Showing 1 - 13 results of 13 for search '"Термическая линза"', query time: 0.60s Refine Results
  1. 1
    Academic Journal

    Source: Devices and Methods of Measurements; Том 14, № 4 (2023); 268-276 ; Приборы и методы измерений; Том 14, № 4 (2023); 268-276 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2023-14-4

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/844/673; Lisiecki R, Dominiak-Dzik G, Solarz P, Ryba-Romanowski W, Berkowski M, Głowacki M. Optical spectra and luminescence dynamics of the Dy-doped Gd2SiO5 single crystal. Appl. Phys. B. 2010;98:337-346. DOI:10.1007/s00340-009-3759-6; Beach R, Albrecht C, Solarz R, Krupke W, Comaskey B, Mitchell S, Brandle С, Berkstresser С. A ground state depleted laser in neodymium doped yttrium orthosilicate. Proc. SPIE. 1990;1223:160-180. DOI:10.1117/12.18408; Borel C, Herlet N, Templier R, Calvat C, Wyon C. Comparison of the laser performance of various neodymium doped materials in a compact diode pumped cavity. Journal de Physique. 1994;4(C4):549-552. DOI:10.1051/jp4:19944132; Gaume R, Haumesser PH, Viana B, Vivien D, Ferrand B, Aka G. Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials. Optical Materials. 2002;19(1):81-88. DOI:10.1016/S0925-3467(01)00204-X; Yan C, Zhao G, Zhang L, Xu J, Liang X, Juan D, Li W, Pan H, Ding L, Zeng H. A new Yb-doped oxyorthosilicate laser crystal: Yb:Gd2SiO5. Solid State Commun. 2006;137(8):451-455. DOI:10.1016/j.ssc.2005.12.023; Cabaret L, Robert J, Lebbou K, Brenier A, Cabane H. Growth, spectroscopy and lasing of the Ybdoped monoclinic Gd2SiO5 in the prospect of hydrogen laser cooling with Lyman-α radiation. Optical Materials. 2016;62:597-603. DOI:10.1016/j.optmat.2016.11.007; Wang H, Hou Q, Huang JH, Gong XH, Lin YF, Chen YJ, Luo ZD, Huang YD. Polarized spectroscopic properties and continuous-wave laser operation of Yb:Gd2SiO5 crystal. Journal of Alloys and Compounds. 2016;683:554-558. DOI:10.1016/j.jallcom.2016.05.123; Li W, Pan H, Ding L, Zeng H, Lu W, Zhao G, Yan C, Su L, Xu J. Efficient diode-pumped Yb:Gd2SiO5 laser. Appl. Phys. Lett. 2006;88:221117-3. DOI:10.1063/1.2206150; Li W, Hao Q, Zhai H, Zenga H, Lu W, Zhao G, Yan C, Su L, Xu J. Low-threshold and continuously tunable Yb:Gd2SiO5 laser. Appl. Phys. Lett. 2006;89: 101125-3. DOI:10.1063/1.2349281; Jacquemet M, Jacquemet C, Janel N, Druon F, Balembois F, Georges P, Petit J, Viana B, Vivien D, Ferrand B. Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping. Appl. Phys. B. 2005;80:171-176. DOI:10.1007/s00340-004-1698-9; Chénais S, Balembois F, Druon F, LucasLeclin G, Georges P. Thermal lensing in diode-pumped ytterbium lasers – part II: Evaluation of quantum efficiencies and thermo-optic coefficients. IEEE J. of Quantum Electronics. 2004;40(9):1235-1243. DOI:10.1109/JQE.2004.833203; Li C, Moncorgé R, Souriau JC, Borel C, Wyon Ch. Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm. Optics Commun. 1994;107(1-2):61-64. DOI:10.1016/0030-4018(94)90103-1; Schweizer T, Jensen Т, Heumann Е, Huber G. Spectroscopic properties and diode pumped 1.6 μm laser performance in Yb-codoped Er:Y3A15O12 and Er:Y2SiO5. Optics Commun. 1995;118(5-6):557-561. DOI:10.1016/0030-4018(95)00284-F; Li C, Moncorgé R, Souriau JC, Wyon Ch. Efficient 2.05 μm room temperature Y2SiO5:Tm3+ cw laser. Optics Commun. 1993;101(5-6):356-360. DOI:10.1016/0030-4018(93)90729-O; Thony P, Borel C, Templier R. Tm:Y2SiO5 and Tm:SrY4(SiO4)3O microchip laser. In Laser Optics' 95: Solid State Lasers. 1996;2772:22-27. DOI:10.1117/12.238116; Zhou Z, Xu B, Guan X, Xu H, Cai Z, XuX, Li D, Xu J. Tm:Y2SiO5 crystal: effective material for the generation of eye-safe laser sources. Journal of Selected Topics in Quantum Electronics. 2018;24(5):1-7. DOI:10.1109/JSTQE.2018.2805851; Thibault F, Pelenc D, Druon F, Zaouter Y, Jacquemet M, Georges P. Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation. Optics Letters. 2006;31(10):1555-15557. DOI:10.1364/OL.31.001555; Li W, Hao Q, Zhai H, Zeng H, Lu W, Zhao G, Zheng L, Su L, Xu J. Diode-pumped Yb:GSO femtosecond laser. Optics Express. 2007;15(5):2354-2359. DOI:10.1364/OE.15.002354; Maksimchuka V, Baumerb V, Bondara V, Galicha Yu, Kurtseva D, Sidletskiy O. Mechanical properties and lattice parameters of Lu2xGd2(1−x)SiO5:Ce scintillation crystals. Acta Phys. Pol. 2010;A117(1):146-149.; Zheng L, Xu J, Zhao G, Su L, Wu F, Liang X. Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5. Appl. Phys. B. 2008;91:443- 445. DOI:10.1007/s00340-008-3021-7; Guan X, Zhou Z, Huang X, Xu B, Xu H, Cai Z, Xu X, Li D, Xu J. Diode-end-pumped Nd3+-doped oxyorthosilicate GYSO lasers operating on 4F3/2 → 4I13/2 transition. Laser Physics. 2017;27(12):125806-553. DOI:10.1088/1555-6611/aa91be; Li DZ, Xu XD, Cong ZH, Zhang J, Tang DY, Zhou DH, Xia CT, Wu F, Xu J. Growth, spectral properties, and laser demonstration of Nd:GYSO crystal. Appl. Phys. B. 2011;104:53-58. DOI:10.1007/s00340-010-4302-5; Lin Z, Huang X, Lan J, Cui S, Wang Y, Xu B, Luo Z, Xu H, Cai Z, Xu X, Zhang X, Wang J, Xu J. Compact diode-pumped continuous-wave and passively Qswitched Nd:GYSO laser at 1.07 μm. Optics and Laser Technology. 2016;82:82-86. DOI:10.1016/j.optlastec.2016.02.017; Feng C, Liu Z, Cong Z, Shen H, Li Y, Wang Q, Fang J, Xu X, Xu J, Zhang X. Investigation of continuous wave and pulsed laser performance based on Nd3+:Gd0.6Y1.4SiO5 crystal. Laser, Phys. Lett. 2015;12(12):125806-6. DOI:10.1088/1612-2011/12/12/125806; Brickeen BK, Geathers E. Laser performance of Yb3+ doped oxyorthosilicates LYSO and GYSO. Opt. Express. 2009;17(10):8461-8466. DOI:10.1364/OE.17.008461; Li W, Hao Q, Ding L, Zhao G, Zheng L, Xu J, Zeng H. Continuous-wave and passively mode-locked Yb:GYSO lasers pumped by diode lasers. IEEE J. Quantum Electron. 2008;44(6):567-572. DOI:10.1109/JQE.2007.916664; Zhou B, Wei Z, Zhang Y, Zhong X, Teng H, Zheng L, Su L, Xu J. Generation of 210 fs laser pulses at 1093 nm by a self-starting mode-locked Yb:GYSO laser. Optics Letters. 2009;34(1):31-33. DOI:10.1364/OL.34.000031; Zhu J, Gao Z, Tian W, Wang J, Wang Z, Wei Z, Zheng L, Su L, Xu J. Kerr-lens mode-locked femtosecond Yb:GdYSiO5 laser directly pumped by a laser diode. Appl. Sci. 2015;5(4):817-824. DOI:10.3390/app5040817; Du J, Liang X, Xu Y, Li R, Xu Z, Yan C, Zhao G, Su L, Xu J. Tunable and efficient diode-pumped Yb3+:GYSO laser. Opt. Express. 2006;14(8):3333-3338. DOI:10.1364/OE.14.003333; Nye JF. Physical Properties of Crystals. Oxford at the Clarendon Press, 1964.; Beach R, Albrecht G, Solan R, Krupke W, Comasky B, Mitchell S, Brandle C, Berkstresser G. A ground-state depleted laser in neodynium doped yttrium orthosilicate. Proc. SPIE 1223, Solid State Lasers.1990;1223:160-180. DOI:10.1117/12.18408; Vatnik S, Pujol MC, Carvajal JJ, Mateos X, Aguiló M, Díaz F, Petrov V. Thermo–optic coefficients of monoclinic KLu(WO4)2. Appl. Phys. B. 2009;95(4):653- 656. DOI:10.1007/s00340-009-3541-9; Loiko PA, Yumashev KV, Kuleshov NV, Pavlyuk AA. Thermooptic coefficients measurements by a laser beam deviation method for the medium with linear thermal gradient. Devices and Methods of Measurements. 2010;1:70–77. (In Russ.).; Loiko PA, Filippov VV, Yumashev KV, Kuleshov NV, Pavlyuk AA. Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method. Appli Opt. 2012;51(15):2951-2957. DOI:10.1364/AO.51.002951; Biswal S, O’Connor SP, Bowman SR. Thermooptical parameters measured in ytterbium-doped potassium gadolinium tungstate. Appl. Opt. 2005;44(15):3093- 3097. DOI:10.1364/AO.44.003093; Kurilchik S, Dernovich O, Gorbachenya K, Kisel V, Kolesova I, Kravtsov A, Guretsky S, Kuleshov N. Growth, spectroscopy, and laser characterization of Er:KGdxYbyY1-x-y(WO4)2 epitaxial layers. Opt. Letters. 2017;42(21):4565-4568. DOI:10.1364/OL.42.004565; Filippov VV, Kuleshov NV, Bodnar IT. Negative thermo-optical coefficients and athermal directions in monoclinic KGd(WO4)2 and KY(WO4)2 laser host crystals in the visible region. Appl. Phys. B. 2007;87(4):611-614. DOI:10.1007/s00340-007-2666-y; Weber MJ. Handbook of Laser Science and Technologies, Supplement 2: Optical Materials. CRC Press, London, 1995.; Utsu T, Akiyama S. Growth and applications of Gd2SiO5:Ce scintillators. J. Crystal Growth. 1991;109(1- 4):385-391. DOI:10.1016/0022-0248(91)90207-L; Bolaños W, Carvajal JJ, Mateos X, Pujol MC, Thilmann N, Pasiskevicius V, Lifante G, Aguiló M, Diaz F. Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers. Opt. Materials. 2010;32(3):469-474. DOI:10.1016/j.optmat.2009.10.011; Tsay Y, Bendow B, Mitra SS. Theory of the Temperature Derivative of the Refractive Index in Transparent Crystals. Phys. Rev. B. 1973;8(6):2688-2696. DOI:10.1103/PhysRevB.8.2688; Loiko P, Mateos X, Wang Y, Pan Z, Yumashev K, Zhang H, Griebner U, Petrov V. Thermo-optic dispersion formulas for YCOB and GdCOB laser host crystals. Opt. Mat. Express. 2015;5(5):1089-1097. DOI:10.1364/OME.5.001089; Loiko PA, Yumashev KV, Kuleshov NV, Rachkovskaya GE, Pavlyuk AA. Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb. Optical Materials. 2011;33(11): 1688-1694. DOI:10.1016/j.optmat.2011.05.028; Chénais S, Balembois F, Druon F, LucasLeclin G, Georges P. Thermal lensing in diode-pumped ytterbium lasers – Part II: Evaluation of quantum efficiencies and thermo-optic coefficients. IEEE J. Quantum Electron. 2004;40(9):1235-1243. DOI:10.1109/JQE.2004.833203; https://pimi.bntu.by/jour/article/view/844

  2. 2
    Academic Journal

    Source: Devices and Methods of Measurements; № 1 (2012); 62-68 ; Приборы и методы измерений; № 1 (2012); 62-68 ; 2414-0473 ; 2220-9506 ; undefined

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/120/123; Chenais, S. On thermal effects in solid-state lasers: The case of ytterbium-doped materials / S. Chenais [et al.] // Progress in Quant. Electr. – 2006. – № 30. – P. 89–153.; Hodgson, N. Optical resonators: fundamentals, advanced concepts and applications / N. Hodgson, H. Weber // Springer. – 1997. – Chap. 12.; Koechner, W. Solid-State Laser Engineering, 6th ed. / W. Koechner // Springer. – 2006. – Chap. 7.; Cousins, A.K. Temperature and thermal stress scaling in finite-length end-pumped laser rods / A.K. Cousins // IEEE J. Quantum Electron. – 1992. – Vol. 28. – P. 1057–1069.; Loiko, P.A. Thermooptic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals / P.A. Loiko [et al.] // Appl. Opt. – 2010. – Vol. 49. – P. 6651–6659.; Mochalov I.V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd) / I.V. Mochalov / Opt. Eng. – 1997. – № 36. – P. 1660–1669.; Loiko, P.A. Thermal lens study in diode pumped Ngand Np-cut Nd:KGd(WO4)2 laser crystals / P.A. Loiko [et al.] // Optics Express. – 2009. – Vol. 17. – P. 23536– 23543.; Chen, Y. Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal / Y. Chen [et al.] // J. Luminesc. – 2007. – Vol. 126. – P. 653–660.; Pujol, M.C. Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals / M.C. Pujol [et al.] // Mater. Sci. Forum. – 2001. – Vol. 378– 381. – P. 710–717.; Demidovich, A.A. Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping / A.A. Demidovich [et al.] // Appl. Phys. B. – 1998. – Vol. 67. – P. 11–15.; Musset, O. Flashlamp-pumped Nd:KGW laser at repetition rates up to 50 Hz / O. Musset, O. Boquillon // Appl. Phys. B. – 1997. – Vol. 65. – P. 13–18.; https://pimi.bntu.by/jour/article/view/120; undefined

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13