Εμφανίζονται 1 - 20 Αποτελέσματα από 29 για την αναζήτηση '"Ударная ионизация"', χρόνος αναζήτησης: 0,60δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Devices and Methods of Measurements; Том 16, № 2 (2025); 140-146 ; Приборы и методы измерений; Том 16, № 2 (2025); 140-146 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2025-16-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/960/726; Filachev AM, Taubkin II, Trishenkov M. A. Solid-state photoelectronics. Photodiodes. Moscow: Fizmatkniga, 2011, 448 p.; Lozovoy KA, Douhan RMH, Dirko VV, Deeb H, Khomyakova KI, Kukenov OI, Sokolov AS, Akimenko NYu, and Kokhanenko AP. Silicon-based avalanche photodiodes: advancements and applications in medical imaging. Nanomaterials. 2023;(13):3078-1–3078-24. DOI:10.3390/nano13233078; Bronzi D, Villa F, Tisa S, Tosi A, and Zappa F. SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review. IEEE Sensors Journal. 2016;16(1):3-12. DOI:10.1109/JSEN.2015.2483565; Koziy AA, Losev AV, Zavodilenko VV, Kurochkin YuV, Gorbatsevich AA. Modern methods of detecting single photons and their application in quantum communications. Quantum Electronics. 2021;51(8):655-669. doi:10.1070/QEL17566; Borzdov VM, Zhevnyak OG, Komarov FF, Galenchik VO. Monte Carlo simulation of device structures of integrated electronics. Minsk: BSU, 2007, 175 p.; Jacoboni C, Lugli P. The Monte Carlo method for semiconductor device simulation. Wien–New York: Springer, 2012, 359 p.; Aboud S, Saraniti M, Goodnick S, Brodschelm A, and Leitenstorfer A. Full-band Monte Carlo simulations of photo excitation in silicon diode structures. Semiconductor Science and Technology. 2004;(19):S301-S303. DOI:10.1088/0268-1242/19/4/101; Yanikgonul S, Leong V, Ong JR, Png CE, and Krivitsky L. 2D Monte Carlo simulation of silicon waveguide-based single-photon avalanche diode for visible wavelengths. Optics Express. 2018;26(12):15232-15246. DOI:10.1364/OE.26.015232; Borzdov AV, Borzdov VM, Vyurkov VV. Monte Carlo simulation of picosecond laser irradiation photoresponse of deep submicron SOI MOSFET. Proceedings of SPIE. 2022;(12157):121570Y-1–121570Y-6. doi:10.1117/12.2624174; Zhou X, Ng JS, Tan CH. A simple Monte Carlo model for prediction of avalanche multiplication process in Silicon. Journal of Instrumentation. 2012;7(08):P080061–10. DOI:10.1088/1748-0221/7/08/P08006; Chau Q. An efficient numerical approach to studying impact ionization in sub-micrometer devices. Journal of Computational Electronics. 2014;13:329-337. DOI:10.1007/s10825-013-0536-x; Chau Q. New Models for Impact Ionization in Submicrometer Devices. IEEE Transactions on Electron Devices. 2014;61(4):1153-1160. doi:10.1109/TED.2014.2306417; Ridley BK. Soft-threshold lucky drift theory of impact ionization in semiconductors. Semiconductor Science and Technology. 1987;2:116-122. doi:10.1088/0268-1242/2/2/009; Kamakura Y, Mizuno H, Yamaji M, Morifuji M, Taniguchi K, Hamaguchi C, Kunikiyo T, Takenaka M. Impact ionization model for full band Monte Carlo simulation. Journal of Applied Physics. 1994;75(7):35003506. DOI:10.1063/1.356112; Kunikiyo T, Takenaka M, Morifuji M, Taniguchi K, Hamaguchi C. A model of impact ionization due to the primary hole in silicon for a full band Monte Carlo simulation. Journal of Applied Physics. 1996;79(10):7717725. DOI:10.1063/1.362375; Borzdov AV, Borzdov VM, Dorozhkin NN. Numerical simulation of electric characteristics of deep submicron silicon-on-insulator MOS transistor. Devices and Methods of Measurements. 2016;7(2):161-168. doi:10.21122/2220-9506-2016-7-2-161-168; Martin MJ, Gonzalez T, Velazquez JE, Pardo D. Simulation of electron transport in silicon: impact-ionization processes. Semiconductor Science and Technology. 1993;(8):1291-1297. DOI:10.1088/0268-1242/8/7/017; Robbins VM, Wang T, Brennan KF, Hess K and Stillman GE. Electron and hole impact ionization coefficients in (100) and in (111) Si. Journal of Applied Physics. 1985;58,(12):4614-4617. DOI:10.1063/1.336229; Takayanagi I, Matsumoto K, and Nakamura J. Measurement of electron impact ionization coefficient in bulk silicon under a low electric field. Journal of Applied Physics. 1992;72(5):1989-1992. DOI:10.1063/1.351625; Maes W, De Meyer K. and Van Overstraeten R. Impact ionization in silicon: a review and update. SolidState Electronics. 1990;33(6):705-718. doi:10.1016/0038-1101(90)90183-F; Redmer R, Madureira JR, Fitzer N, Goodnick SM, Schattke W, and Schöll E. Field effect on the impact ionization rate in semiconductors. Journal of Applied Physics. 2000;87(2):781-788. DOI:10.1063/1.371941; https://pimi.bntu.by/jour/article/view/960

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    Πηγή: Visnyk of V.N. Karazin Kharkiv National University, series “Radio Physics and Electronics”; Том 25, № 1116 (2016); 66-69 ; Вестник университета, серия «Радиофизика и электроника»; Том 25, № 1116 (2016); 66-69 ; Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Радіофізика та електроніка»; Том 25, № 1116 (2016); 66-69

    Περιγραφή αρχείου: application/pdf

  4. 4
  5. 5
  6. 6
    Academic Journal

    Συγγραφείς: Боцула, О. В.

    Πηγή: Visnyk of V.N. Karazin Kharkiv National University, series “Radio Physics and Electronics”; Том 24, № 1115 (2014); 91–94 ; Вестник университета, серия «Радиофизика и электроника»; Том 24, № 1115 (2014); 91–94 ; Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Радіофізика та електроніка»; Том 24, № 1115 (2014); 91–94

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal

    Πηγή: Devices and Methods of Measurements; Том 7, № 2 (2016); 161-168 ; Приборы и методы измерений; Том 7, № 2 (2016); 161-168 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2016-7-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/253/254; O. Kononchuk and B. -Y. Nguyen Silicon-on-insulator (SOI) Technology. Manufacture and Applications / eds., Woodhead Publishing, Sawston, Cambridge, UK, 2014, 474 p.; Sakurai T., Matsuzawa A., Douseki T. Fully-Depleted SOI CMOS Circuits and Technology for UltralowPower Applications, Springer, Dordrecht, The Netherlands, 2006, 411 p.; Celler G.K., Cristoloveanu S. Frontiers of siliconon-insulator. Journal of Applied Physics, 2003, vol. 93, no. 9, pp. 4955–4978.; Xin’an C., Qing’an H. A novel SOI MOSFET electrostatic field sensor. Journal of Semiconductors, 2010, vol. 31, no. 4, pp. 045003-1–045003-4.; Du W., Inokawa H., Satoh H., Ono A. SOI metaloxide-semiconductor field-effect transistor photon detector based on single-hole counting. Optics Letters, 2011, vol. 36, no 15, pp. 2800–2802.; Du W., Inokawa H., Satoh H., Ono A. Singlephoton detection by a simple silicon-on-insulator metaloxide-semiconductor field-effect Transistor. Japanese Journal of Applied Physics, 2012, vol. 51, pp. 06FE011–06FE01-4.; Sampedro C., Gamiz F., Godoy A., JimenezMolinos F. Quantum Ensemble Monte Carlo simulation of silicon-based nanodevices. Journal of Computational Electronics, 2007, no. 6, pp. 41–44.; Rengel R., Martin M.J., Gonzalez T., Mateos J., Pardo D., Dambrine G., Raskin J.-P., Danneville F. A microscopic interpretation of the RF noise performance of fabricated FDSOI MOSFETs. IEEE Transactions on Electron Devices, 2006, vol. 53, no. 3, pp. 523–532.; Zhevnyak O., Borzdov V., Borzdov A., Pozdnyakov D., Komarov F. Monte Carlo study of influence of channel length and depth on electron transport in SOI MOSFETs. Proceedings of SPIE, 2008, vol. 7025, pp. 70251L-1–70251L-8.; Gamiz F., Sampedro C., Donetti L., Godoy A. Monte-Carlo simulation of ultra-thin film siliconon-insulator MOSFETs. International Journal of High Speed Electronics and Systems, 2013, vol. 22, no. 1, pp. 1350001-1–1350001-32.; Fischetti M.V., Laux S.E. Monte Carlo analysis of electron transport in small semiconductor devices including band structure and space-charge effects. Physical Review B, 1988, vol. 38, no 14, pp. 9721–9745.; Duncan A., Ravaioli U., Jacumeit J. Fullband Monte Carlo investigation of hot carrier trends in the scaling of metal-oxide-semiconductor field-effect transistors. IEEE Transactions on Electron Devices, 1998, vol. 45, no. 4, pp. 867–876.; Buffler F.M., Schenk A., Fichtner W. Efficient Monte Carlo device modeling. IEEE Transactions on Electron Devices, 2000, vol. 47, no. 10, pp. 1891–1897.; Donetti L., Gamiz F., Biel B., Sampedro C. Twoband k·p model for Si-(110) electron devices. Journal of Applied Physics, 2013, vol. 114, pp. 073706-1–073706-7.; Rengel R., Pardo D., Martin M.J. A physically based investigation of the small-signal behaviour of bulk and fully-depleted silicon-on-insulator MOSFETs for microwave applications. Semiconductor Science and Technology, 2004, vol. 19, pp. 634–643.; Borzdov A.V., Borzdov V.M., V’yurkov V.V. Monte Carlo simulation of hot electron transport in deep submicron SOI MOSFET. Proceedings of SPIE, 2014, vol. 9440, pp. 944013-1–944013-7.; Hockney R.W., Eastwood J.W. Computer simulations using particles, McGraw-Hill, New York, 1981, 640 p.; Jacoboni C., Lugli P. The Monte Carlo method for semiconductor device simulation, Springer, Wien– New York, 1989, 357 p.; Gonzalez T., Pardo D. Physical models of ohmic contact for Monte Carlo device simulation. Solid-State Electronics, 1996, vol. 39, no. 4, pp. 555–562.; Jacoboni C., Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Reviews of Modern Physics, 1983, vol. 55, no. 3, pp. 645–705.; Rodriguez-Bolivar S., Gomez-Campos F.M., Carceller J.E. Simple analytical valence band structure including warping and non-parabolicity to investigate hole transport in Si and Ge. Semiconductor Science and Technology, 2005, no. 20, pp. 16–22.; Rodriguez-Bolivar S., Gomez-Campos F.M., Gamiz F., Carceller J.E. Implications of nonparabolicity, warping, and inelastic phonon scattering on hole transport in pure Si and Ge within the effective mass framework. Journal of Applied Physics, 2005, vol. 97, pp. 013702- 1–013702-10.; Gomez-Campos F.M., Rodriguez-Bolivar S., Carceller J.E. An efficient Monte Carlo procedure for studying hole transport in doped semiconductors. Journal of Computational Electronics, 2004, no. 3, pp. 329–332.; Keldysh L.V. Concerning the theory of impact ionization in semiconductors. Soviet Physics JETP, 1965, vol. 21, no. 6, pp. 1135–1144.; Kane E.O. Electron scattering by pair production in silicon. Physical Review, 1967, vol. 159, no. 3, pp. 624–631.; Fischetti M.V., Laux S.E., Crabbe E. Understanding hot-electron transport in semiconductor devices. Journal of Applied Physics, 1995, vol. 78, no. 2, pp. 1058–1087.; Ridley B.K. Soft-threshold lucky drift theory of impact ionization in semiconductors. Semiconductor Science and Technology, 1987, no. 22, pp. 116–122.; Speransky D., Borzdov A., Borzdov V. Impact ionization process in deep submicron MOSFET. International Journal of Microelectronics and Computer Science, 2012, vol. 3, no.1, pp. 21–24.; Borzdov V.M., Borzdov A.V., Speransky D.S., V’yurkov V.V., Orlikovsky A.A. Evaluation of the effective threshold energy of interband impact ionization in a deep-submicron silicon n-channel MOS transistor. Russian Microelectronics, 2014, vol. 43, no. 3, pp 189–193.; Sano N., Aoki T., Tomizawa M., Yoshii A. Electron transport and impact ionization in Si. Physical Review B, 1990, vol. 41, no. 17, pp. 12122–12128.; Sano N., Yoshii A. Impact ionization rate near thresholds in Si. Journal of Applied Physics, 1994, vol. 75, no. 10, pp. 5102–5105.; Kamakura Y., Mizuno H., Yamaji M., Morifuji M., Taniguchi K., Hamaguchi C., Kunikiyo T., Takenaka M. Impact ionization model for full band Monte Carlo simulation. Journal of Applied Physics, 1994, vol. 75, no. 7, pp. 3500–3507.; Kunikiyo T., Takenaka M., Morifuji M., Taniguchi K., Hamaguchi C. A model of impact ionization due to the primary hole in silicon for a full band Monte Carlo simulation. Journal of Applied Physics, 1996, vol. 79, no. 10, pp. 7718–7725.; https://pimi.bntu.by/jour/article/view/253

  8. 8
  9. 9
    Academic Journal

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika; Vol. 53 No. 8 (2010); 16-22 ; Известия высших учебных заведений. Радиоэлектроника; Том 53 № 8 (2010); 16-22 ; Вісті вищих учбових закладів. Радіоелектроніка; Том 53 № 8 (2010); 16-22 ; 2307-6011 ; 0021-3470

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Πηγή: Известия Томского политехнического университета

    Περιγραφή αρχείου: application/pdf

    Relation: Известия Томского политехнического университета [Известия ТПУ]. 2007. Т. 311, № 2 : Математика и механика. Физика; http://earchive.tpu.ru/handle/11683/1761

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/1761

  15. 15
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Скибенко Е. И. Фор-инжектор разделяемого вещества на основе пучково-плазменного разряда для ионно-атомных сепарационных технологий. Концептуальный проект. Часть вторая / Е. И. Скибенко, Ю. В. Ковтун, В. Б. Юферов // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Техника и электрофизика высоких напряжений. – Харьков : НТУ "ХПИ", 2007. – № 20. – С. 180-189.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/35324

  16. 16
  17. 17
  18. 18
    Academic Journal

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika; Том 53, № 8 (2010); 16-22
    Известия высших учебных заведений. Радиоэлектроника; Том 53, № 8 (2010); 16-22

    Σύνδεσμος πρόσβασης: http://radio.kpi.ua/article/view/S0021347010080029

  19. 19
  20. 20