Showing 1 - 20 results of 242 for search '"УПРУГИЕ СВОЙСТВА"', query time: 0.65s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Материалы XV Международной научно-технической конференции

    File Description: application/pdf

    Relation: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий: социально-экономические и экологические проблемы лесного комплекса : материалы XV Международной научно-технической конференции; https://elar.usfeu.ru/handle/123456789/12877

  7. 7
  8. 8
  9. 9
  10. 10
    Conference
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    File Description: application/pdf

    Relation: Богатырь М. С. Упругие свойства и критерий прочности армированного композита / М. С. Богатырь, Г. И. Львов // Вісник Національного технічного університету "ХПІ". Сер. : Динаміка і міцність машин = Bulletin of the National Technical University "KhPI". Ser. : Dynamics and Strength of Machines : зб. наук. пр. – Харків : НТУ "ХПІ", 2022. – № 1. – С. 52-66.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/59954

  19. 19
  20. 20
    Academic Journal

    Contributors: The study was carried out with the financial support of the grant of the Russian science foundation No. 18-79-10122 (methodology and experimental setup, research results) and the Kalashnikov Izhevsk State Technical University within the framework of the scientific project No. PAV / 20-90-17 (structuroscopy of the studied samples) using the UNU "information and measurement complex for studies of acoustic properties of materials and products" (reg. number: 586308).

    Source: Devices and Methods of Measurements; Том 12, № 1 (2021); 58-66 ; Приборы и методы измерений; Том 12, № 1 (2021); 58-66 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2021-12-1

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/700/578; Kolbun N.V., Petrov S.N., Prudnik A.M. Electromagnetic and acoustic characteristics of multilayer materials for integrated protection systems. Reports of the Belarusian State University of Informatics and Radioelectronics, 2009, no. 3(41), pp. 79‒85.; Kim B.-S., Seong Y., Park J. Modified twothickness method for measurement of the acoustic properties of porous materials. Applied Acoustics, 2019, vol. 146, pp. 184‒189. DOI:10.1016/j.apacoust.2018.10.033; Tiuca A.-E., Vermeşana H., Gabora T., Vasileb O. Improved sound absorption properties of polyurethane foam mixed with textile waste. Energy Procedia, 2016, vol. 85, pp. 559–565. DOI:10.1016/j.egypro.2015.12.245; Zhanga C., Lib J., Hua Z., Zhua F., Huanga Y. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity. Materials & Design, 2012, vol. 41, pp. 319‒325. DOI:10.1016/j.matdes.2012.04.031; Chen S., Zhu W., Cheng Y. Multi-Objective Optimization of Acoustic Performances of Polyurethane Foam Composites. Polymers, 2018, vol. 10, 788 p DOI:10.3390/polym10070788; Scarpa F., Bullough W.A., Lumley P. Rends in acoustic properties of iron particle seeded auxetic polyurethane foam. Journal of Mechanical Engineering Science, 2004, vol. 218, iss. 2, pp. 241‒244. DOI:10.1243/095440604322887099; Huangab K., Daiab L., Fanc Y. Applied Acoustics Characterization of noise reduction capabilities of porous materials under various vacuum conditions. Applied Acoustics, 2020, vol. 161, pp. 107‒155. DOI:10.1016/j.apacoust.2019.107155; Sgarda F., Castelb F., Atallac N. Use of a hybrid adaptive finite element/modal approach to assess the sound absorption of porous materials with meso-heterogeneities. Applied Acoustics, 2011, vol. 72, iss. 4, pp. 157‒168. DOI:10.1016/j.apacoust.2010.10.011; Chekkal I., Remillat C., Scarpa F. Acoustic properties of auxetic foams. WIT Transactions on The Built Environment, 2012, vol. 124, pp. 119‒129. DOI:10.2495/HPSM120111; Sua J., Zhenga L., Dengab Z. Study on acoustic properties at normal incidence of three-multilayer composite made of glass wool, glue and polyurethane foam. Applied Acoustics, 2019, vol. 156, pp. 319‒326. DOI:10.1016/j.apacoust.2019.07.016; Sung G., Kim J.H. Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Composites Science and Technology, 2017, vol. 146, pp. 147‒154. DOI:10.1016/j.compscitech.2017.04.029; Shuming C., Yang J. The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polymer composites, 2018, vol. 39, iss. 4, pp. 1370‒1381. DOI:10.1002/pc.24078; Çelebi S., Küçük H. Acoustic Properties of TeaLeaf Fiber Mixed Polyurethane Composites. Cellular Polymers, 2012, vol. 31, iss. 5, pp. 241‒256.DOI:10.1177/026248931203100501; Etchessahar M., Sahraoui S., Benyahia L., Tassin J.F. Frequency dependence of elastic properties of acoustic foams. The Journal of the Acoustical Society of America, 2005, vol. 117, iss. 3, p. 1114. DOI:10.1121/1.1857527; Kumar R., Jin Y., Marre S., Poncelet O., Brunet T., Leng J., Mondain-Monval O. Drying kinetics and acoustic properties of soft porous polymer materials. Journal of Porous Materials, Springer Verlag, inPress, 2020. DOI:10.1007/s10934-020-00987-w; Lenkov S.V., Molin S.M., Kopytov A.G. Resonance measurement technique for viscoelastic properties of damping materials of the porous closed cellular pe foam type. Russian Journal of Nondestructive Testing, 2014, vol. 50, iss. 3, pp. 180‒185 (in Russian). DOI:10.1134/S1061830914030061; Glushkov E.V., Glushkova N.V., Fomenko S.I. Influence of porosity on characteristics of rayleigh-type waves in multilayered half-space. Acoustical Physics, 2011, vol. 57, no. 2, pp. 230‒240 (in Russian). DOI:10.1134/S1063771011020059; Abdessalam H., Abbès B., Abbès F., Li Y., Guo Y.-Q. Prediction of acoustic properties of polyurethane foams from the macroscopic numerical simulation of foaming process. Applied Acoustics, 2017, vol. 120, pp. 129–136. DOI:10.1016/j.apacoust.2017.01.021; Pauzin S.A. Аccounting for anisotropy in the design of sound insulation of internal fences of high-rise buildings. Privolzhsky nauchnyj zhurnal, 2019, no. 4, pp. 40‒45.; Pasmanik L.A., Kamyshev A.V., Radostin A.V., Zaitsev V.Yu. Parameters of acoustic inhomogeneity for non-destructive evaluation of the influence of manufacturing technology and operational damage on the metal structure. Flaw detection, 2020, no. 12, pp. 24‒36. DOI:10.31857/S0130308220120039; Zlobin D.V., Volkova L.V., Bogdan O.P., Zemskov T.I., Kazantsev S.V. Universal experimental setup for acoustic research. Intelligent Systems in Production, 2020, vol. 18, no. 2, pp. 28‒36. DOI:10.22213 / 2410-9304-2020-2-28-36; Bogdan O.P., Muravyeva O.V., Platunov A.V., Rysev D.S. Investigation of the characteristics of foam polyethylene sheets by acoustic methods. Vestnik IzhSTU imeni M. T. Kalashnikov, 2020, vol. 24, no. 2, pp. 61‒68. DOI:10.22213/2413-1172-2020-2-61-68; Bogdan O.P., Zlobin D.V., Muravieva O.V., Muraviev V.V., Volkova L.V. Acoustic and Eddy Current Methods of Nondestructive Testing of Thermally Expanded Graphite Sheets. IOP Conference Series: Earth and Environmental Science, 2020, no. 543(1), pp. 012033. DOI:10.1088/1755-1315/543/1/012033; https://pimi.bntu.by/jour/article/view/700