Showing 1 - 4 results of 4 for search '"УРАВНЕНИЕ АВРАМИ-ЕРОФЕЕВА"', query time: 3.52s Refine Results
  1. 1
    Academic Journal

    Source: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 64, № 1 (2021); 51-64 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 64, № 1 (2021); 51-64 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2021-64-1

    File Description: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2041/1760; Корсак, Е. П. Формирование системы угроз энергетической безопасности Республики Беларусь / Е. П. Корсак // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2019. Т. 62, № 4. C. 388–398. https://doi.org/10.21122/1029-7448-2019-62-4-388-398.; Фортов, В. Е. Состояние развития возобновляемых источников энергии в мире и в России / В. Е. Фортов, О. С. Попель // Теплоэнергетика. 2014. № 6. С. 4–13.; Лосюк, Ю. А. Некоторые аспекты термохимической конверсии торфа / Ю. А. Лосюк, С. В. Жибрик, С. В. Корчиненко // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2008. № 5. C. 60–66.; Малько, М. В. Кинетика пиролиза древесной биомассы в изотермических условиях / М. В. Малько, С. В. Василевич // Вес. Нац. акад. навук Беларусі. Сер. фіз.-тэхн. навук. 2019. Т. 64, № 3. С. 321–331. https://doi.org/10.29235/1561-8358-2019-64-3-321-331; Василевич, С. В. Расчетное исследование выхода твердых продуктов пиролиза древесины при повышенном давлении / С. В. Василевич, М. В. Малько, Д. В. Дегтеров, А. Н. Асадчий // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2020. № 3. C. 253–263. https://doi.org/10.21122/1029-7448-2020-63-3-253-263; Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions / D. Gidaspow. San Diego: Academic Press, 1994. 467 p. https://doi.org/10.1016/C2009-0-21244-X; Hoef van der, M. A. Multiscale Modeling of Gas-Fluidized Beds / M. A. van der Hoef [et al.] // Advances in Chemical Engineering. 2006. Vol. 31. P. 65–149. https://doi.org/10.1016/s0065-2377(06)31002-2; Deen, N. G. Review of Discrete Particle Modeling of Fluidized Beds / N. G. Deen [et al.] // Chemical Engineering Science. 2007. Vol. 62, Iss. 1–2. P. 28–44. https://doi.org/10.1016/j. ces.2006.08.014; Добрего, К. В. Макрокинетические модели термического разложения доломита для расчета сорбционных систем газогенераторов / К. В. Добрего // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2015. № 5. С. 51–59.; Babkin, V. A. Turbulent Fluid Flows in a Circular Pipe and Plane Channel and Models of Mesoscale Turbulence / V. A. Babkin, V. N. Nikolaevskii // Journal of Engineering Physics and Thermophysics. 2011. Vol. 84, No. 2. P. 430–439. https://doi.org/10.1007/s10891-011-0489-5; Ge, W. Meso-scale Oriented Simulation Towards Virtual Process Engineering (VPE) – The EMMS Paradigm / W. Ge, W. Wang, N. Yang // Chemical Engineering Science. 2011. Vol. 66. Iss. 19. P. 4426–4458. https://doi.org/10.1016/j.ces.2011.05.029.; Dai, Q. Influence of Meso-scale Structures on Drag in Gas-solid Fluidized Beds / Q. Dai, C. Chen, H. Qi // Powder Technology. 2016. Vol. 288. P. 87–95. https://doi.org/10.1016/j.powtec.2015.10.031.; Mitrofanov, A. Application of the Theory of Markov Chains to Theoretical Study of Processes in a Circulating Fluidized Bed / A. Mitrofanov [et al.] // Particulate Science and Technology. 2019. Vol. 37. No. 8. P. 1028–1033. https://doi.org/10.1080/02726351.2018.1525459; Mitrofanov, A. V. Theoretical and Experimental Study of Particulate Solids Drying in Circulating Fluidized Bed / A. Mitrofanov [et al.] // JP Journal of Heat and Mass Transfer. 2019. Vol. 18. No. 2. P. 267–276. https://doi.org/10.17654/hm018020267; Zhukov, V. P. Simulation of Combined Heterogeneous Processes Based on Discrete Models of the Boltzmann Equation / V. P. Zhukov, A. N. Belyakov // Theor. Found. Chem. Eng. 2017. Vol. 51. P. 88–93. https://doi.org/10.1134/s0040579517010158; Pozzobon, V. Radiative Pyrolysis of Wet Wood under Intermediate Heat Flux: Experiments and Modelling / V. Pozzobon [et al.] // Fuel Processing Technology. 2014. Vol. 128. P. 319–330. https://doi.org/10.1016/j.fuproc.2014.07.007; Bryden, K. M. Modeling the Combined Impact of Moisture and Char Shrinkage on the Pyrolysis of a Biomass Particle / K. M. Bryden, M. J. Hagge // Fuel. 2003. 82. P. 1633–1644. https://doi.org/10.1016/s0016-2361(03)00108-x; Lu, H. Comprehensive Study of Biomass Particle Combustion / H. Lu // Energy and Fuels. 2008. Vol. 22. P. 2826–2839. https://doi.org/10.1021/ef800006z; Fatehi, H. A Comprehensive Mathematical Model for Biomass Combustion / H. Fatehi, X.S. Bai // Combustion Science and Technology. 2014. Vol. 186. P. 574–593. https://doi.org/10.1080/00102202.2014.883255; Mujumdar, A. S. Handbook of Industrial Drying / A. S. Mujumdar. 3rd ed. New York: CRC Press; Taylor & Francis Group, 2006. 1312 p. https://doi.org/10.1201/9781420017618; Исследование процесса получения древесного угля путем пиролиза под давлением / С. В. Василевич [и др.] // Вес. Нац. акад. навук Беларусі. Сер. фіз.-тэхн. навук. 2017. № 3. С. 64–71.; https://energy.bntu.by/jour/article/view/2041

  2. 2
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 64, № 3 (2019); 321-331 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 64, № 3 (2019); 321-331 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2019-64-3

    File Description: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/456/419; Theoretical Investigations of the Effects of Isothermal and Non-isothermal Heating Conditions on the Kinetics of Biomass Particle / M.G. Sobamowo [et al.] // Am. J. Biomass and Bioenergy. – 2016. – Vol. 5, № 1. – P. 1–23. https://doi.org/10.7726/ajbb.2016.1001; Prakash, N. Kinetic Modeling in Biomass Pyrolysis – A Review / N. Prakash, T. Karunanithi // J. Appl. Sci. Res. – 2008. – Vol. 4, №12. – P. 1627–1636.; Weerachanchai, P. Comparison of Pyrolysis Kinetic Models for Thermogravimetric Analysis of Biomass / P. Weerachanchai, Ch. Tangsathitkulchai, M. Tangsathitkulchai // Suranaree J. Sci. Technol. – 2010. – Vol. 17, №4. – P. 387–400.; Di Blasi, C. Modeling Chemical and Physical Processes of Wood and Biomass Pyrolysis / C. Di Blasi // Prog. Energy Combust. Sci. – 2008. – Vol. 34, №1. – P. 47–90. https://doi.org/10.1016/j.pecs.2006.12.001; Babu, B. V. Heat transfer and Kinetics in the Pyrolysis of Shrinking Biomass Particle / B.V. Babu, A.S. Chaurasia // Chem. Eng. Sci. – 2004. – Vol. 59. – P. 1999–2012. https://doi.org/10.1016/j.ces.2004.01.050; Thermal decomposition of biomass wastes. A kinetic study / M. Becidan [et al.] // Ind. Eng. Chem. Res. – 2007. – Vol. 46. – P. 2428–2437. https://doi.org/10.1021/ie061468z; Vyazovkin, S. Model-free and Model-ftting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data / S. Vyazovkin, Ch. A. Wight // Thermochim. Acta. – 1999. – Vol. 340–341. – P. 53–68. https://doi.org/10.1016/s0040-6031(99)00253-1; Han, Yunqing. Theoretical Study of Thermal Analysis Kinetics [Electronic resource]: Theses and Dissertations – Mechanical Engineering / Yunqing Han. – Lexington, Kentucky, 2014. – Mode of access: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1036&context=me_etds – Date of access: 15.05.2019.; Ebrahimi-Kahrizsangi, R. Evaluation of realibity of Coats-Redfern method for kinetic analysis of non-isothermal TGA / R. Ebrahimi-Kahrizsangi, M.H. Abbasi // Trans. Nonferrous Met. Soc. China. – 2008. – Vol. 18, iss. 1. – P. 217–221. https://doi.org/10.1016/S1003-6326(08)60039-4; Kinetics of the Thermal Decomposition of Biomass / A. Saddawit [et al.] // Energy Fuels. – 2010. – Vol. 24, № 2. – P. 1274–1282. https://doi.org/10.1021/ef900933k; https://vestift.belnauka.by/jour/article/view/456

  3. 3
  4. 4