal A. Usefulness of acetazolamide in the management of diuretic resistance. Proc. (Bayl. Univ. Med. Cent.). 2020;34(1):169–171. DOI:10.1080/08998280.2020.1830332.; Testani J.M., Chen J., McCauley B.D., Kimmel S.E., Shannon R.P. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–272. DOI:10.1161/CIRCULATIONAHA.109.933275.; Brisco M.A., Zile M.R., Hanberg J.S., Wilson F.P., Parikh C.R., Coca S.G. et al. Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial. J. Card. Fail. 2016;22:753–760. DOI:10.1016/j.cardfail.2016.06.423.; Gheorghiade M., Vaduganathan M., Ambrosy A., Böhm M., Campia U., Cleland J.G. et al. Current management and future directions for the treatment of patients hospitalized for heart failure with low blood pressure. Heart Fail. Rev. 2013;18(2):107–122. DOI:10.1007/s10741-012-9315-1.; Peri-Okonny P.A., Mi X., Khariton Y., Patel K.K., Thomas L., Fonarow G.C. et al. Target doses of heart failure medical therapy and blood pressure: insights from the CHAMP-HF registry. JACC Heart Fail. 2019;7(4):350–358. DOI:10.1016/j.jchf.2018.11.011.; Martín-Pérez M., Michel A., Ma M., García Rodríguez L.A. Development of hypotension in patients newly diagnosed with heart failure in UK general practice: retrospective cohort and nested case-control analyses. BMJ Open. 2019;9(7):e028750. DOI:10.1136/bmjopen-2018-028750.; Cautela J., Tartiere J.M., Cohen-Solal A., Bellemain-Appaix A., Theron A., Tibi T. et al. Management of low blood pressure in ambulatory heart failure with reduced ejection fraction patients. Eur. J. Heart Fail. 2020;22(8):1357–1365. DOI:10.1002/ejhf.1835.; Crespo-Leiro M.G., Metra M., Lund L.H., Milicic D., Costanzo M.R., Filippatos G. et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018;20(11):1505−1535. DOI:10.1002/ejhf.1236.; Tariq S., Aronow W.S. Use of inotropic agents in treatment of systolic heart failure. Int. J. Mol. Sci. 2015;16(12):29060– 29068. DOI:10.3390/ijms161226147.; Patel P.H., Nguyen M., Rodriguez R., Surani S., Udeani G. Omecamtiv mecarbil: a novel mechanistic and therapeutic approach to chronic heart failure management. Cureus. 2021;13(1):e12419. DOI:10.7759/cureus.12419.; Xiangli S., Lan L., Libiya Z., Jun M., Shubin J. Effect of levosimendan combined with recombinant human brain natriuretic peptide on diuretic resistance. Libyan J. Med. 2021;16(1):1973762. DOI:10.1080/19932820.2021.1973762.; Heringlake M., Alvarez J., Bettex D., Bouchez S., Fruhwald S., Girardis M. et al. An update on levosimendan in acute cardiac care: applications and recommendations for optimal efficacy and safety. Expert Rev. Cardiovasc. Ther. 2021;19(4):325– 335. DOI:10.1080/14779072.2021.1905520.; Asai Y., Sato T., Kito D., Yamamoto T., Hioki I., Urata Y. et al. Combination therapy of midodrine and droxidopa for refractory hypotension in heart failure with preserved ejection fraction per a pharmacist’s proposal: a case report. J. Pharm. Health Care Sci. 2021;7(1):10. DOI:10.1186/s40780-021-00193-z.; Li S., Zhao Q., Zhen Y., Li L., Mi Y., Li T. et al. The Impact of Glucocorticoid Therapy on Guideline-Directed Medical Treatment Titration in Patients Hospitalized for Heart Failure with Low Blood Pressure: A Retrospective Study. Int. J. Gen. Med. 2021;14:6693–6701. DOI:10.2147/IJGM.S334132.; Liu C., Liu K. Effects of glucocorticoids in potentiating diuresis in heart failure patients with diuretic resistance. J. Card. Fail. 2014;20(9):625−629. DOI:10.1016/j.cardfail.2014.06.353.; Liu C., Ge N., Zhai J.L., Zhang J.X. Dexamethasone-induced diuresis is associated with inhibition of the renin-angiotensin-aldosterone system in rats. Kaohsiung J. Med. Sci. 2016;32(12):614−619. DOI:10.1016/j.kjms.2016.09.007.; Smets P.M., Lefebvre H.P., Aresu L., Croubels S., Haers H., Piron K. et al. Renal function and morphology in aged Beagle dogs before and after hydrocortisone administration. PLoS One. 2012;7(2):e31702. DOI:10.1371/journal.pone.0031702.; Batool A., Salehi N., Chaudhry S., Cross M., Malkawi A., Siraj A. Role of vasodilator therapy in acute heart failure. Cureus. 2021;13(8):e17126. DOI:10.7759/cureus.17126.; Cox Z.L., Hung R., Lenihan D.J., Testani J.M. Diuretic strategies for loop diuretic resistance in acute heart failure: the 3T trial. JACC Heart Fail. 2020;8(3):157−168. DOI:10.1016/j.jchf.2019.09.012.; Ng T.M., Goland S., Elkayam U. Relaxin for the treatment of acute decompensated heart failure: pharmacology, mechanisms of action, and clinical evidence. Cardiol. Rev. 2016;24(4):194–204. DOI:10.1097/CRD.0000000000000089.; Bani D. Recombinant human H2 relaxin (serelaxin) as a cardiovascular drug: aiming at the right target. Drug Discov. Today. 2020;25(7):1239–1244. DOI:10.1016/j.drudis.2020.04.014.; Caprnda M., Zulli A., Shiwani H.A., Kubatka P., Filipova S., Valentova V. et al. The therapeutic effect of B-type natriuretic peptides in acute decompensated heart failure. Clin. Exp. Pharmacol. Physiol. 2020;47(7):1120–1133. DOI:10.1111/1440-1681.13290.; Wang L., Zhang Q., Liu M., Chen S., Han S., Li J. et al. Tolvaptan in reversing worsening acute heart failure: A systematic review and meta-analysis. J. Int. Med. Res. 2019;47(11):5414−5425. DOI:10.1177/0300060519882221.; Urbach J., Goldsmith S.R. Vasopressin antagonism in heart failure: a review of the hemodynamic studies and major clinical trials. Ther. Adv. Cardiovasc. Dis. 2021;15:175394472097 7741. DOI:10.1177/1753944720977741.; Welch W.J. Adenosine type 1 receptor antagonists in fluid retaining disorders. Expert. Opin. Investig. Drugs. 2002;11(11):1553–1562. DOI:10.1517/13543784.11.11.1553.; Jhund P.S., Solomon S.D., Docherty K.F., Heerspink H.J.L., Anand I.S., Böhm M. et al. Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: results of DAPA-HF. Circulation. 2021;143(4):298–309. DOI:10.1161/CIRCULATIONAHA.120.050391.; Griffin M., Rao V.S., Ivey-Miranda J., Fleming J., Mahoney D., Maulion C. et al. Empagliflozin in heart failure: diuretic and cardiorenal effects. Circulation. 2020;142(11):1028–1039. DOI:10.1161/CIRCULATIONAHA.120.045691.; Sarzani R., Giulietti F., Di Pentima C., Spannella F. Sodium-glucose co-transporter-2 inhibitors: peculiar «hybrid» diuretics that protect from target organ damage and cardiovascular events. Nutr. Metab. Cardiovasc. Dis. 2020;30(10):1622– 1632. DOI:10.1016/j.numecd.2020.05.030.; Delanaye P., Scheen A.J. The diuretic effects of SGLT2 inhibitors: a comprehensive review of their specificities and their role in renal protection. Diabetes Metab. 2021;47(6):101285. DOI:10.1016/j.diabet.2021.101285.; Lee T.H., Kuo G., Chang C.H., Huang Y.T., Yen C.L., Lee C.C. et al. Diuretic effect of co-administration of furosemide and albumin in comparison to furosemide therapy alone: an updated systematic review and meta-analysis. PLoS One. 2021;16(12):e0260312. DOI:10.1371/journal.pone.0260312.; Kitsios G.D., Mascari P., Ettunsi R., Gray A.W. Co-administration of furosemide with albumin for overcoming diuretic resistance in patients with hypoalbuminemia: a meta-analysis. J. Crit. Care. 2014;29(2):253–259. DOI:10.1016/j.jcrc.2013.10.004.; Mahmoodpoor A., Zahedi S., Pourakbar A., Hamishehkar H., Shadvar K., Asgharian P. et al. Efficacy of furosemide-albumin compared with furosemide in critically ill hypoalbuminemia patients admitted to intensive care unit: a prospective randomized clinical trial. Daru. 2020;28(1):263–269. DOI:10.1007/s40199-020-00339-8.; Urban S., Błaziak M., Biegus J., Zymliński R. Ultrafiltration in acute heart failure: current knowledge and fields for further research. Adv. Clin. Exp. Med. 2021;30(7):737−746. DOI:10.17219/acem/135347.; Prins K.W., Wille K.M., Tallaj J.A., Tolwani A.J. Assessing continuous renal replacement therapy as a rescue strategy in cardiorenal syndrome 1. Clin. Kidney J. 2015;8(1):87−92. DOI:10.1093/ckj/sfu123.; Shi X., Bao J., Zhang H., Wang H., Li L., Zhang Y. Patients with high-dose diuretics should get ultrafiltration in the management of decompensated heart failure: a meta-analysis. Heart Fail. Rev. 2019;24(6):927−940. DOI:10.1007/s10741-019-09812-2.; Morales R.O., Barbosa F., Farre N. Peritoneal dialysis in heart failure: focus on kidney and ventricular dysfunction. Rev. Cardiovasc. Med. 2021;22(3):649−657. DOI:10.31083/j.rcm2203075.; Chionh C.Y., Clementi A., Poh C.B., Finkelstein F.O., Cruz D.N. The use of peritoneal dialysis in heart failure: A systematic review. Perit. Dial. Int. 2020;40(6):527−539. DOI:10.1177/0896860819895198.; Yazdanyar A., Sanon J., Lo K.B., Joshi A.M., Kurtz E., Saqib M.N. et al. Outcomes with ultrafiltration among hospitalized patients with acute heart failure (from the national inpatient sample). Am. J. Cardiol. 2021;142:97–102. DOI:10.1016/j.amjcard.2020.11.041.; Rajapreyar I., Kumar S., Rao R.A. Ambulatory advanced heart failure patients: timing of mechanical circulatory support - delaying the inevitable? Curr. Opin. Cardiol. 2021;36(2):186– 197. DOI:10.1097/HCO.0000000000000831.; Lombardi C.M., Cimino G., Pellicori P., Bonelli A., Inciardi R.M., Pagnesi M. et al. Congestion in patients with advanced heart failure: assessment and treatment. Heart Fail. Clin. 2021;17(4):575–586. DOI:10.1016/j.hfc.2021.05.003.; Antonides C.F.J., Schoenrath F., de By T.M.M.H., Muslem R., Veen K., Yalcin Y.C. et al. EUROMACS investigators. Outcomes of patients after successful left ventricular assist device explantation: a EUROMACS study. ESC Heart Fail. 2020;7(3):1085–1094. DOI:10.1002/ehf2.12629.; Griffin M., Soufer A., Goljo E., Colna M., Rao V.S., Jeon S. et al Real world use of hypertonic saline in refractory acute decompensated heart failure: a U.S. center’s experience. JACC Heart Fail. 2020;8(3):199–208. DOI:10.1016/j.jchf.2019.10.012.; Covic A., Copur S., Tapoi L., Afsar B., Ureche C., Siriopol D. et al. Efficiency of hypertonic saline in the management of decompensated heart failure: a systematic review and meta-analysis of clinical studies. Am. J. Cardiovasc. Drugs. 2021;21(3):331–347. DOI:10.1007/s40256-020-00453-7.; Birch F., Boam E., Parsons S., Ghosh J., Johnson M.J. ‘Subcutaneous furosemide in advanced heart failure: service improvement project’. BMJ Support Palliat. Care. 2021:bmjspcare-2020-002803. DOI:10.1136/bmjspcare-2020-002803.; López-Vilella R., Sánchez-Lázaro I., Husillos Tamarit I., Monte Boquet E., Núñez Villota J., Donoso Trenado V. et al. Administration of subcutaneous furosemide in elastomeric pump vs. oral solution for the treatment of diuretic refractory congestion. High Blood Press. Cardiovasc. Prev. 2021;28(6):589−596. DOI:10.1007/s40292-021-00476-4.; Acar S., Sanli S., Oztosun C., Afsar B., Sag A.A., Kuwabara M. et al. Pharmacologic and interventional paradigms of diuretic resistance in congestive heart failure: a narrative review. Int. Urol. Nephrol. 2021;53(9):1839–1849. DOI:10.1007/s11255-020-02704-7.; Voors A.A., Kremer D., Geven C., Ter Maaten J.M., Struck J., Bergmann A. et al. Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur. J. Heart Fail. 2019;21(2):163–171. DOI:10.1002/ejhf.1366.; Liu W., Yan J., Pan W., Tang M. Apelin/Elabela-APJ: a novel therapeutic target in the cardiovascular system. Ann. Transl. Med. 2020;8(5):243. DOI:10.21037/atm.2020.02.07.; Ma Z., Song J.J., Martin S., Yang X.C., Zhong J.C. The Elabela-APJ axis: a promising therapeutic target for heart failure. Heart Fail Rev. 2021;26(5):1249–1258. DOI:10.1007/s10741-020-09957-5.; Fudim M., Ganesh A., Green C., Jones W.S., Blazing M.A., DeVore A.D. et al. Splanchnic nerve block for decompensated chronic heart failure: splanchnic-HF. Eur. Heart J. 2018;39(48):4255−4256. DOI:10.1093/eurheartj/ehy682.; Fudim M., Ponikowski P.P., Burkhoff D., Dunlap M.E., Sobotka P.A., Molinger J. et al. Splanchnic nerve modulation in heart failure: mechanistic overview, initial clinical experience, and safety considerations. Eur. J. Heart Fail. 2021;23(7):1076–1084. DOI:10.1002/ejhf.2196.; Козловская Н.Л. Низкомолекулярные гепарины в практике нефролога. Клиническая нефрология. 2011;1:15– 22.; Targonski R., Sadowski J., Cyganski P.A. Impact of anticoagulation on the effectiveness of loop diuretics in heart failure with cardiorenal syndrome and venous thromboembolism. Blood Coagul Fibrinolysis. 2014;25(2):180–182. DOI:10.1097/MBC.0000000000000012.; Pugliese N.R., Fabiani I., Conte L., Nesti L., Masi S., Natali A. et al. Persistent congestion, renal dysfunction and inflammatory cytokines in acute heart failure: a prognosis study. J. Cardiovasc. Med. (Hagerstown). 2020;21(7):494−502. DOI:10.2459/JCM.0000000000000974.; Fu K., Hu Y., Zhang H., Wang C., Lin Z., Lu H. et al. Insights of worsening renal function in type 1 cardiorenal syndrome: from the pathogenesis, biomarkers to treatment. Front. Cardiovasc. Med. 2021;8:760152. DOI:10.3389/fcvm.2021.760152.; Тепляков А.Т., Болотская Л.А., Степачева Т.А., Карман Н.В., Рыбальченко Е.В., Шилов С.Н. и др. Супрессивное влияние рекомбинантного иммуномодулятора ронколейкина на уровень провоспалительных цитокинов, аутоантител к кардиолипину в крови и сердечную недостаточность. Кардиология. 2008;48(8):34−40.; Reina-Couto M., Pereira-Terra P., Quelhas-Santos J., Silva-Pereira C., Albino-Teixeira A., Sousa T. Inflammation in human heart failure: major mediators and therapeutic targets. Front Physiol. 2021;12:746494. DOI:10.3389/fphys.2021.746494.; https://bulletin.tomsk.ru/jour/article/view/4826

  19. 19
    Academic Journal

    Contributors: В работе использовано оборудование ЦКП «Центр разработки прогрессивных персонализированных технологий здоровья» ФГБНУ «Научный центр проблем здоровья семьи и репродукции человека».

    Source: Acta Biomedica Scientifica; Том 7, № 6 (2022); 119-127 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3888/2470; Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249(4968): 505-510. doi:10.1126/science.2200121; Garst AD, Edwards AL, Batey RT. Riboswitches: Structures and mechanisms. Cold Spring Harb Perspect Biol. 2011; 3(6): a003533. doi:10.1101/cshperspect.a003533; Jellinek D, Green LS, Bell C, Janjić N. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry. 1994; 33(34): 10450-10456. doi:10.1021/bi00200a028; Kaur H, Bruno JG, Kumar A, Sharma TK. Aptamers in the therapeutics and diagnostics pipelines. Theranostics. 2018; 8(15): 4016-4032. doi:10.7150/thno.25958; Jain RK. The next frontier of molecular medicine: delivery of therapeutics. Nat Med. 1998; 4(6): 655-657. doi:10.1038/nm0698-655; Winkler J. Therapeutic oligonucleotides with polyethylene glycol modifications. Future Med Chem. 2015; 7(13): 1721-1731. doi:10.4155/fmc.15.94; Huang Y, Zhang L, Li Z, Gopinath SCB, Chen Y, Xiao Y. Aptamer-17β-estradiol-antibody sandwich ELISA for determination of gynecological endocrine function. Biotechnol Appl Biochem. 2020; 68(4): 881-888. doi:10.1002/bab.2008.; Lobigs M, Lee E, Ng ML, Pavy M, Lobigs P. A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. Virology. 2010; 401(1): 80-89. doi:10.1016/j.virol.2010.02.008; Wang Y, Li Z, Yu H. Aptamer-based western blot for selective protein recognition. Front Chem. 2020; 8: 570528. doi:10.3389/fchem.2020.570528; Пеньевская Н.А. Этиотропные препараты для экстренной профилактики клещевого энцефалита: перспективные разработки и проблемы эпидемиологической оценки эффективности. Эпидемиология и вакцинопрофилактика. 2010; 1(50): 39-45.; Eyetech Study Group. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: Phase II study results. Ophthalmology. 2003; 110(5): 979-986. doi:10.1016/S0161-6420(03)00085-X; Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as therapeutics. Annu Rev Pharmacol Toxicol. 2017; 57: 61-79. doi:10.1146/annurev-pharmtox-010716-104558; Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995; 64: 763-797. doi:10.1146/annurev.bi.64.070195.003555; Thomas M, Chédin S, Carles C, Riva M, Famulok M, Sentenac A. Selective targeting and inhibition of yeast RNA polymerase II by RNA aptamers. J Biol Chem. 1997; 272(44): 27980-27986. doi:10.1074/jbc.272.44.27980; Brody EN, Gold L. Aptamers as therapeutic and diagnostic agents. J Biotechnol. 2000; 74(1): 5-13. doi:10.1016/s1389-0352(99)00004-5; Nimjee SM, Rusconi CP, Harrington RA, Sullenger BA. The potential of aptamers as anticoagulants. Trends Cardiovasc Med. 2005; 15(1): 41-45. doi:10.1016/j.tcm.2005.01.002; Proske D, Blank M, Buhmann R, Resch A. Aptamers-basic research, drug development, and clinical applications. Appl Microbiol Biotechnol. 2005; 69(4): 367-374. doi:10.1007/s00253-005-0193-5; Zhang Z, Blank M, Schluesener HJ. Nucleic acid aptamers in human viral disease. Arch Immunol Ther Exp (Warsz). 2004; 52(5): 307-315.; Болотова Н.А., Хаснатинов М.А., Ляпунов А.В., Манзарова Э.Л., Соловаров И.С., Данчинова Г.А. Многолетние тенденции изменения поражаемости населения Прибайкалья иксодовыми клещами. Acta biomedica scientifica. 2017; 2(1): 89-93. doi:10.12737/article_5955e6b5c91407.50206187; Suss J. Tick-borne encephalitis in Europe and beyond – The epidemiological situation as of 2007. Euro Surveill. 2008; 13(26): 18916.; Dörrbecker B, Dobler G, Spiegel M, Hufert FT. Tick-borne encephalitis virus and the immune response of the mammalian host. Travel Med Infect Dis. 2010; 8(4): 213-222. doi:10.1016/j.tmaid.2010.05.010; Лучинина С.В., Семенов А.И., Степанова О.Н., Погодина В.В., Герасимов С.Г., Щербинина М.С., и др. Вакцинопрофилактика клещевого энцефалита в Челябинской области: масштабы вакцинации, популяционный иммунитет, анализ случаев заболевания привитых. Эпидемиология и вакцинопрофилактика. 2016; 1(86): 67-76.; Погодина В.В., Левина Л.С., Скрынник С.М., Травина Н.С., Карань Л.С., Колясникова Н.М., и др. Клещевой энцефалит с молниеносным течением и летальным исходом у многократно вакцинированного пациента. Вопросы вирусологии. 2013; 58(2): 33-37.; Субботин А.В., Семенов В.А., Смирнов В.Д., Щербинина М.С., Погодина В.В. Случай развития хронического клещевого энцефалита у вакцинированного пациента. Эпидемиология и вакцинопрофилактика. 2014; 3: 76.; Соловаров И.С., Хаснатинов М.А., Данчинова Г.А., Ляпунов А.В., Болотова Н.А., Манзарова Э.Л., и др. Оценка вируснейтрализующих свойств ДНК-аптамеров и экстрактов лекарственных растений в отношении вируса клещевого энцефалита. Acta biomedica scientifica. 2017; 2(1): 84-88. doi:10.12737/article_5955e6b5aad2e3.30269730; Хаснатинов М.А., Данчинова Г.А., Злобин В.И., Ляпунов А.В., Арбатская Е.В., Чапоргина Е.А., и др. Вирус клещевого энцефалита в Монголии. Сибирский медицинский журнал (Иркутск). 2012; 111(4): 9-12.; Gould EA, Clegg JCS. Growth, titration and purification of togaviruses. In: Mahy BWJ (ed.). Virology: A practical approach. Oxford; 1985: 43-48.; https://www.actabiomedica.ru/jour/article/view/3888

  20. 20