Showing 1 - 20 results of 1,653 for search '"УЛЬТРАЗВУКОВОЕ ИССЛЕДОВАНИЕ"', query time: 0.87s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 15, № 4 (2024); 23-31 ; Лучевая диагностика и терапия; Том 15, № 4 (2024); 23-31 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1047/666; Choi J.H., Ro J.Y. The 2020 WHO classification of tumors of soft tissue: selected changes and new entities // Advances in anatomic pathology. 2021. Vol. 28, No. 1. P. 44–58. doi:10.1097/PAP.0000000000000284.; Siegel R.L., Miller K.D., Jemal A. et al. Cancer statistics, 2019 // CA Cancer J. Clin. 2019. Vol. 69, No. 1. P. 7–34. doi:10.3322/caac.21551.; Crombé A., Kind M., Fadli D. et al. Soft-tissue sarcoma in adults: Imaging appearances, pitfalls and diagnostic algorithms // Diagnostic and Interventional Imaging. 2023. Vol. 104. Р. 207–220. https://doi.org/10.1016/j.diii.2022.12.001.; Зайцев А.Н., Черная А.В., Ульянова Р.Х. и др. Выявление и дифференциация местного рецидива саркомы мягких тканей на фоне послеоперационных изменений с помощью эхографии // Онкологический журнал: лучевая диагностика, лучевая терапия. 2023. Т. 6, № 3. С. 24–31.; Nakamura T., Matsumine A., Matsubara T. et al. The symptom-to-Diagnosis delay in soft tissue sarcoma influence the overall survival and the development of distant metastasis // J. Surg. Oncol. 2011. Vol. 104, No 7. P. 771–775. doi:10.1002/jso.22006.; Oettel D.J., Bernard S.A. Review of primary superficial soft tissue mesenchymal tumors of malignant or intermediate biological potential // Skeletal Radiol. 2023. Vol. 52. P. 435–445. doi:10.1007/s00256-022-04127-0.; Зиновьев Г.В., Гафтон Г.И., Новиков С.Н. и др. Результаты лечения локально-рецидивирующих сарком мягких тканей конечностей // Вопросы онкологии. 2018. T. 64, № 3. С. 408–413.; Ozturk M., Selcuk M.B., Polat A.V. et al. The diagnostic value of ultrasound and shear wave elastography in the differentiation of benign and malignant soft tissue tumors // Skeletal Radiol. 2020. Vol. 49. P. 1795–1805. doi:10.1007/s00256–020–03492-y.; Cohen J. Riishede I., Carlsen J.F. et al. Can strain elastography predict malignancy of soft tissue tumors in a tertiary sarcoma center? // Diagnostics. 2020. Vol. 10, No. 3. P. 148. doi: https://doi.org/10.3390/diagnostics10030148.; Wu M., Ren A., Xu D. et al. Diagnostic performance of elastography in malignant soft tissue tumors: A systematic review and meta-analysis // Ultrasound in Medicine & Biology. 2021. Vol. 47, No. 4. P. 855–868. doi: https://doi.org/10.1016/j.ultrasmedbio.2020.12.017.; Кадырлеев Р.А., Багненко С.С., Бусько Е.А. и др. Мультипараметрическое ультразвуковое исследование с контрастным усилением кистозных образований почки в сопоставлении с методом компьютерной томографии // Медицинская визуализация. 2023. T. 27, № 1. C. 89–98.; Loizides A., Peer S., Plaikner M. et al. Perfusion pattern of musculoskeletal masses using contrast-enhanced ultrasound: a helpful tool for characterisation? // European radiology. 2012. Vol. 22. P. 1803–1811. doi: https://doi.org/10.1007/s00330-012-2407-4.; Wang P., Wu M., Li A. et al. Diagnostic value of contrast-enhanced ultrasound for differential diagnosis of malignant and benign soft tissue masses: a meta-analysis // Ultrasound in Medicine & Biology. 2020. Vol. 46, No. 12. P. 3179–3187. doi:10.1016/j.ultrasmedbio.2020.08.011.; Hu Y., Li A., Wu M. et al. Added value of contrast-enhanced ultrasound to conventional ultrasound for characterization of indeterminate soft-tissue tumors // The British Journal of Radiology. 2023. Vol. 96, No. 1141. P. 20220404. doi: https://doi.org/10.1259/bjr.20220404.; Зиновьев Г.В., Гафтон Г.И., Бусько Е.А. и др. Эффективность трепан-биопсии опухолей мягких тканей под контрастно-усиленной ультразвуковой навигацией // Саркомы костей, мягких тканей и опухоли кожи. 2017. T. 2. C. 32–38.; Daniels S.P., Mankowski Gettle L., Blankenbaker D.G. et al. Contrast-enhanced ultrasound-guided musculoskeletal biopsies: our experience and technique // Skeletal Radiology. 2021. Vol. 50. P. 673–681. doi: https://doi.org/10.1007/s00256-020-03604-8.; Сафин И.Р., Турсуметов Д.С., Родионова А.Ю. Саркомы мягких тканей: руководство для врачей. М.: ГЭОТАР-Медиа, 2021. 112 с.; Berquist T.H., Ehman R.L., King B.F. et al. Value of MR imaging in differentiating benign from malignant soft-tissue masses: study of 95 lesions // AJR. American Journal of Roentgenology. 1990. Vol. 155, No. 6. P. 1251–1255. doi: https://doi.org/10.2214/ajr.155.6.2122675.; Pernas O.R., Aguirre H.N., Yeregui S.T. et al. Role of diffusion-weighted MR imaging in the initial diagnosis of soft tissue tumours // Radiología (English Edition). 2023. P. 2173–5107. doi:10.1016/j.rxeng.2023.09.008.; Von Mehren M.M., Kane J.M., Agulnik et al. Soft tissue sarcoma, version 2.2022, NCCN clinical practice guidelines in oncology // Journal of the National Comprehensive Cancer Network. 2022. Vol. 20, No. 7. P. 815–833. doi: https://doi.org/10.6004/jnccn.2022.0035.; Kransdorf M.J., Murphey M.D. et al. ACR Appropriateness Criteria((R)) Soft-Tissue Masses // J. Am. Coll Radiol. 2018. Vol. 15, No. 5. P. S189–97. doi: https://doi.org/10.1016/j.jacr.2018.03.012.; Sedaghat S., Sedaghat M., Meschede J. et al. Diagnostic value of MRI for detecting recurrent soft-tissue sarcoma in a long-term analysis at a multidisciplinary sarcoma center // BMC Cancer. 2021. Vol. 21. P. 1–8. doi: https://doi.org/10.1186/s12885-021-08113-y.; Колобанова Е.С., Медведева Б.М. Возможности диффузионно-взвешенной МРТ в дифференциальной диагностике ранних рецидивов забрюшинных липосарком и послеоперационных изменений // Онкологический журнал: лучевая диагностика, лучевая терапия. 2021. T. 4, № 3. C. 44–55.; Goldman L.H., Perronne L., Alaia E.F. et al. Does magnetic resonance imaging after diagnostic ultrasound for soft tissue masses change clinical management? // Journal of Ultrasound in Medicine. 2021. Vol. 40, No. 8. P. 1515–1522. doi:10.1002/jum.15529.; Singer A.D., Wong P., Umpierrez M. et al. The accuracy of a novel sonographic scanning and reporting protocol to survey for soft tissue sarcoma local recurrence // Skeletal Radiol. 2020. Vol. 49. P. 2039–2049. doi:10.1007/s00256-020-03520-x.; Gruber L., Loizides A., Luger A.K. et al. Soft-tissue tumor contrast enhancement patterns: diagnostic value and comparison between ultrasound and MRI // American Journal of Roentgenology. 2017. Vol. 208, No. 2. P. 393–401. doi: https://doi.org/10.2214/AJR.16.16859.

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 16, № 3 (2025); 17-26 ; Лучевая диагностика и терапия; Том 16, № 3 (2025); 17-26 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1141/700; Harbeck N., Penault-Llorca F., Cortes J. et al. Breast cancer // Nature Reviews Disease Primers. 2019. Vol. 5, No. 1. Р. 66. doi:10.1038/s41572-019-0111-2.; Baker S.G., Prorok P.C. Breast cancer overdiagnosis in stop-screen trials: more uncertainty than previously reported // Journal of Medical Screening. 2020. Vol. 27, No. 4. Р. 232–236. doi:10.1177/0969141320950784.; Bitencourt A.G., Rossi Saccarelli C., Kuhl C., Morris E.A. Breast cancer screening in average-risk women: towards personalized screening // British Journal of Radiology. 2019. Vol. 92, No. 1103, Art. 20190660. doi:10.1259/bjr.20190660.; Pashayan N., Antoniou A.C., Ivanus U. et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement // Nature Reviews Clinical Oncology. 2020. Vol. 17, No. 11. Р. 687–705. doi:10.1038/s41571-020-0388-9.; Држевецкая К.С. Обзор подходов к массовому скринингу рака молочной железы в России и мире // Российский электронный журнал лучевой диагностики. 2020. Т. 10, № 4. С. 225–236. https://doi.org/10.21569/2222-7415-2020-10-4-225-236.; Азимханова Г.К., Узакбаева Ж.У. Распространенность рака молочной железы (обзор литературы) // Theoretical and Applied Science. 2020. № 2 (82). С. 350– 354. https://doi.org/10.15863/TAS.2020.02.82.57.; Chhikara B.S., Parang K. Global Cancer Statistics 2022: the trends projection analysis // Chemical Biology Letters. 2023. Vol. 10, No. 1. Р. 451.; Giaquinto A.N., Sung H., Newman L.A., et al. Breast cancer statistics 2024 // CA: A Cancer Journal for Clinicians. 2024. Vol. 74, No. 6. Р. 477–495. doi:10.3322/caac.21863.; Harkness E.F., Astley S.M., Evans D.G. Risk-based breast cancer screening strategies in women // Best Practice & Research Clinical Obstetrics and Gynaecology. 2020. Vol. 65. Р. 3–17. doi:10.1016/j.bpobgyn.2019.11.005.; Allweis T.M., Hermann N., Berenstein-Molho R., Guindy M. Personalized screening for breast cancer: rationale, present practices, and future directions // Annals of Surgical Oncology. 2021. Vol. 28, No. 3. Р. 1204–1216. doi:10.1245/s10434-020-09426-1.; Cerdas M., Farhat J., Elshafie S.I., et al. Exploring the evolution of breast cancer imaging: a review of conventional and emerging modalities // Cureus. 2025. Vol. 17, No. 4. e82762. doi:10.7759/cureus.82762.; Бурдина И.И., Запирова С.Б., Лабазанова П.Г. и др. Развитие маммографии в России и мире // Медицинский алфавит. 2023. № 27. С. 13–20. https://doi.org/10.33667/2078-5631-2023-27-13-20.; Nicosia L., Di Giulio G., Codari M. et al. History of mammography: analysis of breast imaging diagnostic achievements over the last century // Healthcare (Basel). 2023. Vol. 11, No. 11, Art. 1596. doi:10.3390/healthcare11111596.; Aristokli N., Christodoulou C., Masoura K. et al. Comparison of the diagnostic performance of MRI, ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient’s history: a review // Radiography. 2022. Vol. 28, No. 3. Р. 848–856. doi:10.1016/j.radi.2022.02.003.; Fico N., Pizzuto D., Menciassi A. et al. Breast imaging physics in mammography (Part I) // Diagnostics (Basel). 2023. Vol. 13, No. 20, 3227. doi:10.3390/diagnostics13203227.; Pereira R.O., Chojniak R., Bitencourt A.G.V. et al. Evaluation of the accuracy of mammography, ultrasound and magnetic resonance imaging in suspect breast lesions // Clinics (São Paulo). 2020. Vol. 75. e1805. doi:10.6061/clinics/2020/e1805.; Boca I., Pătraşcu A., Vasile C. et al. Pros and cons for automated breast ultrasound (ABUS): a narrative review // Journal of Personalized Medicine. 2021. Vol. 11, No. 8, P. 703. doi:10.3390/jpm11080703.; Sujlana P.S., Srivastava P.N., Gopinathan A. et al. Digital breast tomosynthesis: image acquisition principles and artifacts // Clinical Imaging. 2019. Vol. 55. Р. 188– 195. doi:10.1016/j.clinimag.2018.07.013.; Canelo-Aybar C., Posso M., Montero-Gutierrez N. et al. Digital breast tomosynthesis compared to diagnostic mammographic projections among women recalled at screening mammography: a systematic review for the ECIBC // Cancer Medicine. 2021. Vol. 10, No. 7. Р. 2191–2204. doi:10.1002/cam4.3776.; Hofvind S., Holen Å. S., Hovda T. et al. Two-view digital breast tomosynthesis versus digital mammography in a population-based screening programme (To-Be): a randomised, controlled trial // The Lancet Oncology. 2019. Vol. 20, No. 6. Р. 795–805. doi:10.1016/S1470-2045(19)30161-5.; Alabousi M., Shahid M., Tagliati F. et al. Digital breast tomosynthesis for breast cancer detection: a diagnostic test accuracy systematic review and meta-analysis // European Radiology. 2020. Vol. 30, No. 3. Р. 2058–2071. doi:10.1007/s00330-019-06467-3.; Skaane P., Bandos A.I., Gullien R. et al. Digital mammography versus digital mammography plus tomosynthesis in breast cancer screening: the Oslo Tomosynthesis Screening Trial // Radiology. 2019. Vol. 291, No. 1. Р. 23–30. doi:10.1148/radiol.2019180622.; Saadatmand S., Lourens M., Boosman H. et al. MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomised, controlled trial // The Lancet Oncology. 2019. Vol. 20, No. 8. Р. 1136–1147. doi:10.1016/S1470-2045(19)30320-5.; Zhu X., Yao X., Zhang L., Ma L. Diagnostic performance of mammography and magnetic resonance imaging for evaluating mammographically visible breast masses // Journal of International Medical Research. 2021. Vol. 49, No. 9. Art. 0300060520973092. doi:10.1177/0300060520973092.; Lee S.H., Shin H.J., Moon W.K. Diffusion-weighted magnetic resonance imaging of the breast: standardization of image acquisition and interpretation // Korean Journal of Radiology. 2021. Vol. 22, No. 1. Р. 9–33. doi:10.3348/kjr.2020.0803.; Baltzer P.A., Boetes C., Fischer U. et al. Diffusion-weighted imaging of the breast — a consensus and mission statement from the EUSOBI International Breast DWI Working Group // European Radiology. 2020. Vol. 30, No. 3. Р. 1436–1450. doi:10.1007/s00330-019-06374-7.; Bruno F., Tang J., Cheng H., Tsourkas A. Advanced magnetic resonance imaging techniques: technical principles and applications in nanomedicine // Cancers. 2022. Vol. 14, No. 7, Art. 1626. doi:10.3390/cancers14071626.; Серебрякова С.В., Шумакова Т.А., Юхно Е.А., Куцкая А.О. Возможности МР-маммографии в диагностике реконструированной молочной железы после комплексного лечения рака (обзор литературы с собственными клиническими наблюдениями) // Радиология — практика. 2021. № 3. С. 88–102. https://doi.org/10.52560/2713-0118-2021-3-88-102.; Newman L.A. Role of preoperative MRI in the management of newly diagnosed breast cancer patients // Journal of the American College of Surgeons. 2020. Vol. 230, No. 3. Р. 331–339. doi:10.1016/j.jamcollsurg.2019.11.012.; Kuhl C.K. Abbreviated magnetic resonance imaging for breast cancer screening: rationale, concept, and transfer to clinical practice // Annual Review of Medicine. 2019. Vol. 70. Р. 501–519. doi:10.1146/annurev-med-041217-010739.; Foglia E., Castorina P., Gianfredi V. et al. Budget impact analysis of breast cancer screening in Italy: the role of new technologies // Health Services Management Research. 2020. Vol. 33, No. 2. Р. 66–75. doi:10.1177/0951484820920491.; Hernández M. L., Sardanelli F., Giunta D. et al. Abbreviated magnetic resonance imaging in breast cancer: a systematic review of literature // European Journal of Radiology Open. 2021. Vol. 8, Art. 100307. doi:10.1016/j.ejro.2021.100307.; Najjar R. Redefining radiology: a review of artificial intelligence integration in medical imaging // Diagnostics (Basel). 2023. Vol. 13, No. 17, Art. 2760. doi:10.3390/diagnostics13172760.; Tan X.J., Bitencourt A.G.V., Brennan P.C., Tang J. Artificial intelligence in breast imaging: a scientometric umbrella review // Diagnostics (Basel). 2022. Vol. 12, No. 12, Art. 3111. doi:10.3390/diagnostics12123111.; Sheth D., Giger M. L. Artificial intelligence in the interpretation of breast cancer on MRI // Journal of Magnetic Resonance Imaging. 2020. Vol. 51, No. 5. Р. 1310– 1324. doi:10.1002/jmri.26911.; Bitencourt A., Rubin D.L., Vargas H.A. AI-enhanced breast imaging: where are we and where are we heading? // European Journal of Radiology. 2021. Vol. 142, Art. 109882. doi:10.1016/j.ejrad.2021.109882.; McKinney S.M., Sieniek M., Godbole V. et al. International evaluation of an AI system for breast cancer screening // Nature. 2020. Vol. 577, No. 7788. Р. 89–94. doi:10.1038/s41586-019-1799-6.; Kim H.E., Kim H.S., Moon W.K. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study // The Lancet Digital Health. 2020. Vol. 2, No. 3. Р. e138–e148. doi:10.1016/S2589-7500(20)30003-0.; Salim M., Rodríguez-Ruiz A., Helvie M.A. et al. External evaluation of three commercial artificial intelligence algorithms for independent assessment of screening mammograms // JAMA Oncology. 2020. Vol. 6, No. 10. Р. 1581–1588. doi:10.1001/jamaoncol.2020.2790.; Larsen M., Heiberg M.L., Balleyguier C., Zahl P.H. Performance of an AI system for breast cancer detection on screening mammograms from BreastScreen Norway // Radiology: Artificial Intelligence. 2024. Art. e230375. doi:10.1148/ryai.230375.; Park E.K., Hong H., Lee S.E., Kim E.K. Impact of AI for digital breast tomosynthesis on breast cancer detection and interpretation time // Radiology: Artificial Intelligence. 2024. Art. e230318. doi:10.1148/ryai.230318.; Lee S.E., Hong H., Kim E.K. Positive predictive values of abnormality scores from a commercial AI-based CAD for mammography // Korean Journal of Radiology. 2024. Vol. 25, No. 7. Р. 741–749. doi:10.3348/kjr.2023.1133.; Carter S., Leslie-Mazwi T., Horvitz E., Mattick J. S. Ethical, legal and social implications of artificial intelligence systems for screening and diagnosis // Conference paper. 2019.; Niehoff J.H., Kalaitzidis J., Kroeger J.R. et al. Evaluation of the clinical performance of an AI-based application for automated analysis of chest X-rays // Scientific Reports. 2023. Vol. 13, No. 1, Art. 3680. doi:10.1038/s41598-023-29661-3.; Geis J.R., Brady A.P., Wu C.C. et al. Ethics of artificial intelligence in radiology: summary of the joint European and North American multisociety statement // Radiology. 2019. Vol. 293, No. 2. Р. 436–440. doi:10.1148/radiol.2019191586.; Tachkov K., Damyanova I., Atanasova K. Barriers to use artificial intelligence methodologies in health technology assessment in Central and East European countries // Frontiers in Public Health. 2022. Vol. 10, Art. 921226. doi:10.3389/fpubh.2022.921226.

  20. 20