Showing 1 - 20 results of 85 for search '"Т-РЕГУЛЯТОРНЫЕ КЛЕТКИ"', query time: 1.02s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: Laboratory animals were obtained with the support of the Budgetary funding for basic scientific research No. 122042700001-9 and DC cultivation and FC analysis were supported by the Russian Science Foundation (RSF) grant No. 20-64-47020.

    Source: Medical Immunology (Russia); Том 25, № 3 (2023); 587-594 ; Медицинская иммунология; Том 25, № 3 (2023); 587-594 ; 2313-741X ; 1563-0625

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2831/1684; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/11905; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/11909; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/11910; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/11912; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/11913; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/11914; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/11915; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/12292; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/12293; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/12294; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/12295; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2831/12350; Abdul-Aziz M.A., Cooper A., Weyrich L.S. Exploring relationships between host genome and microbiome: new insights from genome-wide association studies. Front. Microbiol., 2016, Vol. 7, 1611. doi:10.3389/fmicb.2016.01611.; Betz V.D., Achasova K.M. Borisova M.A., Kozhevnikova E.N., Litvinova E.A. The role of glycoprotein mucin 2 and l-fucose in the interaction of immunity and microflora of experimental model of inflammatory bowel diseases. Biochemistry, 2022, Vol. 87, no. 3, pp. 356-375.; Dekkers K.F., Sayols-Baixeras S., Baldanzi G., Nowak C., Hammar U., Nguyen D., Varotsis G., Brunkwall L., Nielsen N., Eklund A.C., Holm J.B., Nielsen H.B., Ottosson F., Lin Y.-T., Ahmad S., Lind L., Sundström J., Engström G., Smith J.G., Ärnlöv J., Orho-Melander M., Fall T. An online atlas of human plasma metabolite signatures of gut microbiome composition. Nat. Commun., 2022, Vol. 13, 5370. doi:10.1038/s41467-022-33050-0.; Drakes M., Blanchard T., Czinn S. Bacterial probiotic modulation of dendritic cells. Infect. Immun., 2004, Vol. 72, no. 6, pp. 3299-3309.; Haller D., Bode C., Hammes W.P., Pfeifer A.M., Schiffrin E.J., Blum S. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut, 2000, Vol. 47, no. 1, pp. 79-87.; Hatcher G.E., Lambrecht R.S. Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy Sci., 1993, Vol. 76, pp. 2485-2492.; Johnson E.L., Heaver S.L., Walters W.A., Ley R.E. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. J. Mol. Med. (Berl.), 2016, Vol. 95, pp. 1-8.; Marcial G.E., Ford A.L., Haller M.J., Gezan S.A., Harrison N.A., Cai D., Meyer J.L., Perry D.J., Atkinson M.A., Wasserfall C.H., Garrett T., Gonzalez C.F., Brusko T.M., Dahl W.J., Lorca G.L. Lactobacillus johnsonii N6.2 modulates the host immune responses: a double-blind, randomized trial in healthy adults. Front. Immunol., 2017, Vol. 8, 655. doi:10.3389/fimmu.2017.00655.; Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J. Exp. Med., 2001, Vol. 193, no. 2, pp. 5-9.; Youssef A.R., Elson C.J. Induction of IL-10 cytokine and the suppression of T cell proliferation by specific peptides from red cell band 3 and in vivo effects of these peptides on autoimmune hemolytic anemia in NZB mice. Auto Immun Highlights, 2017, Vol. 8, no. 1, 7. doi:10.1007/s13317-017-0095-4.; https://www.mimmun.ru/mimmun/article/view/2831

  4. 4
    Academic Journal

    Contributors: Институт фундаментальной биологии и биотехнологии, Кафедра медицинской биологии

    Source: Инфекция и иммунитет, Vol 9, Iss 1, Pp 115-127 (2019)

  5. 5
  6. 6
    Academic Journal

    Source: Biomedical Photonics; Том 9, № 2 (2020); 10-17 ; 2413-9432 ; 10.24931/2413-9432-2020-9-2

    File Description: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/422/292; https://www.pdt-journal.com/jour/article/view/422/303; Kim B., Jerome D., Yeung J. Diagnosis and management of psoriasis // Can. Fam. Physician. – 2017. – Vol. 63, No. 4. – P. 278–285.; Kalyan S., Shirazi N., Jindal R., et al. Effect of Methotrexate Therapy on p53 and Bcl2 Expression in Patients with Psoriasis: A Prospective Hospital-Based Cohort Study // Ann. Med. Health. Sci. Res. – 2018. – Vol. 8, No. 1. – P. 84–89.; Raj D., Brash D., Grossman D. Keratinocyte apoptosis in epidermal development and disease // J. Invest. Dermatol. – 2006. – Vol. 126, No. 2. – P. 243–57; Moorchung N., Vasudevan B., Kumar D., et al. Expression of apoptosis regulating proteins p53 and bcl-2 in psoriasis // Indian Journal of Pathology and Microbiology. – 2015. – Vol. 58, No. 4. – P. 423–426.; Yoo I., Lee J., Song S., et al. T‐helper 17 cells: the driving force of psoriasis and psoriatic arthritis // Int. J. Rheum. Dis. – 2012. – Vol. 15, No. 6. – P. 531–537.; Mattozzi C., Salvi M., D’Epiro S. et al. Importance of regulatory T cells in the pathogenesis of psoriasis: review of the literature // Dermatology. – 2013. – Vol. 227, No. 2. – P. 134–145.; Tang Q., Bluestone J. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation // Nat. Immunol. – 2008. – Vol. 9, No. 3. – P. 239–244.; Zhang L., Yang l., Wei J., et al. Characterization of Th17 and FoxP3+ Treg Cells in Paediatric Psoriasis Patients // Scandinavian Journal of Immunology. – 2016. – Vol. 83, No. 3. – P. 174–180.; Feldman S., Fleischer A., Cooper J. New topical treatments change the pattern of treatment of psoriasis: dermatologists remain the primary providers of this care // Int. J. Dermatol. – 2000. – Vol. 39, No. 1. – P. 41–44.; Horn E., Fox K., Patel V. et al. Are patients with psoriasis undertreated? Results of National Psoriasis Foundation survey // J. Am. Acad. Dermatol. – 2007. – Vol. 57, No. 6. – P. 957–62.; Mason A., Mason J., Cork M., et al. Topical treatments for chronic plaque psoriasis: An abridged Cochrane Systematic Review // J. Am. Acad. Dermatol. – 2013. – Vol. 69, No. 5. – P. 799–807.; Menter A., Korman N., Elmets C., et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 5. Guidelines of care for the treatment of psoriasis with phototherapy and photochemotherapy // J. Am. Acad. Dermatol. – 2010. – Vol. 62, No. 1. – P. 114–35.; Weatherhead S., Farr P., Jamieson D, et al. Keratinocyte apoptosis in epidermal remodeling and clearance of psoriasis induced by UV radiation // J. Invest. Dermatol. – 2011. – Vol. 131, No. 9. – P. 1916–26.; Wong T., Hsu L., Liao W. Phototherapy in Psoriasis: A review of mechanisms of action // J. Cutan. Med. Surg. – 2013. – Vol. 17, No. 1. – P. 6–12.; Н.Г. Короткий, В.Ю. Уджуху, А.Э. Абдуллаева. Терапевтические возможности тимодепрессина у больных псориазом и механизмы его лечебного действия // Поликлиника. – 2013. – Т. 1, №1. – С. 105–107.

  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Rheumatology Science and Practice; Vol 56, No 4 (2018); 423-428 ; Научно-практическая ревматология; Vol 56, No 4 (2018); 423-428 ; 1995-4492 ; 1995-4484 ; 10.14412/rsp20184

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2586/1729; Van Noort JM, van Sechel A, Boon J, et al. Minor myelin proteins can be major targets for peripheral blood T cells from both multiple sclerosis patients and healthy subjects. J Neuroimmunol. 1993;46:67-72. doi:10.1016/0165-5728(93)90234-P; Lohmann T, Leslie RD, Londei M. T cell clones to epitopes of glutamic acid decarboxylase 65 raised from normal subjects and patients with insulin-dependent diabetes. J Autoimmun. 1996;9:385-9. doi:10.1006/jaut.1996.0052; Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol. 2001;19:225-52. doi:10.1146/annurev.immunol.19.1.225; Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol. 2010;11:21-7. doi:10.1038/ni.1817; Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторные клетки при ревматических заболеваниях. Научно-практическая ревматология. 2014;52(4):430-7; Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775-87.; Zeng H, Chi H. The interplay between regulatory T cells and metabolism in immune regulation. OncoImmunology. 2013;2(11):e26586. Epub 2013 Oct 21. doi:10.4161/onci.26586; Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007;204(1):57-63. doi:10.1084/jem.20061852. Epub 2007 Jan 2.; Buckner JH. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10: 849-59. doi:10.1038/nri2889; Wildin RS, Freitas A. IPEX and FOXP3: clinical and research perspectives. J Autoimmun. 2005;25 Suppl:56-62. doi:10.1016/j.jaut.2005.04.008; Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20:62-70. doi:10.1038/nm.3432; Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593-603. doi:10.1084/jem.183.6.2593; Yokosuka T, Kobayashi W, Takamatsu M, et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 2010;33:326-39. doi:10.1016/j.immuni.2010.09.006; Cribbs AP, Kennedy A, Penn H, et al. Regulatory T cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the IDO pathway. Arthritis Rheum. 2014;66(9):2344-54. doi:10.1002/art.38715; Schneider H, Downey J, Smith A, et al. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313:1972-5. doi:10.1126/science.1131078; Sperling AI, Bluestone JA. ICOS costimulation: it's not just for TH2 cells anymore. Nat Immunol. 2001;2:573-4. doi:10.1038/89709; Bonhagen K, Liesenfeld O, Stadecker MJ, et al. ICOS Th cells produce distinct cytokines in different mucosal immune responses. Eur J Immunol. 2003;33:392-401. doi:10.1002/immu.200310013; Hill D, Eastaff-Leung N, Bresatz-Atkins S, et al. Inhibition of activation induced CD154 on CD4+CD25- cells: a valid surrogate for human Treg suppressor function. Immunol Cell Biol.2012;90:812-21. doi:10.1038/icb.2012.18; Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8:239-45. doi:10.1038/ni1443; Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813-24. doi:10.1093/intimm/dxm057; Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. doi:10.1146/annurev.immunol.26.021607.090331; Насонов ЕЛ, Каратеев ДЕ, Балабанова РМ. Ревматоидный артрит. В кн.: Насонов ЕЛ, Насонова ВА, редакторы. Ревма-тология: Национальное руководство. Москва: ГЭОТАР-Ме-диа; 2008. С. 290-331; Firestein G. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356-61. doi:10.1038/nature01661; Cope A. T cells in rheumatoid arthritis. Arthr Res Ther. 2008;10(Suppl1):S1. doi:10.1186/ar2412; Choy E. Selective modulation of T cell co-stimulation: a novel mode of action for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2009;27:510-8.; Tak PP. Is early rheumatoid arthritis the same disease process as late rheumatoid arthritis? Best Pract Res Clin Rheumatol. 2001;15:17-26. doi:10.1053/berh.2000.0123; Katrib A, Tak PP, Bertouch JV, et al. Expression of chemokines and matrix metalloproteinases in early rheumatoid arthritis. Rheumatology. 2001;40:988-94. doi:10.1093/rheumatology/40.9.988; Smeets TJ, Dolhain RJEM, Miltenburg AM, et al. Poor expression of T cell-derived cytokines and activation and proliferation markers in early rheumatoid synovial tissue. Clin Immunol Immunopathol. 1998;88:84-90. doi:10.1006/clin.1998.4525; Cao D, van Vollenhoven R, Klareskog L, et al. CD25+CD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther. 2004;6:R335-46. doi:10.1186/ar1192; Jiao Z, Wang W, Jia R, et al. Accumulation of FoxP3- expressing CD4+CD25+ T cells with distinct chemokine receptors in syn-ovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol. 2007;36:428-33. doi:10.1080/03009740701482800; Sempere-Ortells JM, Perez-Garcia V, Marin-Alberca G, et al. Quantification and phenotype of regulatory T cells in rheumatoid arthritis according to disease activity Score-28. Autoimmunity. 2009;42:636-45. doi:10.3109/08916930903061491; Van Amelsfort JMR, Jacobs KMG, Bijlsma JWJ, et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50:2775-85.; Han GM, O'Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2008;253:92-101. doi:10.1016/j.cellimm.2008.05.007; Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009b;30:899-911.; Miyara M, Ito Y, Sakaguchi S. T reg-cell therapies for autoimmune rheumatic duseases. Nat Rev Rheumatol. 2014.; Prakken B, Wehrens E, van Wijl F. Quality or Quantity? Unraveling the role of T reg cells in rheumatoid arthritis. Arthritis Rheum. 2013;65:552-4. doi:10.1002/art.37831; Moradi B, Schnatzer P, Hagmann S, et al. CD4+CD25+/highCD127low/regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints – analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthritis Res Ther. 2014;16:R97. doi:10.1186/ar4545; Cao D, Malmstrom V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells fromthe target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003;33:215-23. doi:10.1002/immu.200390024; Mottonen M, Heikkinen J, Mustonen L, et al. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exper Immunol. 2005;140:360-7.; Liu M-F, Wang C-R, Fung L-L, et al. The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and syn-ovial fluid of patients with rheumatoid arthritis. Scand J Immunol. 2005;62:312-7. doi:10.1111/j.1365-3083.2005.01656.x; Lawson CA, Brown AK, Bejarano V, et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology. 2006;45:1210-7. doi:10.1093/rheumatology/kel089; Pawlowska J, Smolenska Z, Witkowski J, Bryl E. Different pattern of T-cell subpopulations in peripheral blood of patients with rheumatoid arthritis at various stages of disease development. Polskie Archiwum Medycyny Wewnеtrznej. 2014;124(1-2).; Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004;200:277-85.; Авдеева АС, Рубцов ЮП, Попкова ТВ и др. Взаимосвязь FoxP3+ регуляторных Т-клеток с активностью заболевания; и уровнем антител при раннем ревматоидном артрите. Научно-практическая ревматология. 2017;55(4):360-7; Weyand CM, Fulbright JW, Goronzy JJ. Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol. 2003;38:833-41. doi:10.1016/S0531-5565(03)00090-1; Dejaco C, Duftner C, Klauser A, et al. Altered T-cell subtypes in spondyloarthritis, rheumatoid arthritis and polymyalgia rheumatica. Rheumatol Int. 2010;30:297-303. doi:10.1007/s00296-009-0949-9; Bryl E, Vallejo AN, Matteson EL, et al. Modulation of CD28 expression with anti-tumor necrosis factor alpha therapy in rheumatoid arthritis. Arthritis Rheum. 2005;52:2996-3003. doi:10.1002/art.21353; Pawlowska J, Mikosik A, Soroczynska-Cybula M, et al. Different distribution of CD4 and CD8 T cells in synovial membrane and peripheral blood of rheumatoid arthritis and osteoarthritis patients. Folia Histochem Cytobiol. 2009;47:627-32.

  10. 10
    Academic Journal

    Source: Bulletin of Siberian Medicine; Том 17, № 1 (2018); 199-210 ; Бюллетень сибирской медицины; Том 17, № 1 (2018); 199-210 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2018-17-1

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/1130/791; Katabathina V., Menias C.O., Pickhardt P., Lubner M., Prasad S.R. Complications of Immunosuppressive Therapy in Solid Organ Transplantation. Radiol. Clin. N. Am. 2015; 54. (2): 303–319. DOI:10.1016/j.rcl.2015.09.009.; Sagoo P., Ali N., Garg G., Nestle F.O., Lechler R.I., Lombardi G. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T-cells. Sci. Transl. Med. 2011; 3 (83): p.83ra42. DOI:10.1126/scitranslmed.3002076.; Hanash A.M., Levy R.B. Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood. 2005; 105 (4): 1828–1836. DOI:10.1182/blood-2004-08-3213.; Dijke I.E., Weimar W., Baan C.C. Regulatory T cells after organ transplantation: where does their action take place? Hum. Immunol. 2008; 69 (7): 389–398. DOI:10.1016/j.humimm.2008.05.006.; Sakaguchi S., Vignali D.A.A., Rudensky A.Y., Niec R.E., Waldmann H. The plasticity and stability of regulatory T cells. Nature Reviews Immunology. 2013; 13: 461–467. DOI:10.1038/nri3464.; Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann. Rev. Immunol. 2004; 22: 531– 562. DOI:10.1146/annurev.immunol.21.120601.141122.; Abbas A.K. et al. Regulatory T-cells: recommendations to simplify the nomenclature. Nature Immunol. 2013; 14: 307–308. DOI:10.1038/ni.2554.; Zeng M., Guinet E., Nouri-Shirazi M. B7-1 and B7-2 differentially control peripheral homeostasis of CD4(+)CD25(+) Foxp3(+) regulatory T cells. Transplant. Immunology. 2009; 20: 171–179. DOI:10.1016/j.trim.2008.09.009.; Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., Shimizu J., Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. International Immunology. 1998; 10: 969–1980.; Golshayan D., Jiang S., Tsang J., Garin M.I., Mottet C., Lechler R.I. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 2007; 109: 827–835. DOI:10.1182/blood-2006-05-025460.; Joffre O., Santolaria T., Calise D., Al Saati T., Hudrisi- er D., Romagnoli P., van Meerwijk J.P. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat. Med. 2008; 14: 88–92. DOI:10.1038/nm1688.; Todo S., Yamashita K., Goto R., Zaitsu M., Nagatsu A., Oura T., Watanabe M., Aoyagi T., Suzuki T., Shimamura T. et al. A рilot study of оperational tolerance with a regulatory T cell-based cell therapy in living donor liver transplantation. Hepatology. 2016; 64 (2): 632–643. DOI:10.1002/hep.28459.; Baecher-Allan C., Brown J.A., Freeman G.J. and Hafler D.A. CD4+CD25 high regulatory cells in human peripheral blood. J. Immunol. 2001; 167: 1245–1253. URL: https://doi.org/10.4049/jimmunol.167.3.1245.; Hoffmann P., Eder R., Boeld T.J., Doser K., Piseshka B., Andreesen R. et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 2006; 108 (13): 4260–4267. DOI:10.1182/blood-2006-06-027409.; Hoffmann P., Boeld T.J., Eder R., Huehn J., Floess S., Wieczorek G. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 2009; 39 (4): 1088– 1097. DOI:10.1002/eji.200838904.; Yang X.O., Nurieva R., Martinez G.J., Kang H.S., Chung Y., Pappu B.P. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008; 29 (1): 44–56. DOI:10.1016/j.immuni.2008.05.007.; Miyao T., Floess S., Setoguchi R., Luche H., Fehling H.J., Waldmann H., Huehn J., Hori S. Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity. 2012; 36 (2): 262–275. DOI:10.1016/j.immuni.2011.12.012.; Gagliani N.I., Magnani C.F., Huber S., Gianolini M.E., Pala M. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 2013; 19 (6): 739–746. DOI:10.1038/nm.3179.; Fujio K., Okamura T. and Yamamoto K. The family of IL-10-secreting CD4+ T cells. Advances in Immunology. 2010; 105: 99–129. DOI:10.1016/S0065-2776(10)05004-2.; Weiner H.L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol. Rev. 2001; 182: 207–214. DOI:10.1034/j.1600-065X.2001.1820117.x.; Shevach E.M. Mechanisms of foxp3+ T regulatory cell mediated suppression. Immunity. 2009; 30 (5): 636–645. DOI:10.1016/j.immuni.2009.04.010.; Deaglio S., Dwyer K.M., Gao W., Friedman D., Usheva A., Erat A. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007; 204: 1257– 1265. DOI:10.1084/jem.20062512.; Liu W., Putnam A.L., Xu-Yu Z., Szot G.L., Lee M.R., Zhu S. et al. CD127expressionin versely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med. 2006; 203: 1701–1711. DOI:10.1084/jem.20060772.; Hartigan-O’Connor D.J., Poon C., Sinclair E. et al. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J. Immunol. Methods. 2007; 319: 41–52. DOI:10.1016/j.jim.2006.10.008.; Putnam A.L., Safinia N., Medvec A., Laszkowska M., Wray M., Mintz M.A. et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am. J. Transplant. 2013; 13 (11): 3010–3020. DOI:10.1111/ajt.12433.; Thomson A.W., Turnquist H.R., Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 2009; 9 (5): 324–337. DOI:10.1038/nri2546.; Zeiser R., Leveson-Gower D.B., Zambricki E.A., Kambham N., Beilhack A., Loh J. et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood. 2008; 111 (1): 453–462. DOI:10.1182/blood-2007-06-094482.; Segundo D.S., Ruiz J.C., Izquierdo M., Fernandez-Fresnedo G., Gomez- Alamillo C., Merino R. et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation. 2006; 82 (4): 550–557. DOI:10.1097/01.tp.0000229473.95202.50.; Tresoldi E., Dell’albani I., Stabilini A., Jofra T., Valle A., Gagliani N. et al. Stability of human rapamycin-expanded CD4+CD25+ T regulatory cells. Haematologica. 2011; 96 (9): 1357–1365. DOI:10.3324/haematol.2011.041483.; Rossetti M., Spreafico R., Saidin S., Chua C., Moshref M., Leong J.Y. et al. Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the Foxp3 regulatory T cell-specific demethylated region. J. Immunol. 2015; 194 (1): 113–124. DOI:10.4049/jimmunol.1401145.; Theodosiou M., Laudet V., Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol. Life Sci. 2010; 67 (9): 1423–1445. DOI:10.1007/s00018-010-0268-z.; Lu L., Lan Q., Li Z., Zhou X., Gu J., Li Q. et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc. Nat. Acad. Sci. USA. 2014; 111 (33): 3432–3440. DOI:10.1073/pnas.1408780111.; Lu L., Ma J., Li Z., Lan Q., Chen M., Liu Y. et al. Alltrans retinoic acid promotes TGF-beta-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS One. 2011; 6 (9): e24590. DOI:10.1371/journal.pone.0024590.; Basu R., Whitley S.K., Bhaumik S., Zindl C.L., Schoeb T.R., Benveniste E.N. et al. IL-1 signaling modulates activation of STAT transcription factors to antago-nize retinoic acid signaling and control the TH17 cell-iTreg cell balance. Nat. Immunol. 2015; 16 (3): 286–295. DOI:10.1038/ni.3099.; Smolders J., Thewissen M., Peelen E., Menheere P., Tervaert J.W., Damoiseaux J. et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One. 2009; 4 (8): e.6635. DOI:10.1371/journal.pone.0006635.; Urry Z., Chambers E.S., Xystrakis E., Dimeloe S., Richards D.F., Gabrysova L. et al. The role of 1alpha,25-dihydroxyvitamin D3 and cytokines in the pro-motion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur. J. Immunol. 2012; 42 (10): 2697–2708. DOI:10.1002/eji.201242370.; Chambers E.S., Suwannasaen D., Mann E.H., Urry Z., Richards D.F., Lertmemongkolchai G. et al. 1alpha,25-dihydroxyvitamin D3 in combination with transforming growth factor-beta increases the frequency of Foxp3(+) regulatory T cells through preferential expansion and usage of interleukin-2. Immunology. 2014; 143 (1): 52–60. DOI:10.1111/imm.12289.; Trenado A., Charlotte F., Fisson S., Yagello M., Klatzmann D., Salomon B.L. et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Invest. 2003; 112 (11): 1688–1696. DOI:10.1172/JCI17702.; Brusko T.M., Koya R.C., Zhu S., Lee M.R., Putnam A.L., McClymont S.A. et al. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer. PLoS One. 2010; 5 (7): e11726. DOI:10.1371/journal. pone.0011726.; Jethwa H., Adami A.A., Maher J. Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time? Clin. Immunol. 2014; 150 (1): 51–63. DOI:10.1016/j.clim.2013.11.004.; Hoffmann P., Ermann J., Edinger M., Fathman C.G., Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 2002;196: 389–399. DOI:10.1084/jem.20020399.; Di Ianni M., Falzetti F., Carotti A., Terenzi A., Castellino F., Bonifacio E. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011; 117 (14): 3921–3928. DOI:10.1182/ blood-2010-10-311894.; Hillard M. Lazarus. Acute leukemia in adults: novel allogeneic transplant strategies. Hematology. 2012; 17 (1): 47–51. DOI:10.1179/102453312X13336169155493.; Godfrey W.R., Ge Y.G., Spoden D.J., Levine B.L., June C.H. et al. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood. 2004; 104: 453–461. DOI:10.1182/blood-2004-01-0151.; Jessica Heinrichs, David Bastian, Anandharaman Veerapathran, Claudio Anasetti, Brain Betts, and Xue-Zhong Yu Regulatory T-Cell Therapy for Graft-versus-host Disease. J. Immunol. Res. Ther. 2016; 1 (1): 1–14.; Jie Yang, Huahua Fan, Jun Hao, Yana Ren, Liang Chen, Guiping Li, Rufeng Xie, Yiming Yang, Kaicheng Qian, and Mingyao Liu. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/ Th17 balance in a mouse model. Transfusion. 2012; 52 (6): 1333–1347. DOI:10.1111/j.1537-2995.2011.03448.x.; Brunstein C.G., Miller J.S., Cao Q., McKenna D.H., Hippen K.L., Curtsinger J. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011; 117 (3): 1061–1070. DOI:10.1182/ blood-2010-07-293795.; Beres A., Komorowski R., Mihara M., Drobyski W.R. Instability of Foxp3 expression limits the ability of induced regulatory T cells to mitigate graft versus host disease. Clin. Cancer Res. 2011; 17: 3969–3983. DOI:10.1158/1078-0432.CCR-10-3347.; Zhang P., Tey S.K., Koyama M., Kuns R.D., Olver S.D. et al. Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo. J. Immunol. 2013; 191: 5291–5303. DOI:10.4049/jimmunol.1301181.; Kenrick Semple, Yu Yu, Dapeng Wang, Claudio Anasetti, and Xue-Zhong Yu. Efficient and selective prevention of GVHD by antigen-specificiInduced Tregs via linked-suppression in mice. Biol. Blood Marrow Transplant. 2011; 17 (3): 309–318. DOI:10.1016/j.bbmt.2010.12.710.; Hippen K.L., Merkel S.C., Schirm D.K., Nelson C., Tennis N.C., Riley J.L., June C.H., Miller J.S., Wagner J.E. and Blazar B.R. Generation and large-scale expansion of human inducible regulatory T cells that suppress graftversus-host disease. Am. J. Transplant. 2011; 11 (6): 1148–1157. DOI:10.1111/j.1600-6143.2011.03558.x.; Aline Gaidot, Dan Avi Landau, Gae lle He´ le`ne Martin, Olivia Bonduelle, Yenkel Grinberg-Bleyer, Diana Matheoud, Sylvie Gregoire, Claude Baillou, Be´hazine Combadiere, Eliane Piaggio et al. Immune reconstitution is preserved in hematopoietic stem cell transplantation coadministered with regulatory T cells for GVHD prevention. Blood. 2011; 117 (10): 2975–2983. DOI:10.1182/ blood-2010-08-299974.; Keli L. Hippen, James L. Riley, Carl H. June, and Bruce R. Blazar Clinical perspectives for regulatory T cells in transplantation tolerance. Semin. Immunol. 2011; 23 (6): 462–468. DOI:10.1016/j.smim.2011.07.008.; Amy J. Beres, William R. Drobyski. The role of regulatoryT cells in the biology of graft versus host disease. Front. Immunol. 2013; 4: 163. DOI:10.3389/fimmu.2013.00163.; Eun-Sol Lee, Jung-Yeon Lim, Keon-Il Im, Nayoun Kim, Young-Sun Nam, Young-Woo Jeon, Seok-Goo Cho. Adoptive transfer of Treg cells combined with mesenchymal stem cells facilitates repopulation of endogenous Treg cells in a murine acute GVHD model. PLoS One. 2015; 10 (9): e0138846. DOI:10.1371/journal.pone.0138846.; Yushi Yao, Lei Wang, Jihao Zhou and Xinyou Zhang Yao et al. HIF-1α inhibitor echinomycin reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. J. Transpl. Med. 2017; 15 (1): 28. DOI:10.1186/s12967-017-1132-9.; Jessica Heinrichs, Jun Li, Hung Nguyen, Yongxia Wu, David Bastian, Anusara Daethanasanmak, M-Hanief Sofi, Steven Schutt, Chen Liu, Junfei Jin et al. CD8 Tregs рromote GVHD рrevention and оvercome the impaired GVL еffect mediated by CD4 Tregs in mice. Oncoimmunology. 2016; 5 (6): e1146842. DOI:10.1080/2162402X.2016.1146842.; Marco Romano, Sim Lai Tung, Lesley Ann Smyth, Giovanna Lombardi. Treg therapy in transplantation: a general overview. Transpl. Int. 2016. DOI:10.1111/ tri.12909.; Theil A., Tuve S., Oelschlägel U. et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy. 2015; 17: 473–486. DOI:10.1111/cei.12887.; Bacchetta R., Lucarelli B., Sartirana C. et al. Immunological outcome in haploidentical-HSC transplanted patients treated with IL-10-anergized donor T cells. Front. Immunol. 2014; 5: 1–14. DOI:10.3389/fimmu.2014.00016.; https://bulletin.tomsk.ru/jour/article/view/1130

  11. 11
  12. 12
    Academic Journal

    Source: Rheumatology Science and Practice; Vol 54, No 6 (2016); 660-666 ; Научно-практическая ревматология; Vol 54, No 6 (2016); 660-666 ; 1995-4492 ; 1995-4484 ; 10.14412/rsp20166

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2319/1524; Насонов ЕЛ, Каратеев ДЕ, Балабанова РМ. Ревматоидный артрит. В кн.: Насонов ЕЛ, Насонова ВА, редакторы. Ревматология: Национальное руководство. Москва: ГЭОТАР- Медиа; 2008. С. 290-331 [Nasonov EL, Karateev DE, Balabanova RM. Rheumatoid arthritis. In: Nasonov EL, Nasonova VA, editors. Revmatologiya: Natsional’noe rukovodstvo [Rheumatology: National guidelines]. Moscow: GEOTAR-Media; 2008. P. 290-331].; Firestein G. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356-61. doi:10.1038/nature01661; Cope A. T cells in rheumatoid arthritis. Arthritis Res Ther. 2008;10 Suppl 1:S1. doi:10.1186/ar2412; Choy E. Selective modulation of T cell co-stimulation: a novel mode of action for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2009;27:510-8.; Steward-Tharp S, Song Y, Siegel R, O’Shea J. New insights into T cells biology and T cells directed therapy for autoimmunity inflammation and immunosuppression. Ann NY Acad Sci. 2010;1183:123-48. doi:10.1111/j.1749-6632.2009.05124.x; Быковская СН, Насонов ЕЛ. Роль дефектов иммуносупрессии в развитии аутоиммунных заболеваний. Научно-практическая ревматология. 2005;(4):81-4 [Bykovskaya SN, Nasonov EL. Role of immunosupression defects in the development of autoimmune diseases. Nauchno- Prakticheskaya Revmatologiya = Rheumatology Science and Practiсе. 2005;43(4):81-4 (In Russ.)]. doi:10.14412/1995-4484-2005-623; Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775-87. doi:10.1016/j.cell.2008.05.009; Zeng H, Chi H. The interplay between regulatory T cells and metabolism in immune regulation. OncoImmunology. 2013;2(11):e26586. Epub 2013 Oct 21. doi:10.4161/onci.26586; Buckner JH. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849-59. doi:10.1038/nri2889; Rudensky AY. Regulatory T cells and FoxP3. Immunol Rev. 2011;241;260-8. doi:10.1111/j.1600-065X.2011.01018.x; Abbas AK, Benoist C, Bluestone JA, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14:300-8. doi:10.1038/ni.2554; Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009b;30:899- 911. doi:10.1016/j.immuni.2009.03.019; Miyara M, Ito Y, Sakaguchi S. T reg-cell therapies for autoimmune rheumatic duseases. Nat Rev Rheumatol. 2014 Sep;10(9):543-51. doi:10.1038/nrhheum.2014.105; Prakken B, Wehrens E, van Wijl F. Quality or Quantity? Unraveling the role of T reg cells in rheumatoid arthritis. Arthritis Rheum. 2013;65:552-4. doi:10.1002/art.37831; Klimiuk PA, Yang H, Goronzy JJ, Weyand CM. Production of cytokines and metalloproteinases in rheumatoid synovitis is T cell dependent. Clin Immunol. 1999;90:65- 78. doi:10.1006/clim.1998.4618; Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007;204(1):57-63. doi:10.1084/jem.20061852. Epub 2007Jan 2.; Cao D, Malmstrom V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells fromthe target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003;33:215-23. doi:10.1002/immu.200390024; Cao D, van Vollenhoven R, Klareskog L, et al. CD25+CD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther. 2004;6:R335-46. doi:10.1186/ar1192; Van Amelsfort JMR, Jacobs KMG, Bijlsma JWJ, et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50:2775-85. doi:10.1002/art.20499; Mottonen M, Heikkinen J, Mustonen L, et al. CD4+ CD25+T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exper Immunol. 2005;140:360-7. doi:10.1111/j.1365-2249.2005.02754.x; Liu M-F, Wang C-R, Fung L-L, et al. The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand J Immunol. 2005;62:312-7. doi:10.1111/j.1365-3083.2005.01656.x; Cao D, Borjesson O, Larsson P, et al. FOXP3 identifies regulatory CD25brightCD4+ T cells in rheumatic joints. Scand J Immunol. 2006;63:444-52. doi:10.1111/j.1365-3083.2006.001755.x; Jiao Z, Wang W, Jia R, et al. Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol. 2007;36:428-33. doi:10.1080/03009740701482800; Moradi B, Schnatzer P, Hagmann S, et al. CD4+CD25+/highCD127low/- regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints – analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthritis Res Ther. 2014;16: R97. doi:10.1186/ar4545; Dejaco C, Duftner C, Klauser A, Schirmer M. Altered T-cell subtypes in spondyloarthritis, rheumatoid arthritis and polymyalgia rheumatic. Rheumatol Int. 2010;30:297-303. doi:10.1007/s00296-009-0949-9; Sempere-Ortells JM, Perez-Garcia V, Martin-Alberca G, et al. Quantification and phenotype of regulatory T cells in rheumatoid arthritis according to disease activity Score- 28. Autoimmunity. 2009;42:636-45. doi:10.3109/08916930903061491; Kawashiri S-Y, Kawakami A, Okada A, et al. CD4+CD25(high)CD127(low/-) Treg cell frequency from peripheral blood correlates with disease activity in patients with rheumatoid arthritis. J Rheumatol. 2011;38:2517-21. doi:10.3899/jrheum.110283; Han GM, O’Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2008;253:92-101. doi:10.1016/j.cellimm.2008.05.007; Lin SC, Chen K-H, Lin C-H, et al. The quantitative analysis of peripheral blood FOXP3- expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest. 2007;37:987-96. doi:10.1111/j.1365-2362.2007.01882.x; Ji L, Geng Y, Zhou W, Zhang Z. A study on relationship among apoptosis rates, number of peripheral T cell subtypes and disease activity in rheumatoid arthritis. Int J Rheum Dis. 2016;19:167-71. doi:10.1111/1756-185X.12211; Dombrecht EJ, Aerts NE, Schuerwegh AJ, et al. Influence of antitumor necrosis factor therapy (Adalimumab) on regulatory T cells and dendritic cells in rheumatoid arthritis. Clin Exper Rheumatol. 2006;24:31-7.; Lawson CA, Brown AK, Bejarano V, et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford). 2006;45(10):1210-7. doi:10.1093/rheumatology/kel089; Hensor RMA, Hunt L, Patmar R, et al. Predicting the evaluation of inflammatory arthritis in ACPA-positive individuals: can T-cell subset help? Ann Rheum Dis. 2014;73 Suppl 1:A14. doi:10.1136/annrheumdis-2013-205124.32; Linsley PS, Greene JL, Tan P, et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med. 1992;176:1595-604. doi:10.1084/jem.176.6.1595; Harper K, Balzano C, Rouvier E, et al. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol. 1991;147:1037-44.; Yokosuka T, Kobayashi W, Takamatsu M, et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity. 2010;33:326-39. doi:10.1016/j.immuni.2010.09.006; Cribbs AP, Kennedy A, Penn H, et al. Regulatory T cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the IDO pathway. Arthritis Rheum. 2014 Sep;66(9):2344-54. doi:10.1002/art.38715; Schneider H, Downey J, Smith A, et al. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313:1972-5. doi:10.1126/science. 1131078; Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible Tcell co-stimulator structurally and functionally related to CD28. Nature. 1999;397:263-6. doi:10.1038/16717; Yoshinaga SK, Whoriskey JS, Khare SD, et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature. 1999;402:827-32. doi:10.1038/45582; Kroczek RA, Mages HW, Hutloff A. Emerging paradigms of T-cell co-stimulation. Curr Opin Immunol. 2004;16:321-7. doi:10.1016/j.coi.2004.03.002; Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Ann Rev Immunol. 2005;23:515-48. doi:10.1146/annurev.immunol.23.021704.115611; Sperling AI, Bluestone JA. ICOS costimulation: it’s not just for TH2 cells anymore. Nat Immunol. 2001;2:573-4. doi:10.1038/89709; Bonhagen K, Liesenfeld O, Stadecker MJ, et al. ICOS Th cells produce distinct cytokines in different mucosal immune responses. Eur J Immunol. 2003;33:392-401. doi:10.1002/immu.200310013; Burmeister Y, Lischke T, Dahler A, et al. ICOS controls the pool size of effector-memory and regulatory T cells. J Immunol. 2008;180:774-82. doi:10.4049/jimmunol.180.2.774; Hasegawa M, Fujimoto M, Matsushita T, et al. Augmented ICOS expression in patients with early diffuse cutaneous systemic sclerosis. Rheumatology. 2013;52:242-51. doi:10.1093/rheumatology/kes258; Grimbacher B, Hutloff A, Schlesier M, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4:261-8. doi:10.1038/ni902; Bishop GA, Hostager BS. The CD40–CD154 interaction in B cell-T cell liaisons. Cytokine Growth Factor Rev. 2003;14:297-309. doi:10.1016/S1359-6101(03)00024-8; O’Sullivan B, Thomas R. CD40 and dendritic cell function. Crit Rev Immunol. 2003;23:83-107. doi:10.1615/CritRevImmunol.v23.i12.50; Peters A, Stunz L, Bishop G. CD40 and autoimmunity: the dark side of a great activator. Semin Immunol. 2009 Oct;21(5):293-300. doi:10.1016/j.smim.2009.05.012; Hill D, Eastaff-Leung N, Bresatz-Atkins S, et al. Inhibition of activation induced CD154 on CD4+CD25- cells: a valid surrogate for human Treg suppressor function. Immunol Cell Biol. 2012;90: 812-21. doi:10.1038/icb.2012.18; Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8:239-45. doi:10.1038/ni1443; Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813-24. doi:10.1093/intimm/dxm057; Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Ann Rev Immunol. 2008;26:677-704. doi:10.1146/annurev.immunol.26.021607.090331; Francisco L, Sage P, Sharpe A. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219-42. doi:10.1111/j.1600-065X.2010.00923.x; Fife B, Pauken K. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann NY Acad Sci. 2011;1217:45-59. doi:10.1111/j.1749-6632.2010.05919.x; Behrens F, Himsel A, Rehart S, et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis. Ann Rheum Dis. 2007;66:1151-6. doi:10.1136/ard.2006.068320

  13. 13
  14. 14
    Academic Journal

    Source: Scientific digest of association of obstetricians and gynecologists of Ukraine; № 2(42) (2018); 132-137
    СБОРНИК НАУЧНЫХ ТРУДОВ Ассоциации акушеров-гинекологов Украины; № 2(42) (2018); 132-137
    Збірник наукових праць Асоціації акушерів-гінекологів України; № 2(42) (2018); 132-137

    File Description: application/pdf

  15. 15
    Academic Journal

    Source: Rheumatology Science and Practice; Vol 54, No 4 (2016); 442-455 ; Научно-практическая ревматология; Vol 54, No 4 (2016); 442-455 ; 1995-4492 ; 1995-4484 ; 10.14412/rsp20164

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2275/1483; Насонов ЕЛ, Каратеев ДЕ, Балабанова РМ. Ревматоидный артрит. В кн.: Насонов ЕЛ, Насонова ВА, редакторы. Ревматология: Национальное руководство. Москва: ГЭОТАР-Медиа; 2008. С. 290-331 [Nasonov EL, Karateev DE, Balabanova RM. Rheumatoid arthritis. In: Nasonov EL, Nasonova VA, editors. Revmatologiya: Natsional’noe rukovodstvo [Rheumatology: National guidelines]. Moscow: GEOTAR-Media; 2008. P. 290-331].; Firestein G. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356-61. doi:10.1038/nature01661; Choy E, Panayi G. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344:907-16. doi:10.1056/NEJM200103223441207; Weyand C, Goronzy J. Ectopic germinal center formation in rheumatoid synovitis. Ann NY Acad Sci. 2003;987:140-9. doi:10.1111/j.1749-6632.2003.tb06042.x; Cope A. T cells in rheumatoid arthritis. Arthr Res Ther. 2008;10 Suppl 1:S1. doi:10.1186/ar2412; Choy E. Selective modulation of T cell co-stimulation: a novel mode of action for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2009;27:510-8.; Klimiuk PA, Yang H, Goronzy JJ, Weyand CM. Production of cytokines and metalloproteinases in rheumatoid synovitis is T cell dependent. Clin Immunol. 1999;90:65-78. doi:10.1006/clim.1998.4618; Steward-Tharp S, Song Y, Siegel R, O’Shea J. New insights into T cells biology and T cells directed therapy for autoimmunity inflammation and immunosuppression. Ann NY Acad Sci. 2010;1183:123-48. doi:10.1111/j.1749-6632.2009.05124.x; Быковская СН, Насонов ЕЛ. Роль дефектов иммуносупрессии в развитии аутоиммунных заболеваний. Научно-практическая ревматология. 2005;(4):81-4. [Bykovskaya SN, Nasonov EL. Role of immunosupression defects in the development of autoimmune diseases. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practiсе. 2005;43(4):81-4 (In Russ.)]. doi:10.14412/1995-4484- 2005-623; Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775-87. doi:10.1016/j.cell.2008.05.009; Zeng H, Chi H. The interplay between regulatory T cells and metabolism in immune regulation. OncoImmunology. 2013;2(11):e26586. Epub 2013 Oct 21. doi:10.4161/onci.26586; Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007;204(1):57-63. doi:10.1084/jem.20061852. Epub 2007 Jan 2.; Buckner JH. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849-59. doi:10.1038/nri2889; Wildin RS, Freitas A. IPEX and FOXP3: clinical and research perspectives. J Autoimmun. 2005;25 Suppl:56-62. doi:10.1016/j.jaut.2005.04.008; Rudensky AY. Regulatory T cells and FoxP3. Immunol Rev. 2011;241;260-8. doi:10.1111/j.1600-065X.2011.01018.x; Abbas AK, Benoist C, Bluestone JA, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14:300-8. doi:10.1038/ni.2554; Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009b;30:899-911. doi:10.1016/j.immuni.2009.03.019; Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10:490-500. doi:10.1038/nri2785; Tran DQ, Andersson J, Hardwick D, et al. Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures. Blood. 2009a;113:5125-33. doi:10.1182/blood-2009-01-199950; Miyara M, Ito Y, Sakaguchi S. T reg-cell therapies for autoimmune rheumatic duseases. Nat Rev Rheumatol. 2014 Sep;10(9):543-51. doi:10.1038/nrhheum.2014.105; Prakken B, Wehrens E, van Wijl F. Quality or Quantity? Unraveling the role of T reg cells in rheumatoid arthritis. Arthritis Rheum. 2013;65:552-4. doi:10.1002/art.37831; Kmieciak M, Gowda M, Graham L, et al. Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. J Transl Med. 2009;7:89. doi:10.1186/1479-5876-7-89; Kennedy A, Schmiudt EM, Cribbs AP, et al. A novel upstream enhancer of FOXP3, sensitive to methylation-induced silencing, exhibit dysregulatrd methylation in rheumatoid arthritis Treg cells. Eur J Immunol. 2014;44:2668-78. doi:10.1002/eji.201444453; Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203:1693-700. doi:10.1084/jem.20060468; Hartigan-O’Connor DJ, Poon C, Sinclair E, McCune JM. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor α chain (CD127), allowing consistent identification and sorting of live cells. J Immunol Met. 2007;319:41-52. doi:10.1016/j.jim.2006.10.008; Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J Exp Med. 2006;203:1701-1. doi:10.1084/jem.20060772; Linsley PS, Greene JL, Tan P, et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med. 1992;176:1595-604. doi:10.1084/jem.176.6.1595; Harper K, Balzano C, Rouvier E, et al. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol. 1991;147:1037-44.; Yokosuka T, Kobayashi W, Takamatsu M, et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity. 2010;33:326-39. doi:10.1016/j.immuni.2010.09.006; Cribbs AP, Kennedy A, Penn H, et al. Regulatory T cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the IDO pathway. Arthritis Rheum. 2014 Sep;66(9):2344-54. doi:10.1002/art.38715; Schneider H, Downey J, Smith A, et al. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313:1972-5. doi:10.1126/science.1131078; Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible Tcell co-stimulator structurally and functionally related to CD28. Nature. 1999;397:263-6. doi:10.1038/16717; Yoshinaga SK, Whoriskey JS, Khare SD, et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature. 1999;402:827-32. doi:10.1038/45582; Kroczek RA, Mages HW, Hutloff A. Emerging paradigms of Tcell co-stimulation. Curr Opin Immunol. 2004;16:321-7. doi:10.1016/j.coi.2004.03.002; Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Ann Rev Immunol. 2005;23:515-48. doi:10.1146/annurev.immunol.23.021704.115611; Sperling AI, Bluestone JA. ICOS costimulation: it’s not just for TH2 cells anymore. Nat Immunol. 2001;2:573-4. doi:10.1038/89709; Bonhagen K, Liesenfeld O, Stadecker MJ, et al. ICOS Th cells produce distinct cytokines in different mucosal immune responses. Eur J Immunol. 2003;33:392-401. doi:10.1002/immu.200310013; Burmeister Y, Lischke T, Dahler A, et al. ICOS controls the pool size of effector-memory and regulatory T cells. J Immunol. 2008;180:774-82. doi:10.4049/jimmunol.180.2.774; Hasegawa M, Fujimoto M, Matsushita T, et al. Augmented ICOS expression in patients with early diffuse cutaneous systemic sclerosis. Rheumatology. 2013;52:242-51. doi:10.1093/rheumatology/kes258; Grimbacher B, Hutloff A, Schlesier M, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4:261-8. doi:10.1038/ni902; Bishop GA, Hostager BS. The CD40–CD154 interaction in B cell–T cell liaisons. Cytokine Growth Factor Rev. 2003;14:297- 309. doi:10.1016/S1359-6101(03)00024-8; O’Sullivan B, Thomas R. CD40 and dendritic cell function. Crit Rev Immunol. 2003;23:83-107. doi:10.1615/CritRevImmunol.v23.i12.50; Peters A, Stunz L, Bishop G. CD40 and autoimmunity: the dark side of a great activator. Semin Immunol. 2009 Oct;21(5):293-300. doi:10.1016/j.smim.2009.05.012; Munroe M. Functional roles for T cell CD40 in infection and autoimmune disease: The role of CD40 in lymphocyte homeostasis. Semin Immunol. 2009;21(5):283-8. doi:10.1016/j.smim.2009.05.008; Berner B, Wolf G, Hummel KM, et al. Increased expression of CD154 on CD4+ T cells as a marker of disease activity in RA. Ann Rheum Dis. 2000;59:190-5. doi:10.1136/ard.59.3.190; Hill D, Eastaff-Leung N, Bresatz-Atkins S, et al. Inhibition of activation induced CD154 on CD4+CD25- cells: a valid surrogate for human Treg suppressor function. Immunol Cell Biol. 2012;90:812-21. doi:10.1038/icb.2012.18; Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007; 8:239-45. doi:10.1038/ni1443; Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813-24. doi:10.1093/intimm/dxm057; Nurieva RI, Liu X, Dong C. Yin-Yang of costimulation: crucial controls of immune tolerance and function. Immunol Rev. 2009;229:88-100. doi:10.1111/j.1600-065X.2009.00769.x; Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. doi:10.1146/annurev.immunol.26.021607.090331; Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med. 2006;203:2223-7. doi:10.1084/jem.20061800; Francisco L, Sage P, Sharpe A. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219-42. doi:10.1111/j.1600-065X.2010.00923.x; Fife B, Pauken K. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann NY Acad Sci. 2011;1217:45-59. doi:10.1111/j.1749-6632.2010.05919.x; Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20:62-70. doi:10.1038/nm.3432; Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593-603. doi:10.1084/jem.183.6.2593; Moran EM, Mullan R, McCormick J, et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-α, Oncostatin M and response to biologic therapies. Arthr Res Ther. 2009;11:R113. doi:10.1186/ar2772; Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203:2673-82. doi:10.1084/jem.20061775; Abdulahad W, Boots A, Kallenberg C. FoxP3+ CD4+ T cells in systemic autoimmune diseases: the delicate balance between true regulatory T cells and effector Th-17 cells. Rheumatology. 2011;50:646-56. doi:10.1093/rheumatology/keq328; Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235-8. doi:10.1038/nature04753; Du J, Huang C, Zhou B, Ziegler SF. Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol. 2008;180:4785-92. doi:10.4049/jimmunol.180.7.4785; Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17- producing cells. Blood. 2008;112:2340-52. doi:10.1182/blood- 2008-01-133967; Ayyoub M, Deknuydt F, Raimbaud I, et al. Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci USA. 2009;106:8635-40. doi:10.1073/pnas.0900621106; Voo KS, Wang YH, Santori FR, et al. Identification of IL-17- producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci USA. 2009;106:4793-8. doi:10.1073/pnas.0900408106; Beriou G, Costantino CM, Ashley CW, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood. 2009;113:4240-9. doi:10.1182/blood-2008-10-183251; Wang T, Sun X, Zhao J. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 2014;0:1-9. doi:10.1136/annrheumdis-2013-204228; Harris KM, Fasano A, Mann DL. Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: implications for celiac disease. Clin Immunol 2010;135:430-9. doi:10.1016/j.clim.2010.01.003; Ferretti S, Bonneau O, Dubois GR, et al. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol. 2003;170:2106-12. doi:10.4049/jimmunol.170.4.2106; Cao D, Malmstrom V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003;33:215-23. doi:10.1002/immu.200390024; Cao D, van Vollenhoven R, Klareskog L, et al. CD25+CD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthr Res Ther. 2004;6:R335-46. doi:10.1186/ar1192; Ehrenstein MR, Evans JG, Singt A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by antiTNFα therapy. J Exp Med. 2004;200(3):277-85. doi:10.1084/jem.20040165. Epub 2004 Jul 26.; Van Amelsfort JMR, Jacobs KMG, Bijlsma JWJ, et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50:2775-85. doi:10.1002/art.20499; Mottonen M, Heikkinen J, Mustonen L, et al. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exper Immunol. 2005;140:360-7. doi:10.1111/j.1365-2249.2005.02754.x; Liu M-F, Wang C-R, Fung L-L, et al. The presence of cytokinesuppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand J Immunol. 2005;62:312-7. doi:10.1111/j.1365-3083.2005.01656.x; Cao D, Borjesson O, Larsson P, et al. FOXP3 identifies regulatory CD25brightCD4+ T cells in rheumatic joints. Scand J Immunol. 2006;63:444-52. doi:10.1111/j.1365-3083.2006.001755.x; Dombrecht EJ, Aerts NE, Schuerwegh AJ, et al. Influence of anti-tumor necrosis factor therapy (Adalimumab) on regulatory T cells and dendritic cells in rheumatoid arthritis. Clin Exper Rheumatol. 2006;24:31-7.; Van Amelsfort JMR, Van Roon JAG, Noordegraaf M, et al. Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum. 2007;56:732-42. doi:10.1002/art.22414; Behrens F, Himsel A, Rehart S, et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis. Ann Rheum Dis. 2007;66:1151-6. doi:10.1136/ard.2006.068320; Lin SC, Chen K-H, Lin C-H, et al. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest. 2007;37:987-96. doi:10.1111/j.1365-2362.2007.01882.x; Jiao Z, Wang W, Jia R, et al. Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol. 2007;36:428-33. doi:10.1080/03009740701482800; Han GM, O’Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2008;253:92-101. doi:10.1016/j.cellimm.2008.05.007; Raghavan S, Cao D, Widhe M, et al. FOXP3 expression in blood, synovial fluid and synovial tissue during inflammatory arthritis and intra-articular corticosteroid treatment. Ann Rheum Dis. 2009;68:1908-15. doi:10.1136/ard.2008.100768; Sempere-Ortells JM, Perez-Garcia V, Marin-Alberca G, et al. Quantification and phenotype of regulatory T cells in rheumatoid arthritis according to disease activity Score-28. Autoimmunity. 2009;42:636-45. doi:10.3109/08916930903061491; Dejaco C, Duftner C, Klauser A, Schirmer M. Altered T-cell subtypes in spondyloarthritis, rheumatoid arthritis and polymyalgia rheumatic. Rheumatol Int. 2010;30:297-303. doi:10.1007/s00296-009-0949-9; Kawashiri S-Y, Kawakami A, Okada A, et al. CD4+CD25(high)CD127(low/-) Treg cell frequency from peripheral blood correlates with disease activity in patients with rheumatoid arthritis. J Rheumatol. 2011;38:2517-21. doi:10.3899/jrheum.110283; Lina C, Conghua W, Nan L, Ping Z. Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. J Clin Immunol. 2011;31:596- 605. doi:10.1007/s10875-011-9542-6; Niu Q, Cai B, Huang Z-C, et al. Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int. 2012;32:2731- 6. doi:10.1007/s00296-011-1984-x; Xq E, Meng HX, Cao Y, et al. Distribution of regulatory T cells and interaction with dendritic cells in the synovium of rheumatoid arthritis. Scand J Rheumatol. 2012;41:413-20. doi:10.3109/03009742.2012.696135; Samson M, Audia S, Janikashvili N, et al. Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64:2499- 503. doi:10.1002/art.34477; Ji L, Geng Y, Zhou W, Zhang Z. A study on relationship among apoptosis rates, number of peripheral T cell subtypes and disease activity in rheumatoid arthritis. Int J Rheum Dis. 2016;19:167-71. doi:10.1111/1756-185X.12211; Moradi B, Schnatzer P, Hagmann S, et al. CD4+CD25+/highCD127low/- regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints — analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthr Res Ther. 2014;16:R97. doi:10.1186/ar4545; Guggino G, Giardina A, Ferrante A, et al. The in vitro addition of methotrexate and/or methylprednisolone determines peripheral reduction in Th17 and expansion of conventional Treg and of IL-10 producingTh17 lymphocytes in patients with early rheumatoid arthritis. Rheumatol Int. 2015;35:171-5. doi:10.1007/s00296- 014-3030-2; Lawson CA, Brown AK, Bejarano V, et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford). 2006;45(10):1210-7. doi:10.1093/rheumatology/kel089; Hensor RMA, Hunt L, Patmar R, et al. Predicting the evaluation of inflammatory arthritis in ACPA-positive individuals: can T-cell subset help? Ann Rheum Dis. 2014;73 Suppl 1:A14. doi:10.1136/annrheumdis-2013-205124.32; McGovern JL, Nguyen DX, Notley CA, et al. Th17 cells are restarained by T reg cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy. Arthritis Rheum. 2012;64(10):3129-38. doi:10.1002/art.34565; Wehrens EJ, Mijnheer G, Duurland CL, et al. Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood. 2011;118:3538-48. doi:10.1182/blood-2010-12- 328187; Raptopoulou AP, Bertsias G, Makrygiannakis D, et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 2010;62:1870-80. doi:10.1002/art.27500; Yu X, Wang C, Luo J, et al. Combination with methotrexate and cyclophosphamide attenuated maturation of dendritic cells: inducing treg skewing and Th17 suppression in vivo. Clin Devel Immunol. 2013;Article ID 238035, 12 p.; Li Y, Jiang L, Zhang S, et al. Methotrexate attenuates the Th17/IL-17 levels in peripheral blood mononuclear cells from healthy individuals and RA patients. Rheumatol Internat. 2012;32:2415-22. doi:10.1007/s00296-011-1867-1; Pericolini E, Gabrielli E, Alunno A, et al. Functional improvement of regulatory T cells from rheumatoid arthritis subjects induced by capsular polysaccharide glucuronoxylomannogalactan. PLoS One. 2014;9:Article ID e111163. doi:10.1371/journal.pone.0111163; Peres R, Liew F, Talbot J, et al. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis. PNAS. 2015;122:2509-14. doi:10.1073/pnas.1424792112; Cribbs AP, Kennedy A, Penn H, et al. Methotrexate restores regulatory T cell function through demethelation of the FoxP3 upstream enhancer in patients with rheumatoid arthritis. Arthritis Rheum. 2015;67:1182-92. doi:10.1002/art.39031; Da Silva JC, Mariz HA, da Rocha LF Jr, et al. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics. 2013;68:766-71. doi:10.6061/clinics/2013(06)07; De Paz B, Alperi-Lopez M, Ballina-Garcia FJ, et al. Cytokines and regulatory T cells in rheumatoid arthritis and their relationship with response to corticosteroids. J Rheumatol. 2010;37:2502- 10. doi:10.3899/jrheum.100324; De Paz B, Prado C, Alperi-Lopez M, et al. Effects of glucocorticoid treatment on CD25-FOXP3+ population and cytokine producing cells in rheumatoid arthritis. Rheumatology. 2012;51:1198- 207. doi:10.1093/rheumatology/kes039; Valencia X, Stephens G, Goldbach-Mansky R, et al. TNF down modulate the function of human CD4+CG25hiT-regulatory cells. Blood. 2006;108(1):253-61. doi:10.1182/blood- 2005-11- 4567; Huang Z, Yang B, Shi Y, et al. Anti-TNF-α therapy improves Тreg and suppresses Тeff in patients with rheumatoid arthritis. Cell Immunol. 2012;279:25-9. doi:10.1016/j.cellimm.2012.09.001; Fujimoto M, Serada S, Mihara M, et al. Interleukin-6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses. Arthritis Rheum. 2008;58:3710-9. doi:10.1002/art.24126; Pesce B, Soto L, Sabugo F, et al. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exper Immunol. 2012;171:237-42. doi:10.1111/cei.12017; Kikuchi J, Hashizume M, Kaneko Y, et al. Peripheral blood CD4+CD25+CD127low regulatory T cells are significantly increased by tocilizumab treatment in patients with rheumatoid arthritis: increase in regulatory T cells correlates with clinical response. Arthr Res Ther. 2015;17:10. doi:10.1186/s13075-015- 0526-4; Hamel KM, Cao Y, Ashaye A, et al. B cell depletion enhance T regulatory cell activity essential in the supression of arthritis. J Immunol. 2011;187(9):4900-6. doi:10.4049/jimmunol. 1101844; Alvarez-Quiroga C, Abud-Mendoza C, Doniz-Padilla L, et al. CTLA-4-Ig therapy diminishes the frequency but enhances the function of treg cells in patients with rheumatoid arthritis. J Clin Immunol. 2011;31:588-95. doi:10.1007/s10875-011- 9527-5; Pieper J, Herrath J, Raghavan S, et al. CTLA4-Ig (abatacept) therapy modulates T cell effector functions in autoantibody-positive rheumatoid arthritis patients. BMC Immunol. 2013;14:34. doi:10.1186/1471-2172-14-34; Picchianti Diamanti A, Rosado MM, Scarsella M, et al. Abatacept (cytotoxic T lymphocyte antigen 4-immunoglobulin) improves B cell function and regulatory T cell inhibitory capacity in rheumatoid arthritis patients non-responding to anti-tumour necrosis factor-α agents. Clin Exper Immunol. 2014;177:630-40. doi:10.1111/cei.12367; Scarsi M, Zanotti C, Chiarini M, et al. Reduction of peripheral blood T cells producing IFN-γ and IL-17 after therapy with abatacept for rheumatoid arthritis. Clin Exper Rheumatol. 2014;32:204-10.; Oh JS, Kim Y-G, Lee SG, et al. The effect of various disease modifying anti-rheumatic drugs on the suppressive function of CD4+CD25+ regulatory T cells. Rheumatol Int. 2013;33:381-8. doi:10.1007/s00296-012-2365-9; Van Nies JA, Gaujoux-Viala C, Tsonaka R, et al. When does the therapeutic window of opportunity in rheumatoid arthritis close? A study in two early RA cohorts. Ann Rheum Dis. 2014;73 Suppl. 2:73. doi:10.1136/annrheumdis-2014-eular.5266; Cronstein BN. Low-dose methotrexate: A mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57(2):163-72. doi:10.1124/pr.57.2.3; Cronstein BN, Eberle MA, Gruber HE, Levin RI. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA. 1991;88(6):2441- 5. doi:10.1073/pnas.88.6.2441; Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204(6):1257-65. doi:10.1084/jem.20062512; Montesinos MC, Yap JS, Desai A, et al. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: Evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum. 2000;43(3):656-63. doi:10.1002/1529- 0131(200003)43:33.0.CO;2-H; Nesher G, Mates M, Zevin S. Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum. 2003;48(2):571-2. doi:10.1002/art.10766; Montesinos MC, Takedachi M, Thompson LF, et al. The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5’- nucleotidase: findings in a study of ecto-5’-nucleotidase genedeficient mice. Arthritis Rheum. 2007;56(5):1440-5. doi:10.1002/art.22643; Sitkovsky MV, Ohta A. The ‘danger’ sensors that STOP the immune response: The A2 adenosine receptors? Trends Immunol. 2005;26(6):299-304. doi:10.1016/j.it.2005.04.004; Hasko G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759-70. doi:10.1038/nrd2638; Hasko G, Cronstein BN. Adenosine: An endogenous regulator of innate immunity. Trends Immunol. 2004;25(1):33-9. doi:10.1016/j.it.2003.11.003; Carregaro V, Sa-Nunes A, Cunha TM, et al. Nucleosides from Phlebotomus papatasi salivary gland ameliorate murine collagen-induced arthritis by impairing dendritic cell functions. J Immunol. 2011;187(8):4347-59. doi:10.4049/jimmunol.1003404; Li L, Huang L, Ye H, et al. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J Clin Invest. 2012;122(11):3931-42. doi:10.1172/JCI63170; Blache C, Lequerre T, Roucheux A, et al. Number and phenotype of rheumatoid arthritis patients’ CD4+CD25hi regulatory T cells are not affected by adalimumab or etanercept. Rheumatology. 2011;50:1814-22. doi:10.1093/rheumatology/ker183; Aravena O, Pesce B, Soto L, et al. Anti-TNF therapy in patients with rheumatoid arthritis decreases Th1 and Th17 cell populations and expands IFN-γ-producing NK cell and regulatory T cell subsets. Immunobiology. 2011;216:1256-63. doi:10.1016/j.imbio.2011.07.006; Vigna-Perez M, Abud-Mendoza C, Portillo-Salazar H, et al. Immune effects of therapy with Adalimumab in patients with rheumatoid arthritis. Clin Exper Immunol. 2005;141:372-80. doi:10.1111/j.1365-2249.2005.02859.x; Nie H, Zheng Y, Li R, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med. 2013;19:322-8. doi:10.1038/nm.3085; Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumor necrosis factor receptors: structure and function. Trends Cell Biol. 1995;5:392-9. doi:10.1016/S0962-8924(00)89088-1; Pinckard JK, Sheehan KC, Arthur CD, Schreiber RD. Constitutive shedding of both p55 and p75 murine TNF receptors in vivo. J Immunol. 1997;158:3869-73.; Xanthoulea S, Pasparakis M, Kousteni S, et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med. 2004;200:367-76. doi:10.1084/jem.20040435; Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634-5. doi:10.1126/science.1071924; Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45-65. doi:10.1038/sj.cdd.4401189; Grell M, Becke FM, Wajant H, et al. TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1. Eur J Immunol. 1998;28:257-63. doi:10.1002/(SICI)1521- 4141(199801)28:013.0.CO;2-G; Arnett HA, Mason J, Marino M, et al. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4:1116-22. doi:10.1038/nn738; Cope AP. Regulation of autoimmunity by proinflammatory cytokines. Curr Opin Immunol. 1998;10:669-76. doi:10.1016/S0952-7915(98)80087-3; Clark J, Vagenas P, Panesar M, Cope AP. What does tumour necrosis factor excess do to the immune system long term? Ann Rheum Dis. 2005;64 Suppl 4:70-6. doi:10.1136/ard.2005.042523; Kollias G, Kontoyiannis D. Role of TNF/TNFR in autoimmunity: specific TNF receptor blockade may be advantageous to antiTNF treatments. Cytokine Growth Factor Rev. 2002;13:315-21. doi:10.1016/S1359-6101(02)00019-9; Grewal IS, Grewal KD, Wong FS, et al. Local expression of transgene encoded TNF alpha in islets prevents autoimmune diabetes in nonobese diabetic (NOD) mice by preventing the development of auto-reactive islet-specific T cells. J Exp Med. 1996;184:1963-74. doi:10.1084/jem.184.5.1963; Jacob CO, Aiso S, Michie SA, et al. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1. Proc Natl Acad Sci USA. 1990;87:968-72. doi:10.1073/pnas.87.3.968; Kontoyiannis D, Kollias G. Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor. Eur J Immunol. 2000;30:2038-47. doi:10.1002/1521-4141(200007)30:73.0.CO;2-K; Kollias G, Kontoyiannis D, Douni E, Kassiotis G. The role of TNF/TNFR in organ-specific and systemic autoimmunity: implications for the design of optimized ‘anti-TNF’ therapies. Curr Dir Autoimmun. 2002;5:30-50. doi:10.1159/000060546; Chen X, Subleski JJ, Kopf H, et al. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumorinfiltrating T regulatory cells. J Immunol. 2008;180:6467-71. doi:10.4049/jimmunol.180.10.6467; Kleijwegt FS, Laban S, Duinkerken G, et al. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells. J Immunol. 2010;185:1412- 8. doi:10.4049/jimmunol.1000560; Ablamunits V, Bisikirska B, Herold KC. Acquisition of regulatory function by human CD8(+) T cells treated with anti-CD3 antibody requires TNF. Eur J Immunol. 2010;40:2891-901. doi:10.1002/eji.201040485; Mougiakakos D, Johansson CC, Jitschin R, et al. Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood. 2011;117:857-61. doi:10.1182/blood-2010-09-307041; Chen X, Hamano R, Subleski JJ, et al. Expression of costimulatory TNFR2 induces resistance of CD4+FoxP3- conventional T cells to suppression by CD4+FoxP3+ regulatory T cells. J Immunol. 2010;185:174-82. doi:10.4049/jimmunol.0903548; Van Mierlo GJ, Scherer HU, Hameetman M, et al. Cutting edge: TNFR-shedding by CD4+CD25+ regulatory T cells inhibits the induction of inflammatory mediators. J Immunol. 2008;180:2747- 51. doi:10.4049/jimmunol.180.5.2747; Chen X, Baumel M, Mannel DN, et al. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J Immunol. 2007;179:154-61. doi:10.4049/jimmunol.179.1.154; Calzascia T, Pellegrini M, Hall H, et al. TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest. 2007;117:3833-45.; Chen X, Oppenheim J. Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Letters. 2011;585:3611-8. doi:10.1016/j.febslet.2011.04.025; Sarantopoulos A, Tselios K, Gkougkourelas I, et al. Tocilizumab treatment leads to a rapid and sustained increase in Treg cell levels in rheumatoid arthritis patients: comment on the article by Thiolat et al. Arthritis Rheum. 2014;66:2638. doi:10.1002/art.38714; Thiolat A, Semerano L, Pers YM, et al. Interleukin-6 receptor blockade enhances CD39 regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheum. 2014;66:273-83. doi:10.1002/art.38246; Feuchtenberger M, Muller S, Roll P, et al. Frequency of regulatory T cells is not affected by transient B cell depletion using antiCD20 antibodies in rheumatoid arthritis. Open Rheumatol J. 2008;2:81-8. doi:10.2174/1874312900802010081; Lee S, Moon J, Lee C, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allerg Clin Immunol. 2015;137:327-30. doi:10.1016/j.jaci.2015.08.036

  16. 16
  17. 17
    Academic Journal

    Source: Rheumatology Science and Practice; Vol 53, No 5 (2015); 522-541 ; Научно-практическая ревматология; Vol 53, No 5 (2015); 522-541 ; 1995-4492 ; 1995-4484 ; 10.14412/rsp20155

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2130/1356; Насонов ЕЛ, Каратеев ДЕ, Балабанова РМ. Ревматоидный артрит. В кн.: Насонов ЕЛ, Насонова ВА, редакторы. Ревматология. Национальное руководство. Москва: ГЭОТАР-Медиа; 2008. С. 290–331 [Nasonov EL, Karateev DE, Balabanova RM. Rheumatoid arthritis. In: Nasonov EL, Nasonova VA, editors. Revmatologiya. Natsional'noe rukovodstvo [Rheumatology. National guidelines]. Moscow: GEOTARMedia; 2008. P. 290–331].; McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. New Engl J Med. 2011;365:2205-19. doi:10.1056/NEJMra1004965; Cho JH, Feldman M. Heterogeneity of autoimmune diseases: pathophysiologic insight from genetics and implications for new therapy. Nat Med. 2015;21:730–8. doi:10.1038/nm.3897; Schett G, Elewaut D, McInnes JB, et al. How cytokine network fuel inflammation: toward a cytokine-based disease taxonomy. Nat Med. 2013;19:822–4. doi:10.1038/nm.3260; Насонов ЕЛ, редактор. Генно-инженерные биологические препараты в лечении ревматоидного артрита. Москва: ИМА-ПРЕСС; 2013. С. 549 [Nasonov EL, editor. Gennoinzhenernye biologicheskie preparaty v lechenii revmatoidnogo artrita [Genetically engineered biological agents in the treatment of rheumatoid arthritis]. Moscow: IMA-PRESS; 2013. P. 549].; Ceeraz S, Nowak EC, Burns CM, Noelle RJ. Immune checkpoint receptors regulating immune reactivity in rheumatic disease. Arthritis Res Ther. 2014;16:496. doi:10.1186/s13075-014-0469-1; Padrol DM. The blockade on immune checkpoints in cancer immunotherapy. Nat Rev Immunol. 2012;12:252–64. doi:10.1038/nrc3239; Chen L, Flies DB. Molecular mechanisms of T cell cо-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42. doi:10.1038/nri3405; Romo-Tena J, Gomes-Martin D, Alcocer-Varela J. CTLA-4 and autoimmunity: new insight into the dual regulator of tolerance. Autoimmun Rev. 2013;12:1171–6. doi:10.1016/j.autrev.2013.07.002; Sakaguchi S, Powrie F, Ransohoff RM. Re-establishing immunological self-tolerance in autoimmune disease. Nat Med. 2012;18:54. doi:10.1038/nm.2622; Plenge RM, Padyukov L, Remmers EF, et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet. 2005;77:1044–60. doi:10.1086/498651; Flores-Borja F, Jury EC, Mauri C, Ehrenstein MR. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc Natl Acad Sci USA. 2008;105:19396–401. doi:10.1073/pnas.0806855105; Cao J, Zou L, Luo P, et al. Increased production of circulating soluble co-stimulatory molecules CTLA-4, CD28 and CD80 in patients with rheumatoid arthritis. Int Immunopharmacol. 2012;14:585–92. doi:10.1016/j.intimp.2012.08.004; Van de Ven K, Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy. 2015;7:655–67. doi:10.2217/imt.15.32; Насонов ЕЛ, Каратеев ДЕ. Применение блокатора костимуляции Т-лимфоцитов абатацепта при ревматоидном артрите. Научно-практическая ревматология. 2010;4(приложение):9–27 [Nasonov EL, Karateev DE. Blockers costimulation of T-lymphocytes in rheumatoid arthritis abatacept. Nauchno-prakticheskaya revmatologiya =Rheumatology Science and Practice. 2010;4(Suppl):9–27 (In Russ.)].; Vicente Rabaneda EF, Herrero-Beaumont G, Castaneda S. Update on the use of abatacept for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2013;9:599–621. doi:10.1586/1744666X.2013.811192; Schiff M, Bessette L. Evaluation of abatacept in biologic-naive patients with active rheumatoid arthritis. Clin Rheumatol. 2010;29:583–91. doi:10.1007/s10067-009-1363-0; Keating GM. Abatacept: a review of its use in the management of rheumatoid arthritis. Drugs. 2013;73:1095–119. doi:10.1007/s40265-013-0080-9; Schiff M. Subcutaneous abatacept for the treatment of rheumatoid arthritis. Rheumatology. 2013;52:986–97. doi:10.1093/rheumatology/ket018; Wells AF, Jodat N, Schiff M. A critical evaluation of the role of subcutaneous abatacept in the treatment of rheumatoid arthritis: patients considerations. Biol Targ Ther. 2014;8:41–55. doi:10.2147/BTT.S55783; Rakinen C, Conaghan PG. Comparative clinical utility of onceweekly subcutaneous abatacept in the management of rheumatoid arthritis. Therapeutics Clin Risk Manag. 2014;10:313–20.; Corbo M, Valencia X, Raymond R, et al. Subcutaneous administration of abatacept in patients with rheumatoid arthritis: Pharmacokinetics, safety and immunogenicity. Ann Rheum Dis. 2009;68(Suppl 3):574.; Genovese M, Covarrubias A, Leon G, et al. Subcutaneous abatacept versus intravenous abatacept: a phase IIIb noninferiority study in patients with an inadequate response to methotrexate. Arthritis Rheum. 2011;63:2854–64. doi:10.1002/art.30463; Genovese MC, Tena CP, Covarrubias A, et al. Subcutaneous abatacept for the treatment of rheumatoid arthritis: long-term data from the ACQUIRE trial. J Rheumatol. 2014 Apr;41(4):629–39. doi:10.3899/jrheum.130112; Kaine J, Gladstein G, Strusberg I, et al. Evaluation of abatacept administered subcutaneously in adults with active rheumatoid arthritis: impact of withdrawal and reintroduction on immunogenicity, efficacy and safety (phase IIIb ALLOW study). Ann Rheum Dis. 2012;71:38–44. doi:10.1136/annrheumdis-2011- 200344; Keystone EC, Kremer JM, Russell A, et al. Abatacept in subjects who switch from intravenous to subcutaneous therapy: results from the phase IIIb ATTUNE study. Ann Rheum Dis. 2012;71:857–61. doi:10.1136/annrheumdis-2011-200355; Nash P, Nayiager S, Genovese M, et al. Immunogenicity, safety and efficacy of subcutaneous abatacept with or without MTX in patients with rheumatoid arthritis: results from Phase III, international, multicenter, parallel-arm, open-label study. Arthritis Care Res (Hoboken). 2013;65:718–28. doi:10.1002/acr.21876; Weinblatt M, Schiff M, Valente R, et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: findings of a phase IIIb, multinational, prospective, randomized study. Arthritis Rheum. 2012;65:28–38. doi:10.1002/art.37711; Schiff M, Weinblatt ME, Valente R, et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: two-year efficacy and safety findings from AMPLE trial. Ann Rheum Dis. 2014;73:86–94. doi:10.1136/annrheumdis-2013-203843; Emery P, Burmester GR, Bykerk V, et al. Evaluating drug-free remission with abatacept in early rheumatoid arthritis: results from the phase 3b multicenter, randomized, active-controlled AVERT study of 24 months, with a 12 months, double-blind treatment period. Ann Rheum Dis. 2015;74:19–26. doi:10.1136/annrheumdis-2014-206106; Burmester G, Furst DE, Combe BG, et al. Stringent criteria for low disease activity and remission after 12 month of treatment, and after treatment withdrawal, with abatacept monotherapy, abatacept with methotrexate or methotrexate alone in early rheumatoid arthritis. Arthritis Rheum. 2014;66(Suppl):2468(abst).; Bykerk VP, Burmester GR, Combe BG, et al. On drug and drug-free remission by baseline disease duration in the avert trial: abatacept versus methotrexate comparison in patients with early rheumatoid arthritis. Ann Rheum Dis. 2015;74(Suppl 2):477–8. doi:10.1136/annrheumdis-2015-eular.2071; Furs DE, Bykerk VP, Burmester G, et al. Patient-reported outcomes following 12 months of therapy with abatacept (plus methotrexate or as monotherapy) or methotrexate and up to 6 months after treatment withdrawal in patients with early rheumatoid arthritis. Arthritis Rheum. 2014;66(Suppl):2486(abst).; Emery P, Burmester G, Bykerk VH, et al. Predictors of drugfree remission following treatment with abatacept (in combination with methotrexate or as monotherapy) in early rheumatoid arthritis. Arthritis Rheum. 2014;66(Suppl):2485(abst).; Alten R, Kaine J, Keystone E, et al. Long-term safety of subcutaneous abatacept in rheumatoid arthritis. Integrated analysis of clinical trial data representing more than four years of treatment. Arthritis Rheum. 2014;66:1987–97. doi:10.1002/art.38687; Jani M, Barton A, Warren R, et al. The role of DMARDs in reducing the immunogenicity of TNF inhibitors in chronic inflammatory diseases. Rheumatology. 2014;53:213–22. doi:10.1093/rheumatology/ket260; Александрова ЕН, Насонов ЕЛ. Иммуногенность ингибиторов фактора некроза опухоли α при лечении ревматоидного артрита. Научно-практическая ревматология. 2012;50(приложение 4):22–7 [Aleksandrova EN, Nasonov EL. Immunogenicity inhibitors of tumor necrosis factor α in the treatment of rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya =Rheumatology Science and Practice. 2012;50(Suppl 4):22–7 (In Russ.)].; Hochberg M, Janssen K, Broglio K, et al. Comparison of abatacept and other biologic DMARDs for the treatment of rheumatoid arthritis: a systemic literature review and network metaanalysis. Ann Rheum Dis. 2015;72(Suppl 4):678.; Fasth AE, Snir O, Johansson AA, et al. Skewed distribution of proinflammatory CD4+CD28null T cells in rheumatoid arthritis. Arthritis Res Ther. 2007;9:R87. doi:10.1186/ar2286; Scarsi M, Zanotti C, Chiarini M, et al. Reduction of peripheral blood γ-IFN and IL-17 producing T cells after therapy with abatacept for rheumatoid arthritis. Clin Exp Rheumatol. 2014;32:204–10.; Schmidt D, Goronzy JJ, Weyand CM. CD4+CD7-CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest. 1996;97:2027–37. doi:10.1172/JCI118638; Vallejo AN, Weyand CM, Goronzy JJ. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med. 2004;10:119–24. doi:10.1016/j.molmed.2004.01.002; Broux B, Markovic-Plese S, Stinissen P, Hellings N. Pathogenic features of CD4+CD28- T cells in immune disorders. Trends Mol Med. 2012;18:446–53. doi:10.1016/j.molmed.2012.06.003; Pawlik A, Ostanek L, Brzosko I, et al. The expansion of CD4+CD28- T cells in patients with rheumatoid arthritis. Arthritis Res Ther. 2003;5:R210–3. doi:10.1186/ar766; Scarsi M, Ziglioli T, Airo' P. Baseline numbers of circulating CD28-negative T cells may predict clinical response to abatacept in patients with rheumatoid arthritis. J Rheumatol. 2011;38:2105–11. doi:10.3899/jrheum.110386; Airo P, Scarsi M. Targeting CD4+CD28- T cells by blocking CD28 co-stimulation. Trends Mol Med. 2013;19:1–2. doi:10.1016/j.molmed.2012.10.013; Koetz K, Bryl E, Spickschen K, et al. T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA. 2000;97:9203–8. doi:10.1073/pnas.97.16.9203; Pierer M, Rossol M, Kaltenhä user S, et al. Clonal expansions in selected TCR BV families of rheumatoid arthritis patients are reduced by treatment with the TNFα inhibitors etanercept and infliximab. Rheumatol Int. 2011;31:1023–9. doi:10.1007/s00296-010-1402-9; Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторные клетки при ревматических заболеваниях. Научно-практическая ревматология. 2014;52:430–7 [Nasonov EL, Aleksandrova EN, Avdeeva AS, Rubtsov YuP. T-regulatory cells in rheumatic diseases. Nauchno-prakticheskaya revmatologiya =Rheumatology Science and Practice. 2014;52:430–7 (In Russ.)].; Alunno A, Manetti M, Caterbi S, et al. Altered immunoregulation in rheumatoid arthritis: the role of regulatory T cells and ptoinflammatory Th17 cells and their therapeutic implications. Mediators Inflamm. 2015;2015:751793. doi:10.1155/2015/751793; Wehrens EJ, Prakken BJ, van Wijk F. T cells out of control – impaired immune regulation in the inflamed joint. Nat Rev Rheumatol. 2013;9:34–42. doi:10.1038/nrrheum. 2012.149; Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3(+) regulatory T cell function. Science. 2008;322:271. doi:10.1126/science.1160062; Walker LS. Treg and CTLA-4: Two intertwining pathways to immune tolerance. J Autoimmun. 2013;45:49. doi:10.1016/j.jaut.2013.06.006; Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3(+) natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA. 2008;3105:10113. doi:10.1073/pnas.0711106105; Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. 2002;3:1097. doi:10.1038/ni846; Zheng Y, Manzotti CN, Liu M F, et al. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol. 2014;72:2778–84.; Cribbs P, Kennedy A, Penn H, et al. Treg cell function in rheumatoid arthritis is compromised by ctla-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheum. 2014;66:2344–54. doi:10.1002/art.38715; Bernard NJ. Rheumatoid arthritis: who knows why regulatory T cells are defective in RA. Nat Rev Rheumatol. 2014;10:381. doi:10.1038/nrrheum.2014.96; Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4:1206–12. doi:10.1038/ni1003; Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. 2001;3:1097–101. doi:10.1038/ni846; Alvarez-Quiroga C, Abud-Mendoza C, Doniz-Padilla L, et al. CTLA-4-Ig therapy diminishes the frequency but enhances the function of Treg cells in patients with rheumatoid arthritis.J Clin Immunol. 2011;31:588–95. doi:10.1007/s10875-011- 9527-5; Pieper J, Herrath J, Raghavan, SK, et al. CTLA4-Ig (abatacept) therapy modulates T cell effector functions in autoantibodypositive rheumatoid arthritis patients. BMC Immunol. 2013;14:34. doi:10.1186/1471-2172-14-34; Picchianti Diamanti A, Rosado MM, Scarsella M, et al. Abatacept (cytotoxic T lymphocyte antigen 4-immunoglobulin) improves B cell function and regulatory T cell inhibitory apacity in rheumatoid arthritis patients non-responding to antitumour necrosis factor-α agents. Clin Exp Immunol. 2014;177:630–40. doi:10.1111/cei.12367; Bedoya SK, Lam B, Lau K, Larkin J 3d. Th17 cells in immunity and autoimmunity. Clin Dev Immunol. 2013;2013:986789. doi:10.1155/2013/986789; Насонов ЕЛ, Денисов ЛН, Станислав МЛ. Интерлейкин 17 – новая мишень для антицитокиновой терапии иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2013;51(5):545–52 [Nasonov EL, Denisov LN, Stanislav ML. Interleukin-17 is a new target for anti-cytokine therapy of immune inflammatory rheumatic diseases. Nauchno-prakticheskaya revmatologiya =Rheumatology Science and Practice. 2013;51(5):545–52 (In Russ.)]. doi:10.14412/1995-4484-2013-1547; Singh RP, Hasan S, Sharma S, et al. Th17 cells in inflammation and autoimmunity. Autoimmun Rev. 2014;13:1174–81. doi:10.1016/j.autrev.2014.08.019; Matsutani T, Li Y, Murakami M, et al. Abatacept (CTLA4-Ig) suppresses T cell activation and reduces TH17 cells as well as plasma IL-6 in patients with rheumatoid arthritis. Ann Rheum Dis. 2013;73:383. doi:10.1136/annrheumdis-2012-eular.2663; Murakami M, Matsutani T, Sekiguchi M, et al. Changes in cytokine profiles in rheumatoid arthritis patients during abatacept treatment. Ann Rheum Dis. 2013;72:A622. doi:10.1136/annrheumdis-2013-eular.1847; Golding SR. Inflammatory signaling induced bone lose. Bone. 2015 May 28. doi:10.1016/j.bone.2015.05.024; Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanism, diagnosis and treatment. Nat Rev Rheumatol. 2012;8:656–64. doi:10.1038/nrrgeum.2012.153; Grassi F, Tell G, Robbie-Ryan M, et al. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci USA. 2007;104:15087–92. doi:10.1073/pnas.0703610104; Bedi B, Li JY, Grassi F, et al. Inhibition of antigen presentation and T cell costimulation blocks PTH-induced bone loss. Ann NY Acad Sci. 2010;1192:215–21. doi:10.1111/j.1749- 6632.2009.05216.x; Axmann R, Herman S, Zaiss M, et al. CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis. 2008;67:1603–9. doi:10.1136/ard.2007.080713; Roser-Page S, Vikulina T, Zayzafoon M, Weitzmann MN. CTLA-4Ig-induced T cell anergy promotes Wnt-10b production and bone formation in a mouse model. Arthritis Rheum. 2014;66:990–9. doi:10.1002/art.38319; Leandro M. B cells and rheumatoid factors in autoimmunity. Int J Rheum Dis. 2015;18:379–81. doi:10.1111/1756-185X.12690; Dö rner T, Jacobi AM, Lipsky PE. B cells in autoimmunity. Arthritis Res Ther. 2009;11:247. doi:10.1186/ar2780; Mastrangelo A, Colasanti T, Barbati C, et al. The role of posttranslational protein modifications in rheumatological diseases: focus on rheumatoid arthritis. J Immunol Res. 2015. doi:10.1155/2015/712490; Anzilotti C, Pratesi F, Tommasi C, Migliorini P. Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev. 2010;9:158–60. doi:10.1016/j.autrev.2009.06.002; Darrah E, Andrade F. Citrullination, and carbamylation, and malondialdehyde-acetaldehyde! Oh My! Entering the forest of autoantigen modifications in rheumatoid arthritis. Arthritis Rheum. 2015;67:604–8. doi:10.1002/art.38970; Trouw LA, Mahler M. Closing the serological gap: promising novel biomarkers for the early diagnosis of rheumatoid arthritis. Autoimmun Rev. 2012;12:318–22. doi:10.1016/j.autrev.2012.05.007; Willemze A, Trouw LA, Toes RE, Huizinga TWJ. The influence of ACPA status and characteristics on the course of RA. Nat Rev Rheumatol. 2012;8:114–52. doi:10.1038/nrrheum.2011;204; Klareskof L, Amara K, Malmstrom V. Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol. 2014;26:72–9. doi:10.1097/BOR.0000000000000016; Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007;146:797–808. doi:10.7326/0003-4819-146-11-200706050- 00008; Новиков АА, Александрова ЕН, Черкасова МВ, Насонов ЕЛ. Современные методы лабораторной диагностики ревматоидного артрита. Научно-практическая ревматология. 2010;(1):31–45 [Novikov AA, Aleksandrova EN, Cherkasova MV, Nasonov EL. Modern methods of laboratory diagnosis of rheumatoid arthritis. Nauchnoprakticheskaya revmatologiya =Rheumatology Science and Practice. 2010;(1):31–45 (In Russ.)].; Taylor P, Gartemann J, Hsieh J, Greeden J. A systemic review of serum biomarkers anti-cyclic citrullinated peptide and rheumatoid factor as test for rheumatoid arthritis. Autoimmune Dis. 2011;2011:815038. doi:10.4061/2011/815038; Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81. doi:10.1002/art.27584; Nielen MM, van Schaardenburg D, Reesink HW, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 2004;50:380–6. doi:10.1002/art.20018; Arkema EV, Goldstein BL, Robinson W, et al. Anti-citrullinated peptide autoantibodies, human leukocyte antigen shared epitope and risk of future rheumatoid arthritis: a nested case-control study. Arthritis Res Ther. 2013;15:R159. doi:10.1186/ar4342; Jilani AA, Mackworth-Young CG. The role of citrullinated protein antibodies in predicting erosive disease in rheumatoid arthritis: a systemic literature review and meta-analysis. Int J Rheumatol. 2015;2015:Article ID 728610. doi:10.1155/2015/728610; Kuller LH, Mackey RH, Walitt BT, et al. Determinants of mortality among postmenopausal women in the Women's health initiative who report rheumatoid arthritis. Arthritis Rheum. 2014;66:497–507. doi:10.1002/art.38268; Humphreys J, van Nies JAB, Chupping J, et al. Rheumatoid factor and anti-citrullinated protein antibody positivity, but not level, are associated with increased mortality in patients with rheumatoid arthritis: results from two large independent cohort. Arthritis Res Ther. 2014;16:483. doi:10.1186/s13075-014-0483-3; Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. Anti-citrullinated peptide as autoantigen in rheumatoid arthritis – relevance to treatment. Autoimmune Rev. 2014;13:1114–20. doi:10.1016/j.autrev.2014.08.012; Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet. 2009;373:659–72. doi:10.1016/S0140-6736(09)60008-8; Ioan-Facsinay A, el-Bannoudi H, Scherer HU, et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities. Ann Rheum Dis. 2011;70:188–93. doi:10.1136/ard.2010.131102; Uysal H, Bockermann R, Nandakumar KS, et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J Exp Med. 2009;206:449–62. doi:10.1084/jem.20081862; Amara K, Steen J, Murray F, et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med. 2013;210:445–55. doi:10.1084/jem.20121486; Cornaby C, Gibbons L, Mayhew V, et al. B cell epitope spreading: mechanism and contribution to autoimmune diseases. Immunol Let. 2015;163:56–68. doi:10.1016/j.imlet.2014.11.001; Van de Stadt LA, de Koning MH, van de Stadt RJ, et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 2011;63:3226–33. doi:10.1002/art.30537; Van der Woude D, Rantapaa-Dahlqvist S, Ioan-Facsinay A, et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis. 2010;69:1554–61. doi:10.1136/ard.2009.124537; Willemze A, Shi J, Mulder M, et al. The concentration of anticitrullinated protein antibodies in serum and synovial fluid in relation to total immunoglobulin concentrations. Ann Rheum Dis. 2013;72:1059–63. doi:10.1136/annrheumdis-2012-202747; Fisher BA, Plant D, Brode M, et al. Antibodies to citrullinated alpha-enolase peptide 1 and clinical and radiological outcomes in rheumatoid arthritis. Ann Rheum Dis. 2011;70:1095–8. doi:10.1136/ard.2010.138909; Willemze A, Bohringer S, Knevel R, et al. The ACPA recognition profile and subgrouping of ACPA-positive RA patients. Ann Rheum Dis. 2012;71:268–74. doi:10.1136/annrheumdis-2011-200421; Ioan-Facsinay A, Willemze A, Robinson DB, et al. Marked differences in fine specificity and isotype usage of the anti-citrullinated protein antibody in health and disease. Arthritis Rheum. 2008;58:3000–8. doi:10.1002/art.23763; Kokkonen H, Mullazehi M, Berglin E, et al. Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res Ther. 2011;13:R13. doi:10.1186/ar3237; Van der Woude D, Syversen SW, van der Voort EI, et al. The ACPA isotype profile reflects long-term radiographic progression in rheumatoid arthritis. Ann Rheum Dis. 2010;69:1110–6. doi:10.1136/ard.2009.116384; Suwannalai P, Scherer HU, van der Woude D, et al. Anti-citrullinated protein antibodies have a low avidity compared with antibodies against recall antigens. Ann Rheum Dis. 2011;70:373–9. doi:10.1136/ard.2010.135509; Suwannalai P, van de Stadt LA, Radner H, et al. Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 2012;64:1323–8. doi:10.1002/art.33489; Goulabchand R, Vincent T, Batteux F, et al. Impact of autoantibody glycosylation in autoimmune disease. Autoimmune Rev. 2014;13:742–50. doi:10.1016/j.autrev.2014.02.005; Scherer HU, Wang J, Toes RE, et al. Immunoglobulin 1 (IgG1) Fc-glycosylation profiling of anti-citrullinated peptide antibodies from human serum. Proteomics Clin Appl. 2009;3:106–15. doi:10.1002/prca.200800098; Scherer HU, van der Woude D, Ioan-Facsinay A, et al. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum. 2010;62:1620–9. doi:10.1002/art.27414; Rombouts Y, Ewing E, van de Stadt LA, et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis. 2015;74:234–41. doi:10.1136/annrheumdis-2013-203565; Arnold JN, Wormald MR, Sim RB, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Ann Rev Immunol. 2007;25:21–50. doi:10.1146/annurev.immunol.25.022106.141702; Stadlmann J, Pabst M, Altmann F. Analytical and functional aspects of antibody sialylation. J Clin Immunol. 2010;30:15–9. doi:10.1007/s10875-010-9409-2; Clavel C, Nogueira L, Laurent L, et al. Induction of macrophage secretion of tumor necrosis factor alpha through Fc gamma receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum. 2008;58:678–88. doi:10.1002/art.23284; Sokolove J, Zhao X, Chandra PE, Robinson WH. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fc gamma receptor. Arthritis Rheum. 2011;63:53–62. doi:10.1002/art.30081; Kuhn KA, Kulik L, Tomooka B, et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest. 2006;116:961–73. doi:10.1172/JCI25422; Trouw LA, Haisma EM, Levarht W, et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 2009;60:1923–31. doi:10.1002/art.24622; Sokolove J, Johnson DS, Lahey LJ, et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheum. 2014;66:813–21. doi:10.1002/art.38307; Laurent L, Anqurti F, Clavel C, et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann Rheum Dis. 2014. doi: 10/1136/annrheumdis-2013-204543; Hecht C, Englbrecht M, Rech J, et al. Additive effect of anticitrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA. Ann Rheum Dis. 2014. doi:10.1136/annrheumdis-2014-205428; Harre U, Georgess D, Bang H, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012;122:1791–802. doi:10.1172/JCI60975; Harre U, Lang SC, Pfeifle R, et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone lose. Nat Commun. 2015;6:6651. doi:10.1038/ncomms7651; Kleyer A, Finsel S, Rech J, et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 2014;73:854–60. doi:10.1136/annrhgeumdis-2012-202958; Dwivedi N, Radic M. Citrullination of autoantigens implicated NETosis in the induction of autoimmunity. Ann Rheum Dis. 2014;73:483–91. doi:10.1136/annrheumdis-2013-203844; Khandpur R, Camona-Rivera C, Vivekanandan-Giri A, et al. NETs are source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5:178ra40. doi:10.1126/scitranslmed.3005580; Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10:387–402. doi:10.1038/nri2765; Iwata S, Yamaoka K, Niiro H, et al. Amplification of Toll-like receptor-mediated signaling through spleen tyrosine kinase in human B-cell activation. J Allergy Clin Immunol. 2012;129:1594–601. doi:10.1016/j.jaci.2012.03.014; Iwata S, Nakayamada S, Fukuyo S, et al. Activation of Syk in peripheral blood B cells in patients with rheumatoid arthritis. A potential target for abatacept therapy. Arthritis Rheum. 2015;67:63–73. doi:10.1002/art.38895; Crotty S. Follicular helper CD4 T cells (TFH). Ann Rev Immunol. 2011;29:621–63. doi:10.1146/annurev-immunol-031210-101400; Platt AM, Gibson VB, Patakas A, et al. Abatacept limits breach of self-tolerance in a murine model of arthritis via effects on the generation of T follicular helper cells. J Immunol. 2010;185:1558–67. doi:10.4049/jimmunol.1001311; Jansen D, el Bannoudi H, Arens R, et al. Abatacept decreases disease activity in the absence of CD4+ T-cells in the collagen induced arthritis model. Arthritis Res Ther. 2015;17:220. doi:10.1186/s13075-015-0731-1; Cutolo M, Nadler SG. Advances in CTLA-4-IgG-mediated modulation of inflammatory cell and immune response activation in rheumatoid arthritis. Autoimmun Rev. 2013;12:758–67. doi:10.1016/j.autrev.2013.01.001; Isaacs JD, Cohen SB, Emery P, et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann Rheum Dis. 2013;72(3):329–36. doi:10.1136/annrheumdis-2011-201117; Maneiro RJ, Salfado E, Carmona L, Gomez-Reino JJ. Rheumatoid factor as predictor of response to abatacept, rituximab and tocilizumab in rheumatoid arthritis: systemic review and meta-analysis. Semin Arthritis Rheum. 2013;43:9–17. doi:10.1016/j.semarthrit.2012.11.007; Lv Q, Yin Y, Li X, et al. The status of rheumatoid factor and anti-cyclic citrullinated peptide antibody are not associated with the effect of anti-TNFα agent treatment in patients with rheumatoid arthritis: a meta-analysis. PloS One. 2014;27(9):e89442. doi:10.1371/journal.pone.0089442; Kremer JM, Dougados M, Emery P, et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase IIb, double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2005;52:2263–71. doi:10.1002/art.21201; Schiff M, Keiserman M, Codding C, et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis. 2008;67:1096–103. doi:10.1136/ard.2007.080002; Sokolove J, Schiff M, Fleiscmann R, et al. Effect of baseline anti-cyclic citrullinated peptide 2 antibody titre on patientreported outcome following treatment with subcutaneous abatacept or adalimumab. Ann Rheum Dis. 2015;72(Suppl 4):675. doi:10.1136/annrhreumdis-eular.2215; Sokolove J, Schiff M, Fleiscmann R, et al. Impact of baseline anti-cyclic citrullinated peptide 2 antibody titre on efficacy outcome following treatment with subcutaneous abatacept or adalimumab: 2-year results from the AMPLE trial. Ann Rheum Dis. 2015;72(Suppl 4):675. doi:10.1136/annrhreumdiseular. 1790; Huizinga TWG, Connolly SE, Johnsen A, et al. Effect of anticyclic citrullinated peptide 2 immunoglobulin M serostatus on efficacy outcomes following treatment with abatacept plus methotrexate in the avert trial. Ann Rheum Dis. 2015;74(Suppl 2):234–5. doi:10.1136/annrheumdis-2015-eular.1983; Fujii T, Sekiguchi M, Matsui K, et al. Very high titer of anti-citrullinated protein antibodies is associated with the achievement of clinical remission by abatacept in biologic-naive patients with rheumatoid arthritis. (the ABROAD study). Ann Rheum Dis. 2013;72:A889. doi: 10/1135/annrheumdis-2013-eular.2656; Sekiguchi M, Fujii T, Kitano M, et al. Predicting factors associated with sustained clinical remission by abatacept are different between younger and eldery patients with biologic-naive rheumatoid arthritis (ABROAD study). Ann Rheum Dis. 2015;72(Suppl 4):1056. doi:10.1136/annrheumdis-2015-eular.2693; Takahashi N, Kojima T, Funahashi K, et al. Positivity for rheumatoid factor associated with a better short-term response and long-term drug retention of abatacept: results from consecutive 508 patients with rheumatoid arthritis in a Japanese multicenter registry. Ann Rheum Dis. 2015;72(Suppl 4):488. doi:10.1136/annrhreumdis-eular.2120; Gottenberg JE, Neto D, Gomez-Reino J, et al. Positivity for rheumatoid factor and anti-cyclic citrullinated peptide is associated with better drug retention of abatacept: a data from a Paneuropean analysis of RA register. Ann Rheum Dis. 2014;72(Suppl 2):505. doi:10.1136/annrheumdis-2014-eular.5345; Van Dongen H, van Aken J, Lard LR, et al. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis – double-blind, randomized, placeb0-controlled trial. Arthritis Rheum. 2007;56:1421–32. doi:10.1002/art.22525; Visser K, Verpoort KN, van Dongen H, et al. Pretreatment serum levels 0f anti-cyclic citrullinated peptide antibodies are associated with the response to methotrexate in recent-onxet arthritis. Ann Rheum Dis. 2008;67:1194–5. doi:10.1136/ard.2008.088070; Huizinga TWJ, Connolly SE, Furst DE, et al. The impact of anti-citrullinated protein antibody isotypes and fine specificity in patients with early RA treated with abatacept and methotrexare. Arthritis Rheum. 2014;66 (Suppl):1515(abst).; Connolly S, Maldonado M, Schiff M, et al. Modulation of the ACPA fine specificity in patients with RA treated with either abatacept or adalimumab in the AMPLE study. Ann Rheum Dis. 2015;72(Suppl 4):395. doi:10.1136/annrhreumdis-eular.2469; Anno S, Inui K, Mamoto K, et al. Abatacept might not alter anti-cyclic citrullinated peptide levels in established rheumatoid arthritis – AIRTIGHT study. Ann Rheum Dis. 2015;72(Suppl 4):1058. doi:10.1136/annrhreumdis-eular.3779; Ramos-Casals M, Roberto-Perez-Alvarez, Diaz-Lagares C, et al. Autoimmune diseases induced by biological agents: a doubleedged sword? Autoimmun Rev. 2010;9:188–93. doi:10.1016/j.autrev.2009.10.003; Buch MH, Johnsen A, Wong DA, Schiff M. Can anti-TNFinduced autoantibody conversion be reversed by switching to abatacept therapy in patients with RA on background MTX? Ann Rheum Dis. 2015;72(Suppl.4):675. doi:10.1136/annrhreumdis-eular.1497; Scarsi M, Paolini L, Ricotta D, et al. Abatacept reduces levels of switched memory B cells, autoantibodies, and immunoglobulins in patients with rheumatoid arthritis. J Rheumatol.2014;41:666–72. doi:10.3899/jrheum.130905; Huiziga TWJ, Emery P, Westhovens R, et al. Rate of anti-cyclic citrullinated peptide antibody and rheumatoid factor seroconversion in patients with undifferentiated arthritis or early rheumatoid arthritis treated with abatacept. Arthritis Rheum. 2011;2232(abst).; Modi S, Soejima M, Levesque MC. The effect of targeted rheumatoid arthritis therapies on anti-citrullinated protein autoantibody levels and B cell responses. Clin Exp Immunol. 2013;173:8–17. doi:10.1111/cei.12114; Bohler C, Radner H, Smolen JS, Aletaha D. Serological changes in the course of traditional and biological disease modifying therapy of rheumatoid arthritis. Ann Rheum Dis. 2013;72:241–4. doi:10.1136/annrheumdis-2012-202297; Van Vollenhoven RF, Geborek P, Forslind K, et al. Conventional combination treatment versus biological treatment in methotrexate-refractory early rheumatoid arthritis: 2 year ollow- up of the randomised, non-blinded, parallel-group Swefot trial. Lancet. 2012;379:1712–20. doi:10.1016/S0140-6736(12)60027-0; Kastbom A, Forslind K, Ernestam S, et al. Changes in the anticitrullinated peptide antibody response in relation to therapeutic outcome in early rheumatoid arthritis: results the SWEFOT trial. Ann Rheum Dis. 2014. doi:10.1136/annrheumdis-2014-205698; Ally MMTM, Hodkinson B, Meyer PWA, et al. Circulating anti-citrullinated peptide antibodies, cytokines and genotype as biomarkers of response to disease-modifying antirheumatic druf therapy in early rheumatoid arthritis. BMC Musculoskeletal Dis. 2015;16:130. doi:10.1186/s12891-015-0587-1; Barra L, Bykerk V, Pope JE, et al. Anticitrullinated protein antibodies and rheumatoid factor fluctuate in early inflammatory arthritis and not predict clinical outcome. J Rheumatol. 2013;40:1259–67. doi:10.3899/jrheumtol.120736; Bandyopadhyay S, Maldonado M, Schiff M, et al. Gene expression analyses of abatacept- and adalimumab-treated patients from the ample trial. Arthritis Rheum. 2014;66(Supp):1520(abst).; Derambure C, Vittecoq O, Dzangue Tchoupou G, et al. Analysis of gene expression fluctuation with abatacept pathway as a mechanism of action of abatacept in rheumatoid arthritis. Arthritis Rheum. 2012;64(Suppl):1517(abst).; Verbrugge SE, Scheper RJ, Lems WF, et al. Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Res Ther. 2015;17:17. doi:10.1186/s13075-015-0529-1; Obry A, Cosette P, Lequerre T, et al. Protein quantification using mass spectrometry methods to predict response to abatacept and methotrexate combination therapy in rheumatoid arthritis. Arthritis Rheum. 2012;64(Suppl);2923(abst).; Smolen JS, Landewe R, Breedveld FC, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis. 2014;73:492–509. doi:10.1136/annrheumdis-2013-204573; Smolen JS, Breedvald FC, Burmester GR, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis. 2015; doi:10.1036/annrheumdis-2015-32075242014; Насонов ЕЛ, Мазуров ВИ, Каратеев ДЕ и др. Проект рекомендаций по лечению ревматоидного артрита Общероссийской общественной организации «Ассоциация ревматологов России» – 2014 (часть 1). Научно-практическая ревматология. 2014;52(5):477–94 [Nasonov EL, Mazurov VI, Karateev DE, et al. Spondyloarthritis: Evolution of a concept. Project: recommendations on treatment of rheumatoid arthritis developed by All-Russian Public organization «Association of Rheumatologists of Russia» – 2014 (part 1). Nauchno-prakticheskaya revmatologiya =Rheumatology Science and Practice. 2014;52(5):477–94 (In Russ.)]. doi:10.14412/1995-4484-2014-477-494; Buckley F, Finckh A, Huizinga TWJ, et al. Comparative efficacy of novel DMARDs as monotherapy and in combination with methotrexate in rheumatoid arthritis patients with inadequate response to conventional DMARDs: a network meta-analysis. J Man Care Spec Pharm. 2015;21:409–23.; Jorgensen TS, Tarp S, Furst DE, et al. Added-value of combining methotrexate with a biological agent compared to biological monotherapy in patients with rheumatoid arthritis: a systemic review and meta-analysis of randomized trials. Ann Rheum Dis. 2015;74(Suppl2):239. doi:10.1136/annrheumdis-2015-eular.3396; Striesow F, Brandt A. Preference, satisfaction and usability of subcutaneous administrered methotrexate for rheumatoid arthritis or psoriatic arthritis: results of a postmarketing surveillance study with a high-concentration formulation. Ther Adv Musculoskeletal Dis. 2012;4:3–9. doi:10.1177/1759720X11431004; Насонов ЕЛ. Метотрексат при ревматоидном артрите –2015: новые факты и идеи. Научно-практическая ревматология. 2015;53(4):421–33 [Nasonov EL. Methotrexate in heumatoid arthritis – 2015: New facts and ideas. Nauchnoprakticheskaya revmatologiya = Rheumatology Science and Practice. 2015;53(4):421–33 (In Russ.)]. doi:10.14412/1995- 4484-2015-421-433.; Malavia AP, Ostor AJK. Drug adherence to biologic DMARDs with a special emphasis on the benefits of subcutaneous abatacept. Patients Pref Adher. 2012;6:589–96.; Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat Rev Rheumatol. 2015;11(5):276–89. doi:10.1038/nrrheum.2015.8; Westhovens R, Robles M, Ximenes AC, et al. Maintenance of remission following 2 years of standart treatment then dose reduction with abatacept in patients with early rheumatoid arthritis and poor prognosis. Ann Rheum Dis. 2015;74:564–8. doi:10.1136/annrheumdis-2014-206149; Westhovens R, Robles M, Ximenes AC, et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann Rheum Dis. 2009;68:1870–7. doi:10.1136/ard.2008.101121; Felson DT, Smolen JS, Wells G, et al. American College of Rheumatology/European League Against Rheumatism Provisional definition of remission in rheumatoid arthritis for clinical trials. Ann Rheum Dis. 2011;70:404–13. doi:10.1136/ard.2011.149765; Cribbs AP, Kennedy A, Penn H, et al. Methotrexate restores regulatory T cell function through demethelation of the FoxP3 upstream enhancer in patients with rheumatoid arthritis. Arthritis Rheum. 2015;67:1182–92. doi:10.1002/art.39031; Chan ESL, Cronstein BN. Methotrexate – how does it really work? Nat Rev Rheumatol. 2010;6,175–8. doi:10.1038/nrrheum.2010.5; Ohta A, Sitkovsky M. Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol. 2014;5:1–9. doi:10.3389/fimmu.2014.00304; Glaesener S, Quach TD, Onken N, et al. Distinct effects of methotrexate and etanercept on the B cell compartment in patients with juvenile idiopathic arthritis. Arthritis Rheum. 2014;66:2590–600. doi:10.1002/art.38736; Tussiwand R, Bosco N, Ceredig R, Rolink AG. Tolerance checkpoints in B-cell development: Johny B good. Eur J Immunol. 2009;39:2317–8. doi:10.1002/eji.200939633; Bohm I. Decrease of B-cells and autoantibodies after low-dose methotrexate. Biomed Pharmacol. 2003;57:278–82. doi:10.1016/S0753-3322(03)00086-6; Coffey G, Betz A, Graf J, et al. Methotrexate and spleen tyrosine kinase inhibitor cooperate to inhibit responses to peripheral blood B cells in rheumatoid arthritis. Pharm Res Per. 2013 Dec;1(2):e00016. doi:10.1002/prp2.16; Rozanski CH, Arens R, Carlson LM, et al. Sustained antibody responses depends on CD28 function in bone marrow-resident plasma cells. J Exp Med. 2011;208:1435–46. doi:10.1084/jem.20110040; Scarsi M, Zilioli T, Airo P. Baseline numbers of circulating CD28-negative T cells may predict clinical response to abatacept in patients with rheumatoid arthritis. J Rheumatol. 2011;38:2105–11. doi:10.3899/jrheum.110386; Kuehn HS, Ouyang W, Lo B, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345:1623–7. doi:10.1126/science. 1255904; Li G, Shi F, Liu J, Li Ye. The effect of CTLA-4 A49G polymorphism on rheumatoid arthritis risk: a meta-analysis. Diagn Pathol. 2014;9:157. doi:10.1186/s13000-014-0157-0; Tsuboi H, Matsumoto I, Hagiwara S, et al. Efficacy and safety of abatacept for patients with Sjogren's syndrome associated with rheumatoid arthritis: rheumatoid arthritis with Orencia Trial toward Sjogren's syndrome Endocrinopathy (ROSE) trial – an open-label, one-year, prospective study – Interim analysis of 32 patients for 24 weeks. Mod Rheumatol. 2015;25:187–93. doi:10.3190/14397595.2014.951144; Meiners PM, Vissink A, Kroese FGM, et al. Abatacept treatment reduces disease activity in early primary Sjogren's syndrome (open-label proof of concept ASAP study). Ann Rheum Dis. 2014 Jul;73(7):1393–6. doi:10.1136/annrheumdis-2013- 204653; Payet J, Belkhir R, Gottenberg JE, et al. ACPA-positive primary Sjogren's syndrome: true primary or rheumatoid arthritis-associated Sjogren's syndrome? RMD Open. 2015;1:e000066. doi:10.1136/rmdopen-2015-000066; Fuii W, Kohno M, Ishino H, et al. The rapid efficacy of abatacept in patients with rheumatoid vasculitis. Mod Rheumatol. 2012;22:630–4. doi:10.3109/s10165-011-0559-8; Ostrowski RA, Tehrani R, Kadanoff R. Refractory adalt-onset Still disease sucessully treated with abatacept. J Clin Rheumatol. 2011;17:315–7. doi:10.1097/RHU.0b013e31822c53ad; Quartuccio L, Maset M, de Vita S. Efficacy of abatacept in a refractory case of adult-oncet Still`s disease. Clin Exp Rheumatol. 2010;28:265–57.; Gardette A, Ottaviani S, Sellam J, et al. Does body mass index influence the response to abatacept in rheumatoid arthritis. Ann Rheum Dis. 2015;72(Suppl 4):1040–1. doi:10.1136/annrhreumdis-eular.1258; Orban T, Bundy B, Becker DJ, et al. Co-stimulation modulation with abatacept in patients with recent oncet type 1 diabetes: a randomized, double-blind, placebo-controlled trial. Lancet. 2011;378:412–9. doi:10.1016/S0140-6736(11)60886-6; Atzeni F, Sarzi-Puttini P, Mutti A, et al. Long-term safety in patients with rheumatoid arthritis. Autoimmun Rev. 2013;12:1115–7. doi:10.1016/j.autrev.2013.06.011; Ramiro S, Gaujoux-Viala C, Nam JL, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 2014;7:529–35. doi:10.1136/annrheumdis-2013-204575; Simon TA, Askling J, Lacaille D, et al and the Abatacept Epidemiology Study Group. Infections requiring hospitalization in the abatacept clinical development program: an epidemiological assessment. Arthritis Res Ther. 2010;12:R67. doi:10.1186/ar2984; Souto A, Maneiro JR, Sajgado E, et al. Risk of tuberculosis in patients with chronic immune-mediated inflammatory diseases treated with biologics and tofacitinid: a systemic review and meta-analysis of randomized controlled trials and long-term extension studies. Rheumatology. 2014;53:1872–85. doi:10.1093/rheumatology/keu172; Motojima S, Nakashita T, Jibatake A, Ando K. Abatacept can be used safely for ra patients with interstitial lung disease. Arthritis Rheum. 2014;66(Suppl):472(abst).; Hirabara S, Kojima T, Takahashi N, et al. The safety and treatment efficacy of abatacept in rheumatoid arthritis patients with pulmonary complications: From the Tsurumai Biologics Communication Registry (TBCR) Multicenter Study. Arthritis Rheum. 2014;66 (Suppl):2(abst).; Nelson D, McLaughlin M, Ostor A. Abatacept and its impact on interstinal lung disease a systemic literature review. Ann Rheum Dis. 2015;74(Suppl 2):1015. doi:10.1136/annrheumdis-2015-2004; Athanasakis K, Petrakis I, Kyriopoulos J. Investigating the value of abatacept in the treatment of rheumatoid arthritis: a systemic review of cost-effectiveness studies. ISRN Rheumatol. 2013 May 30;2013:256871. doi:10.1155/2013/256871

  18. 18
    Academic Journal

    Source: Medical Immunology (Russia); Том 17, № 5 (2015); 431-442 ; Медицинская иммунология; Том 17, № 5 (2015); 431-442 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2015-5

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/926/815; Козлов В.А., Борисов А.Г., Смирнова С.В., Савченко А.А. Практические аспекты диагностики и лечения иммунных нарушений. Новосибирск: Наука, 2009. 274 с. [Kozlov V.A., Borisov A.G., Smirnova S.V., Savchenko A.A. Practical aspects of diagnosis and treatment of immune disorders]. Novosibirsk: Nauka, 2009. 274 p.; Савченко А.А., Шимохина Н.Ю., Петрова М.М., Борисов А.Г., Пилюгина М.С., Мошев А.В. Фенотипический состав лимфоцитов крови у больных острым коронарным синдромом в сочетании с расстройствами тревожно-депрессивного спектра // Российский иммунологический журнал, 2014. Т. 8 (17) № 4. С. 1019-1027. [Savchenko A.A., Shimohina N.Ju., Petrova M.M., Borisov A.G., Pilyugina M.S., Moshev A.V. Phenotype of blood lymphocytes of patients with acute coronary syndromes in conjunction with anxiety-depressive disorder. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2014, Vol. 8 (17), no. 4, pp. 10191027. (In Russ.)]; Савченко А.А., Модестов А.А., Мошев А.В., Тоначева О.Г., Борисов А.Г. Цитометрический анализ NKи NKT-клеток у больных почечноклеточным раком // Российский иммунологический журнал, 2014. Т. 8 (17), № 4. С. 1012-1018. [Savchenko A.A., Modestov A.A., Moshev A.V., Tonacheva O.G., Borisov A.G. Flow cytometry of NKand NKT-cells in patients with renal cell carcinoma. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2014, Vol. 8 (17), no. 4, pp. 1012-1018. (In Russ.)]; Соловей Н.В. Клинические особенности и исходы терапии внутрибольничных инфекций, вызываемых синегнойной палочкой с различным уровнем устойчивости к антибиотикам // Клиническая инфектология и паразитология., 2013. № 4 (07). С. 26-39. [Solovey N.V. Clinical features and treatment outcomes of nosocomial infections caused by Pseudomonas aeruginosa with different levels of resistance to antibiotics. Klinicheskaya infektologiya i parazitologiya = Clinical Infectology and Parasitology, 2013, no. 4 (07), pp. 26-39. (In Russ.)]; Хайдуков С.В., Байдун Л.А., Зурочка А.В., Тотолян Арег А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» (Проект) // Медицинская иммунология, 2012. Т. 14, № 3. С. 255-268. [Khaydukov S.V., Baydun L.A., Zurochka A.V., Totolian Areg A. Standardized technology «Research of lymphocytes subpopulation composition in peripheral blood using flow cytometry analyzers» (Draft). Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, Vol. 14, no. 3, pp. 255-268. doi:10.15789/1563-0625-2012-3-255-268 (In Russ.)]; Цеймах И.Я., Момот А.П., Костюченко Г.И., Мамаев А.Н., Филонова Ю.А., Корнилова Т.А., Чучалин А.Г. Роль дисфункции эндотелия, сопряжения гемостатических и системных воспалительных реакций в патогенезе обострения хронической обструктивной болезни легких, зависимого от инфекционного воспаления // Терапевтический архив, 2013. Т. 85, № 3. С. 17-22. [Ceymah I.Ya., Momot A.P., Kostyuchenko G.I., Mamaev A.N., Filonova Yu.A., Kornilova T.A., Chuchalin A.G. The role of endothelial dysfunction, hemostatic interface and systemic inflammatory response in the pathogenesis of chronic obstructive pulmonary disease exacerbation dependent from infectious inflammation. Terapevticheskiy arkhiv = Therapeutic Archive, 2013, Vol. 85, no. 3, pp. 17-22. (In Russ.)]; Чучалин А.Г., Белевский А.С., Овчаренко С.И., Королева И.А. Улучшение качества жизни и предотвращение обострений – реально достижимые цели терапии ХОБЛ (результаты национального исследования ИКАР-ХОБЛ) // Практическая пульмонология, 2006. № 2. С. 48-51. [Chuchalin A.G., Belevskij A.S., Ovcharenko S.I., Koroleva I.A. Improving of life quality and prevention of exacerbations – achievable goals of COLD treatment (results of a national study ICAR-COLD). Prakticheskaya pul`monologiya = Practical Pulmonology, 2006, no. 2, pp. 48-51. (In Russ.)]; Шубин И.В., Татевосов В.Р., Костинов М.П., Чучалин А.Г. Оценка эффективности вакцинотерапии в комплексном лечении нетяжелой внебольничной пневмонии у лиц молодого возраста в организованных коллективах // Практическая медицина, 2013. № 5 (74). С. 110-113. [Shubin I.V., Tatevosov V.R., Kostinov M.P., Chuchalin A.G. Evaluating the effectiveness of vaccine therapy in treatment of non-severe community-acquired pneumonia in young people in organized groups. Prakticheskaya meditsina = Practical Medicine, 2013, no. 5 (74), pp. 110-113. (In Russ.)]; Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2010. 752 с. [Yarilin A.A. Immunology]. Moscow: GEOTAR-Media, 2010. 752 p.; Alikhan M.M., Lee F.E. Understanding nontypeable Haemophilus influenzae and chronic obstructive pulmonary disease. Curr. Opin. Pulm. Med., 2014, Vol. 20, no. 2, pp. 159-164.; Almagro P., Salvadó M., Garcia-Vidal C., Rodríguez-Carballeira M., Cuchi E., Torres J., Heredia J.L. Pseudomonas aeruginosa and mortality after hospital admission for chronic obstructive pulmonary disease. Respiration, 2012, Vol. 84, no. 1, pp. 36-43.; Baccioglu A., Gulbay B.E., Acıcan T. Body composition in patients with stable chronic obstructive pulmonary disease: comparison with malnutrition in healthy smokers. Eurasian J. Med., 2014, Vol. 46, no. 3, pp. 169-175.; Bhela S., Kempsell C., Manohar M., Dominguez-Villar M., Griffin R., Bhatt P., Kivisakk-Webb P., Fuhlbrigge R., Kupper T., Weiner H., Baecher-Allan C. Nonapoptotic and Extracellular Activity of Granzyme B Mediates Resistance to Regulatory T Cell (Treg) Suppression by HLA-DR-CD25hiCD127lo Tregs in Multiple Sclerosis and in Response to IL-6. J. Immunol., 2015, Vol. 194, no. 5, pp. 2180-2189.; Borge C.R., Mengshoel A.M., Omenaas E., Moum T., Ekman I., Lein M.P., Mack U., Wahl A.K. Effects of guided deep breathing on breathlessness and the breathing pattern in chronic obstructive pulmonary disease: A double-blind randomized control study. Patient Educ. Couns., 2015, Vol. 98, no. 2, pp. 182-190.; Clancy R.L. Towards a vaccine for chronic obstructive pulmonary disease. Intern. Med. J., 2012, Vol. 42, no. 6, pp. 607-613.; Ghazarian L., Simoni Y., Magalhaes I., Lehuen A. Invariant NKT cell development: focus on NOD mice. Curr. Opin. Immunol., 2014, Vol. 27, pp. 83-88.; He X., Liang H., Hong K., Li H., Peng H., Zhao Y., Jia M., Ruan Y., Shao Y. The potential role of CD16+ Vγ2Vδ2 T cell-mediated antibody-dependent cell-mediated cytotoxicity in control of HIV type 1 disease. AIDS Res. Hum. Retroviruses., 2013, Vol. 29, no. 12, pp. 1562-1570.; Issazadeh-Navikas S. NKT cell self-reactivity: evolutionary master key of immune homeostasis? J. Mol. Cell. Biol., 2012, Vol. 4, no. 2, pp. 70-78.; Kim M., Cha S.I., Choi K.J., Shin K.M., Lim J.K., Yoo S.S., Lee J., Lee S.Y., Kim C.H., Park J.Y., Yang D.H. Prognostic value of serum growth differentiation factor-15 in patients with chronic obstructive pulmonary disease exacerbation. Tuberc. Respir. Dis. (Seoul), 2014, Vol. 77, no. 6, pp. 243-250.; Kroegel C., Bakakos P. The inflammatory effector cell pattern in asthma and chronic obstructive pulmonary disease – what is it good for? Respiration, 2012, Vol. 83, no. 1, pp. 17-19.; Lertworapreecha M., Patumraj S., Niruthisard S., Hansasuta P., Bhattarakosol P. Cytotoxic function of gamma delta (gamma/delta) T cells against pamidronate-treated cervical cancer cells. Indian J. Exp. Biol., 2013, Vol. 51, no. 8, pp. 597-605.; Létourneau S., Krieg C., Pantaleo G., Boyman O. IL-2and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J. Allergy Clin. Immunol., 2009, Vol. 123, no. 4, pp. 758-762.; Li X., Zheng Y. Treg identity protection by an epigenetic switch. Cell Cycle, 2014, Vol. 13, no. 20, pp. 31593160.; Lim Y.J., Koo J.E., Hong E.H., Park Z.Y., Lim K.M., Bae O.N., Lee J.Y. A Src-family-tyrosine kinase, Lyn, is required for efficient IFN-β expression in pattern recognition receptor, RIG-I, signal pathway by interacting with IPS-1. Cytokine, 2015, Vol. 72, no. 1, pp. 63-70.; Linterman M.A., Denton A.E. Treg cells and CTLA-4: the ball and chain of the germinal center response. Immunity, 2014, Vol. 41, no. 6, pp. 876-878.; Luider J.1., Cyfra M., Johnson P., Auer I. Impact of the new Beckman Coulter Cytomics FC 500 5-color flow cytometer on a regional flow cytometry clinical laboratory service. Lab. Hematol., 2004, Vol. 10, pp. 102-108.; Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, Vol. 12, pp. 191-200.; Mayer A., Debuisson D., Denanglaire S., Eddahri F., Fievez L., Hercor M., Triffaux E., Moser M., Bureau F., Leo O., Andris F. Antigen presenting cell-derived IL-6 restricts Th2-cell differentiation. Eur. J. Immunol., 2014, Vol. 44, no. 11, pp. 3252-3262.; Miravitlles M., Anzueto A. Antibiotics for acute and chronic respiratory infection in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2013, Vol. 188, no. 9, pp. 1052-1057.; Miyara M., Ito Y., Sakaguchi S. TREG-cell therapies for autoimmune rheumatic diseases. Nat. Rev. Rheumatol., 2014, Vol. 10, no. 9, pp. 543-551.; Oosting M., Cheng S.C., Bolscher J.M., Vestering-Stenger R., Plantinga T.S., Verschueren I.C., Arts P., Garritsen A., van Eenennaam H., Sturm P., Kullberg B.J, Hoischen A., Adema G.J., van der Meer J.W., Netea M.G., Joosten L.A. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc. Natl. Acad. Sci. USA, 2014, Vol. 111, no. 42, pp. E4478-E4484.; Rabe K.F., Hurd S., Anzueto A. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med., 2007, Vol. 176, pp. 532555.; Rakhimova E., Wiehlmann L., Brauer A.L., Sethi S., Murphy T.F., Tümmler B. Pseudomonas aeruginosa population biology in chronic obstructive pulmonary disease. J. Infect. Dis., 2009, Vol. 200, no. 12, pp. 1928-1935.; Sawant D.V., Vignali D.A. Once a Treg, always a Treg? Immunol. Rev., 2014, Vol. 259, no. 1, pp. 173-191.; Vasudev A., Ying C.T., Ayyadhury S., Puan K.J., Andiappan A.K., Nyunt M.S., Shadan N.B., Mustafa S., Low I., Rotzschke O., Fulop T., Ng T.P., Larbi A. γ/δ T cell subsets in human aging using the classical α/β T cell model. J. Leukoc. Biol. 2014, Vol. 96, no. 4, pp. 647-655.; Wark P.A., Tooze M., Powell H., Parsons K. Viral and bacterial infection in acute asthma and chronic obstructive pulmonary disease increases the risk of readmission. Respirology, 2013, Vol. 18, no. 6, pp. 996-1002.; Wen W., Wang A.M., Liu D.L., Zhang Y.B., Yao L.Q., Lai G.X. Expression of connective tissue growth factor and bone morphogenetic protein-7 in Pseudomonas aeruginosa-induced chronic obstructive pulmonary disease in rats. COPD, 2013, Vol. 10, no. 6, pp. 657-666.; https://www.mimmun.ru/mimmun/article/view/926

  19. 19
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 12, № 3 (2010); 112-120 ; Вестник трансплантологии и искусственных органов; Том 12, № 3 (2010); 112-120 ; 1995-1191 ; 10.15825/1995-1191-2010-3

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/335/277; Бабаева А.Г. Роль лимфоцитов в оперативном изменении программы развития тканей. М.: Изд. РАМН, 2009. 107 с.; Зайчик А.Ш., Чурилов Л.П. Патофизиология. Т. 1: Общая патофизиология. СПб.: ЭЛБИ-СПб, 2002.; Рабсон А., Ройт А., Делвз П. Основы медицинской иммунологии. М.: Мир, 2006.; Ройт А., Бростофф Д., Мейл Д. Иммунология. М.: Мир, 2000.; Шумаков В.И., Хубутия М.Ш., Белецкая Л.В. Отторжение гуморального типа при аллотрансплантации сердца. Тверь: Триада, 2003. 184 с.; Ярилин А.А., Донецкова А.Д. Естественные регуляторные Т-клетки и фактор Foxp3 // Иммунология. 2006. No 3. 176–188.; Abramowicz D., Hadaya K., Hazzan M., Broeders N. et al. Conversion to sirolimus for chronic renal allograft dysfunction: risk factors for graft loss and severe side effects // Nephrology Dialysis Transplantation. 2008. Vol. 23 (11). P. 3727–3729.; Bestard O., Cruzado J.M., Mestre M., Caldés A. et al. Achieving Donor-Specific Hyporesponsiveness Is Asso- ciated with FOXP3+ Regulatory T Cell Recruitment in Human Renal Allograft Infiltrates // Journal of Immunol- ogy. 2007. Vol. 179. P. 4901–4909.; Billingham R.E., Brent L., Medawar P.B. Actively ac- quired tolerance of foreign cells // Nature. 1953. Vol. 172. P. 603–606.; Blois S.M., Kammerer U., Soto C.A., Tometten M.C. et al. Dendritic Cells: Key to Fetal Tolerance? // Biology of reproduction. 2007. Vol. 77. P. 590–598.; Bowie A.G. Translational Mini-Review Series on Toll- like Receptors: Recent advances in understanding the role of Toll-like receptors in anti-viral immunity // Clin. Exp. Immunol. 2007 February. Vol. 147 (2). P. 217–226.; Burnet F.M. A modification of Jerne’s theory of antibody production using the concept of clonal selection // Aust. J. Sci. 1957. Vol. 20. P. 67.; Callaghan C.J., Rouhani F.J., Negus M.C., Curry A.J. et al. Abrogation of Antibody-Mediated Allograft Rejection by Regulatory CD4 T Cells with Indirect Allospeci- ficity // The Journal of Immunology. 2007. Vol. 178. P. 2221–2228.; Chen X., Jensen P.E. Cutting Edge: Primary B Lympho- cytes Preferentially Expand Allogeneic FoxP3+ CD4 T Cells // Journal of Immunology. 2007. Vol. 179. P. 2046– 2050.; Diekmann F., Campistol J.M. Conversion from calcineu- rin inhibitors to sirolimus in chronic allograft nephropa- thy: benefits and risks // Nephrology Dialysis Transplantation. 2006. Vol. 21 (3). P. 562–568.; Gao S.Z., Schroeder J.S., Hunt S.A. et al. Influence of graft rejection on incidence of accelerated graft coronary artery disease: a new approach to analysis // J. Heart. Lung. Transplant. 1993. Vol. 12 (6). P. 1029.; Girlanda R., Kirk A.D. Frontiers in Nephrology: Im- mune Tolerance to Allografts in Humans // J. Am. Soc. Nephrol. 2007. Vol. 18. P. 2242–2251.; Goldstein D.R., Tesar B.M., Akira S., Lakkis F.G. Criti- cal role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection // J. Clin. Invest. 2003. Vol. 111 (10). P. 1571–1578.; Jaume J.C., Parry S.L. et al. Suppressive Effect of Glu- tamic Acid Decarboxylase 65-SpecificAutoimmune B Lymphocytes on Processing of T-Cell Determinants Lo- cated Within the Antibody Epitope1 // Journal of Immu- nology. 2002. Vol. 169. P. 665–672.; Jiang H., Chess L. Regulation of Immune Responses by T-Cells // NEJM. 2006. Vol. 11 (354). P. 1166–1176.; Jiang S., Lechler R.I. Regulatory T Cells in the Control of Transplantation Tolerance and Autoimmunity // American Journal of Transplantation. 2003. Vol. 3 (15). P. 516–524.; Kawai T., Akira S. Toll-like Receptor and RIG-1-like Re- ceptor Signaling. Annals of the New York Academy of Sciences, 2008, V. 1143, Issue The Year in Immunology, P. 1–20.; Klein J., Sato A. The HLA system // NEJM. 2004. Vol. 343 (10). P. 702–709.; Knechtle S.J. Development of tolerogenic strategies in the clinic // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2005. Vol. 360 (1461). P. 1739–1746.; LaRosa D.F., Rahman A.H., Turka L.A. The Innate Im- mune System in Allograft Rejection and Tolerance // The Journal of Immunology. 2007. Vol. 178. P. 7503–7509.; Lemaitre B., Nicolas E., Michaut L., Reichhart J.M., Hoffmann J.A. The dorsoventral regulatory gene cassette spдtzle/Toll/cactus controls the potent antifungal re- sponse in Drosophila adults // Cell. 1996. Vol. 86. P. 973.; Lipscomb M.F., Masten B.J. Dendritic Cells: Immune Regulators in Health and Disease Physiol. Rev. 2002. Vol. 82. P. 97–130.; Lopez M., Clarkson M.R., Albin M., Sayegh M.H., Na- jafian N. A Novel Mechanism of Action for Anti-Thy- mocyte Globulin: Induction of CD4+CD25+Foxp3+ Regulatory T-Cells // J. Am. Soc. Nephrol. 2006. Vol. 17. P. 2844–2853.; Medzhitov R., Preston-Hurlburt P., Janeway C.A. A hu- man homologue of the Drosophila Toll protein signals activation of adaptive immunity // Nature. 1997. P. 388–394; Miller D.M., Thornley T.B., Greiner D.L., Rossini A.A. Viral Infection: A Potent Barrier to Transplantation To- lerance // Clin. Dev. Immunol. 2008. P. 742–810.; Mullally A., Ritz J. Beyond HLA: the significance of ge- nomic variation for allogeneic hematopoietic stem cell transplantation // Blood. 15 February 2007. Vol. 109. No 4. P. 1355–1362.; Najafian N., Albin M.J., Newell K.A. How Can We Mea- sure Immunologic Tolerance in Humans // J. Am. Soc. Nephrol. 2006. Vol. 17. P. 2652–2663.; Pietropaolo M., Surhigh J.M., Nelson P.W., Eisenbarth G.S. Primer: Immunity and Autoimmunity Diabetes. No- vember 2008. Vol. 57. No 11. P. 2872–2882.; Reichardt P., Dornbach B., Rong S., Beissert S. et al. Na- ive B cells generate regulatory T cells in the presence of a mature immunologic synapse // Blood. 2007. Vol. 110 (5). P. 1519–1529.; Rothstein D.M. Immunosuppression and Regulation: Cast in New Light // J. Am. Soc. Nephrol. 2006. Vol. 17. P. 2644–2646.; Salama A.D., Najafian N., Clarkson M.R., Harmon W.E., Sayegh M.H. Regulatory CD25+ T Cells in Human Kid- ney Transplant Recipients // J. Am. Soc. Nephrol. 2003. Vol. 14. P. 1643–1651.; Salama A.D., Womer K.L., Sayegh M.H. Clinical Trans- plantation Tolerance: Many Rivers to Cross // Journal of Immunology. 2007. Vol. 178. P. 5419–5423.; Sayegh M.H., Carpenter C.B. Transplantation 50 Years Later – Progress, Challenges, and Promises // NEJM. 2004. Vol. 26 (351). P. 2761–2766.; Selin L.K., Brehm M.A. Frontiers in Nephrology: Hetero- logous Immunity, T Cell Cross-Reactivity, and Allore- activity // J. Am. Soc. Nephrol. 2007. Vol. 18. P. 2268– 2277.; Seyfert-Margolis V., Turka L.A. Marking a path to trans- plant tolerance // J. Clin. Invest. 2008 August 1. Vol. 118 (8). P. 2684–2686.; Starzl T.E., Zinkernagel R.M. Antigen Localization and Migration in Immunity and Tolerance // NEJM. 1998. Vol. 26 (339). P. 1905–1913.; Starzl T.E. Chimerism and tolerance in transplantation // PNAS. 2004. Vol. 101 (2). P. 14607–14614.; Steptoe R.J., Ritchie J.M., Wilson N.S., Villadangos J.A. et al. Cognate CD4+ Help Elicited by Resting Dendritic Cells Does Not Impair the Induction of Peripheral Toler- ance in CD8+ T-Cells // Journal of Immunology. 2007. Vol. 178. P. 2094–2103.; Suchin E.J., Langmuir P.B., Palmer E. et al. Quantify- ing the frequency of alloreactive T cells in vivo: New answers to an old question // J. Immunol. 2001. Vol. 166. P. 973–981.; Takeda K., Akira S. Toll-like receptors in innate immunity // International Immunology. 2005. Vol. 17 (1). P. 1–14.; Thomson A.W., Robbins P.D. Tolerogenic dendritic cells for autoimmune disease and transplantation // Ann. Rheum. Dis. 2008. Vol. 67. P. 90–96.; Toyokawa H., Nakao A., Bailey R.J., Nalesnik M.A., Kaizu T. et al. Liver Relative contribution of direct and indirect allorecognition in developing tolerance after liver transplantation // Transpl. 2008 Mar. Vol. 14 (3). P. 346–357.; Yin L., Poirier G., Neth O. et al. Few peptides dominate cytotoxic T-lymphocyte responses to single and multiple minor histocompatibility antigens // Int. Immunol. 1993. Vol. 5. P. 1003–1009.; Zoller K.M. Cessation of immunosuppressive therapy af- ter successful transplantation: A national survey // Kid- ney. 1980. Vol. 18. P. 110–114.; https://journal.transpl.ru/vtio/article/view/335

  20. 20
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 12, № 3 (2010); 121-128 ; Вестник трансплантологии и искусственных органов; Том 12, № 3 (2010); 121-128 ; 1995-1191 ; 10.15825/1995-1191-2010-3

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/336/278; Быков В.Л. Цитология и общая гистология. СПб.: Со- тис, 2001.; Зайчик А.Ш., Чурилов Л.П. Патофизиология. Т. 1: Общая патофизиология. СПб.: ЭЛБИ-СПб, 2002.; Зотиков Е.А., Бабаева А.Г., Порешина Л.П. Клеточный химеризм и химеризм клетки при трансплантации костного мозга. М.: Хризостом, 2003. 112 с.; Рабсон А., Ройт А., Делвз П. Основы медицинской иммунологии. М.: Мир, 2006.; Ройт А., Бростофф Д., Мейл Д. Иммунология. М.: Мир, 2000.; Adams A.B., Durham M.M., Kean L., Shirasugi N. et al. Costimulation Blockade, Busulfan, and Bone Marrow Promote Titratable Macrochimerism, Induce Transplan- tation Tolerance, and Correct Genetic Hemoglobinopa- thies with Minimal Myelosuppression // Journal of Im- munology. 2001. Vol. 167. P. 1103–1111.; Adeegbe D., Bayer A.L,, Levy R.B. and Malek Cutting Edge. Allogeneic CD4+CD25+Foxp3+ T Regulatory Cells Suppress Autoimmunity while Establishing Transplanta- tion Tolerance // Journal of Immunology. 2006. Vol. 176. P. 7149–7153.; Alexander S.J., Smith N., Hu M. et al. Chimerism and tolerance in a recipient of a deceased – donor liver trans- plant // NEJM. 2008. Vol. 358 (4). P. 369–374.; Allan S.E., Alstad A.N., Merindol N. et al. Generation of potent and stable human CD4 – T regulatory cells by ac- tivation – independent expression of Foxp3 // Mol. Ther. 2008. Vol. 16. P. 194–202.; Bhattacharya D., Rossi D.J., Bryder D., Weissman I.L. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning // J. Exp. Med. 2005. Vol. 203 (1). P. 73–85.; Botstein D., Crabtree G.R., Brown P.O. Genomic ex-; pression programs and the integration of the CD28 co- stimulatory signal in T cell activation // PNAS. 2002. Vol. 99 (18). P. 11796–11801.; Burchill M.A., Yang J., Vang K.B. et al. Linked T-cell receptor and cytokine signaling govern the development of the regulatory T-cell repertoire // Immunity. 2008. Vol. 28. P. 112–121.; Caudy A.A., Reddy S.T., Chatila T. et al. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome and defective IL-10 expression // J. Allerg. Clin. Immunol. 2007. Vol. 119. P. 482–487.; Czechowicz A., Kraft D., Weissman I.L., Bhattacharya D. Efficient Transplantation via Antibody-Based Clear- ance of Hematopoietic Stem Cell Niches // Science. 2007. Vol. 318 (5854). P. 1296–1299.; Demirkiran A., Bosma B.M., Kok A. et al. Allosup- pressive Donor CD4+CD25+ Regulatory T-Cells De- tach from the Graft and Circulate in Recipients after Liver Transplantation // Journal of Immunology. 2007. Vol. 178. P. 6066–6072.; Fontenot J.D., Dooley J.L., Farr A.G., Rudensky A.Y. Developmental regulation of Foxp3 expression during ontogeny // J. Exp. Med. 2005. Vol. 202. P. 901–906.; Fudaba Y., Spitzer T.R., Shaffer J. et al. Myeloma Re- sponses and Tolerance Following Combined Kidney and Nonmyeloablative Marrow Transplantation: in vivo and in vitro Analyses // American Journal of Transplantation. 2006. Vol. 9 (6). P. 2121–2133.; Haddad E.M., McAlister V.C., Renouf E. et al. Cyclo- sporin versus tacrolimus for liver transplanted patients // The Cochrane Library. 2008. Issue 4.; Jiang H., Chess L. Regulation of Immune Responses by T Cells // NEJM. 2006. Vol. 11 (354). P. 1166–1176.; Joffre O., Santolaria T., Calise D. et al. Prevention of acute; and chronic allograft rejection with CD4+CD25+Foxp3 regulatory T-lymphocytes // Nat. Med. 2008. Vol. 14. P. 888–892.; Kawai T., Cosimi B., Spitzer T.R. et al. HLA-Mismatched Renal Transplantation without Maintenance Immuno- suppression // NEJM. 2008. Vol. 4 (358). P. 353–361.; Kyewski B., Klein L. A central thymic role for central tolerance // Annu. Rev. Immunol. 2006. Vol. 24. P. 571– 606.; Lee M.K., Moore D.J., Jarrett B.P. et al. Promotion of Allograft Survival by CD4+CD25+ Regulatory T-Cells: Evidence for In Vivo Inhibition of Effector Cell Prolife- ration // Journal of Immunology. 2004. Vol. 172. P. 6539– 6544.; Martinez-Agosto J.A., Mikkola H.K.A., Hartenstein V., Banerjee U. The hematopoietic stem cell and its niche: a comparative view Genes & Dev. 2007. Vol. 21. P. 3044– 3060.; Mathis D., Benoist C. Back to central tolerance // Immu- nity. 2004. Vol. 20. P. 509–516.; Noris M., Casiraghi F., Todeschini M. et al. Regulatory T-cells and T-cell depletion: role of immunosuppressive; drugs // J. Am. Soc. Nephrol. 2007. Vol. 18. P. 1007–; Noris M., Cugini D., Casiraghi F. et al. Thymic Micro-; chimerism Correlates with the Outcome of Tolerance- Inducing Protocols for Solid Organ Transplantation // J. Am. Soc. Nephrol. 2001. Vol. 12. P. 2815–2826.; Penninghon D.J., Silva-Santos B., Silberzahn T. et al. Early events in the thymus affect the balance of effector and regulatory T-cells // Nature. 2006. Vol. 444. P. 1073– 1077.; Pham S.M., Rao A.S., Zeevi A., Kormos R.L. et al. A clinical trial combining donor bone marrow infusion and heart transplantation: intermediate-term results // J. Tho- rac. Cardiovasc. Surg. 2000. Vol. 119. P. 673–681.; Roncarolo M.G., Battaglia M. Regulatory T-cell immu- notherapy for tolerance to self antigens and alloantigens in humans // Nat. Rev. Immunol. 2007. Vol. 7. P. 585– 598.; Sakaguchi S., Sakaguchi N., Asano M. et al. Immunolo- gic self-tolerance maintained by activated T-cells expres- sing IL-2 receptor-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases // J. Immunol. 1995. Vol. 160. P. 1151–1164.; Sakaguchi S. Naturally arising CD4(+) regulatory T- cells for immunologic self-tolerance and negative con- trol of immune responses // Annu. Rev. Immunol. 2004. Vol. 22. P. 531–562.; Salama A.D., Najafian N., Clarkson M.R., Harmon W.E., Sayegh M.H. Regulatory CD25+ T Cells in Human Kid- ney Transplant Recipients // J. Am. Soc. Nephrol. 2003. Vol. 14. P. 1643–1651.; Salama A.D., Womer K.L., Sayegh M.H. Clinical Trans- plantation Tolerance: Many Rivers to Cross // Journal of Immunology. 2007. Vol. 178. P. 5419–5423.; Sayegh M.H., Carpenter C.B. Transplantation 50 Years Later – Progress, Challenges, and Promises // NEJM. 2004. Vol. 26 (351). P. 2761–2766.; Scandling J.D., Busque S., Dejbakhsh-Jones S. et al. Tolerance and Chimerism after Renal and Hematopoie- tic-Cell Transplantation // NEJM. 2008. Vol. 4 (358). P. 362–368.; Segundo D., Ruiz J.C., Izquierdo M. et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T-cells in renal trans- plant recipients // Transplantation. 2006. Vol. 82. P. 550– 557.; Shevach E.M. Certified professionals: CD4+CD25+ sup- pressor T cells // J. Exp. Med. 2001. Vol. 193. P. 41–46.; Starzl T.E., Zinkernagel R.M. Antigen Localization and Migration in Immunity and Tolerance // NEJM. 1998. Vol. 26 (339). P. 1905–1913.; Starzl T.E. Chimerism and tolerance in transplantation // PNAS. 2004. Vol. 101 (2). P. 14607–14614.; Stassen M., Jonuleit H., Muller C. et al. Differential regulatory capacity of CD25+ T regulatory cells and preactivated CD25+ T regulatory cells on development, functional activation and proliferation of Th2 cells // J. Immunol. 2004. Vol. 173. P. 267–274.; Tarbell K.V., Yamazaki S., Olson K., Toy P., Stein- man R.M. CD25+ CD4+ T-Cells, Expanded with Dend- ritic Cells Presenting a Single Autoantigenic Peptide,Suppress Autoimmune Diabetes // JEM. Vol. 199. No 11.; P. 1467–1477.; Trivedia H.L., Vanikarb A.V., Modid P.R. et al. Allogenetic Hematopoietic Stem-Cell Transplantation, Mixed Chimerism, and Tolerance in Living Related Donor Re- nal Allograft Recipients // Transplantation Proceedings. 2005. Vol. 37 (2). P. 737–742.; Wekerle T., Sykes M. Mixed chimerism as an approach for the induction of transplantation tolerance // Trans- plantation. 1999. Vol. 68 (4). P. 459–467.; Wood K.J., Sakaguchi S. Regulatory T-cells in trans- plantation tolerance // Nat. Rev. Immunol. 2003. Vol. 3. P. 199–210.; Zenz T., Ritgen M., Dreger P. et al. Autologous graft-ver- sus-host disease – like syndrome after an alemtuzumab- containing conditioning regimen and autologous stem; cell transplantation for chronic lymphocytic leukemia //; Blood. 2006. Vol. 108 (6). P. 2127–2130.; Zhang J., Li L. Stem Cell Niche: Microenvironment and Beyond // J. Biol. Chem. 2008. Vol. 283 (15). P. 9499–9503.; Zheng S.G., Wang J., Wang P. et al. IL-2 is essential for TGF- to convert naïve CD4+CD25-cells to CD25+Foxp3 regulatory T-cells and for expansion of these cells // J. Immunol. 2007. Vol. 178. P. 2018–2027.; Zheng Y., Collins S.L., Lutz M.A. et al. A Role for Mammalian Target of Rapamycin in Regulating T-Cell Ac- tivation versus Anergy // The Journal of Immunology. 2007. Vol. 178. P. 2163–2170.; Zheng Y., Rudensky A.Y. Foxp3 in control of the regula- tory T-cell lineage // Nat. Immunol. 2007. Vol. 8. P. 457– 462.; https://journal.transpl.ru/vtio/article/view/336