Εμφανίζονται 1 - 2 Αποτελέσματα από 2 για την αναζήτηση '"Терапевтическая мишень"', χρόνος αναζήτησης: 0,45δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: Авторы заявляют об отсутствии финансирования исследования.

    Πηγή: Complex Issues of Cardiovascular Diseases; Online First ; Комплексные проблемы сердечно-сосудистых заболеваний; Online First ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1714/1062; Mensah GA, Fuster V, Roth GA. A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action. J Am Coll Cardiol. 2023;82(25):2343-2349. doi:10.1016/j.jacc.2023.11.003.; Косолапов ВП, Ярмонова МВ. Анализ высокой сердечно-сосудистой заболеваемости и смертности взрослого населения как медико-социальной проблемы и поиск путей ее решения. Уральский медицинский журнал. 2021;20(1):58-64. https://doi.org/10.52420/2071-5943-2021-20-1-58-64; Боровкова Н.Ю., Токарева А.С., Савицкая Н.Н., и др. Современное состояние проблемы сердечно-сосудистых заболеваний в Нижегородском регионе: возможные пути снижения смертности. Российский кардиологический журнал. 2022;27(5):5024. https://doi.org/10.15829/1560-4071-2022-5024; Фозилов Х.Г., Атаниязов Х.Х., Хамидуллаева Г.А., и др. Раннее выявление и контроль факторов риска сердечно-сосудистых заболеваний в приаралье: опыт Узбекистана. Кардиология. 2024;64(1):37-43. https://doi.org/10.18087/cardio.2024.1.n2614; Li C, Zheng Y, Liu Y, et al. The interaction protein of SORBS2 in myocardial tissue to find out the pathogenic mechanism of LVNC disease. Aging (Albany NY). 2022;14(2):800-810. doi:10.18632/aging.203841; Zhang S, Tong Y. Advances in the previous two decades in our understanding of the post-translational modifications, functions, and drug perspectives of ArgBP2 and its family members. Biomed Pharmacother. 2022;155:113853. doi:10.1016/j.biopha.2022.113853.; Jaufmann J, Franke FC, Sperlich A, et al. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J. 2021;35(4):e21470. doi:10.1096/fj.202002495R.; Ichikawa T, Kita M, Matsui TS, et al. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci. 2017;130(20):3517-3531. doi:10.1242/jcs.200691.; Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells. 2022;11(23):3815. doi:10.3390/cells11233815.; Murase K, Ito H, Kanoh H, et al. Cell biological characterization of a multidomain adaptor protein, ArgBP2, in epithelial NMuMG cells, and identification of a novel short isoform. Med Mol Morphol. 2012;45(1):22-8. doi:10.1007/s00795-010-0537-9.; Zhang Q, Gao X, Li C, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36(7):2247-60. doi:10.1523/JNEUROSCI.2528-15.2016.; Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol. 2020;92(5):e12951. doi:10.1111/sji.12951.; GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)–Analysis Working Group; Statistical Methods groups–Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site–NDRI; Biospecimen Collection Source Site–RPCI; Biospecimen Core Resource–VARI; Brain Bank Repository–University of Miami Brain Endowment Bank; Leidos Biomedical–Project Management; ELSI Study; Genome Browser Data Integration &Visualization–EBI; Genome Browser Data Integration &Visualization–UCSC Genomics Institute, University of California Santa Cruz; Lead analysts:; Laboratory, Data Analysis &Coordinating Center (LDACC):; NIH program management:; Biospecimen collection:; Pathology:; eQTL manuscript working group:; Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213. doi:10.1038/nature24277.; Lv Q, Dong F, Zhou Y, et al. RNA-binding protein SORBS2 suppresses clear cell renal cell carcinoma metastasis by enhancing MTUS1 mRNA stability. Cell Death Dis. 2020;11(12):1056. doi:10.1038/s41419-020-03268-1.; Ding Y, Yang J, Chen P, et al. Knockout of SORBS2 Protein Disrupts the Structural Integrity of Intercalated Disc and Manifests Features of Arrhythmogenic Cardiomyopathy. J Am Heart Assoc. 2020;9(17):e017055. doi:10.1161/JAHA.119.017055.; Sanger JM, Wang J, Gleason LM, et al. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken). 2010;67(12):808-23. doi:10.1002/cm.20490.; Qian LL, Sun X, Yang J, et al. Changes in ion channel expression and function associated with cardiac arrhythmogenic remodeling by Sorbs2. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166247. doi:10.1016/j.bbadis.2021.166247.; Sun X, Lee HC, Lu T. Sorbs2 Deficiency and Vascular BK Channelopathy in Diabetes. Circ Res. 2024;134(7):858-871. doi:10.1161/CIRCRESAHA.123.323538.; Zhao L, Wang W, Huang S, et al. The RNA binding protein SORBS2 suppresses metastatic colonization of ovarian cancer by stabilizing tumor-suppressive immunomodulatory transcripts. Genome Biol. 2018;19(1):35. doi:10.1186/s13059-018-1412-6.; Van Nostrand EL, Freese P, Pratt GA, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583(7818):711-719. doi:10.1038/s41586-020-2077-3.; Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22(3):185-198. doi:10.1038/s41576-020-00302-y.; Timmer LT, den Hertog E, Versteeg D, et al. Cardiomyocyte SORBS2 expression increases in heart failure and regulates integrin interactions and extracellular matrix composition. Cardiovasc Res. 2025;121(4):585-600. doi:10.1093/cvr/cvaf021.; Dovinova I, Kvandová M, Balis P, et al. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases. Physiol Res. 2020;69(Suppl 4):S541-S553. doi:10.33549/physiolres.934612.; Zhu L, Choudhary K, Gonzalez-Teran B, et al. Transcription Factor GATA4 Regulates Cell Type-Specific Splicing Through Direct Interaction With RNA in Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitors. Circulation. 2022;146(10):770-787. doi:10.1161/CIRCULATIONAHA.121.057620.; Lu T, Sun X, Li Y, et al. Role of Nrf2 Signaling in the Regulation of Vascular BK Channel β1 Subunit Expression and BK Channel Function in High-Fat Diet-Induced Diabetic Mice. Diabetes. 2017;66(10):2681-2690. doi:10.2337/db17-0181.; Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, et al. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel). 2022; 11(2):235. doi:10.3390/antiox11020235.; Артеменков АА. Дислипидемии плазмы крови: патогенез и диагностическое значение. Обзор литературы. Пермский медицинский журнал (сетевое издание "Perm medical journal"). 2023;40(1):78-93. doi:10.17816/pmj40178-93; Liu MM, Peng J, Guo YL, et al. SORBS2 as a molecular target for atherosclerosis in patients with familial hypercholesterolemia. J Transl Med. 2022;20(1):233. doi:10.1186/s12967-022-03381-z.; Feng X, Yu W, Li X, et al. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 2017 Jul 15;136:136-149. doi:10.1016/j.bcp.2017.04.014.; Ren K, Li H, Zhou HF, et al. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1. Aging (Albany NY). 2019;11(23):10992-11009. doi:10.18632/aging.102498.; Jiang M, Li X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun. 2017;482(4):849-856. doi:10.1016/j.bbrc.2016.11.123.; Калашников В.Ю., Мичурова М.С. Атеросклеротические сердечно-сосудистые заболевания и сахарный диабет 2‑го типа. Как учесть все нюансы в выборе терапии? Кардиология. 2021;61(1):78-86. https://doi.org/10.18087/cardio.2021.1.n1148; Xiong X, Zhou J, Fu Q, et al. The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy. Lipids Health Dis. 2022;21(1):60. doi:10.1186/s12944-022-01673-3.; Каширских Д.А., Хотина В.А., Сухоруков В.Н., и др. Клеточные и тканевые маркеры атеросклероза. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(2):102-113. https://doi.org/10.17802/2306-1278-2020-9-2-102-113; Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132(12):1243-1252. doi:10.1042/CS20180306.; Zhu Y, Xian X, Wang Z, et al. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules. 2018;8(3):80. doi:10.3390/biom8030080.; Badimon L, Peña E, Arderiu G, et al. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol. 2018;9:430. doi:10.3389/fimmu.2018.00430.; Akinyelure OP, Colantonio LD, Chaudhary NS, et al. Inflammation biomarkers and incident coronary heart disease: the Reasons for Geographic And Racial Differences in Stroke Study. Am Heart J. 2022;253:39-47. doi:10.1016/j.ahj.2022.07.001; Kumari P, Kumar H. Dimensions of inflammation in host defense and diseases. Int Rev Immunol. 2022;41(1):1-3. doi:10.1080/08830185.2022.2014174.; Vdovenko D, Bachmann M, Wijnen WJ, et al. The adaptor protein c-Cbl-associated protein (CAP) limits pro-inflammatory cytokine expression by inhibiting the NF-κB pathway. Int Immunopharmacol. 2020;87:106822. doi:10.1016/j.intimp.2020.106822.; Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136-46. doi:10.1172/JCI70577.; Wang H, Bei Y, Shen S, et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol. 2016;94:43-53. doi:10.1016/j.yjmcc.2016.03.014.; Shan B, Li JY, Liu YJ, et al. LncRNA H19 Inhibits the Progression of Sepsis-Induced Myocardial Injury via Regulation of the miR-93-5p/SORBS2 Axis. Inflammation. 2021;44(1):344-357. doi:10.1007/s10753-020-01340-8.; Алиева АМ, Алмазова ИИ, Резник ЕВ, и др. Гипертрофическая кардиомиопатия: современный взгляд на проблему. CardioСоматика. 2020;11(1):39-45. doi:10.26442/22217185.2020.1.200116; Галеева З.М., Галявич А.С., Балеева Л.В., и др. О причинах дилатационной кардиомиопатии в молодом возрасте. Южно-Российский журнал терапевтической практики. 2022;3(3):85-90. https://doi.org/10.21886/2712-8156-2022-3-3-85-90; McLendon JM, Zhang X, Matasic DS, et al. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc. 2022;11(13):e025687. doi:10.1161/JAHA.122.025687.; Gagliano Taliun SA, VandeHaar P, Boughton AP, et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat Genet. 2020;52(6):550-552. doi:10.1038/s41588-020-0622-5.; Ashar FN, Mitchell RN, Albert CM, et al. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J. 2018;39(44):3961-3969. doi:10.1093/eurheartj/ehy474.; Li C, Liu F, Liu S, et al. Elevated myocardial SORBS2 and the underlying implications in left ventricular noncompaction cardiomyopathy. EBioMedicine. 2020;53:102695. doi:10.1016/j.ebiom.2020.102695.; Li C, Zhang L, Hu X, et al. SORBS2 upregulation may contribute to dysfunction in LVNC via the Notch pathway. Acta Biochim Biophys Sin (Shanghai). 2022;55(2):327-329. doi:10.3724/abbs.2022177; Guo A, Wang Y, Chen B, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362(6421):eaan3303. doi:10.1126/science.aan3303; Prins KW, Asp ML, Zhang H, et al. Microtubule-Mediated Misregulation of Junctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling in mdx Mice. JACC Basic Transl Sci. 2016;1(3):122-130. doi:10.1016/j.jacbts.2016.02.002; Халиков А.А., Кузнецов К.О., Искужина Л.Р., Халикова Л.В. Судебно-медицинские аспекты внезапной аутопсия-отрицательной сердечной смерти. Судебно-медицинская экспертиза. 2021;64(3):59‑63. https://doi.org/10.17116/sudmed20216403159; Петрова Е.А., Кольцова Е.А. Нарушения ритма сердца и инсульт. Consilium Medicum. 2017; 19 (2): 30–34.; Канорский С.Г. Фибрилляция предсердий в старческом возрасте: современные возможности лечения. Южно-Российский журнал терапевтической практики. 2022;3(1):7-14. https://doi.org/10.21886/2712-8156-2022-3-1-7-14; Антипов Г.Н., Постол А.С., Котов С.Н., и др. Сравнение ремоделирования предсердий после процедур «лабиринт-3» и «криолабиринт» при сочетанных вмешательствах на сердце: ретроспективное исследование. Кубанский научный медицинский вестник. 2022;29(2):14-27. https://doi.org/10.25207/1608-6228-2022-29-2-14-27; Nattel S, Dobrev D. Controversies About Atrial Fibrillation Mechanisms: Aiming for Order in Chaos and Whether it Matters. Circ Res. 2017 ;120(9):1396-1398. doi:10.1161/CIRCRESAHA.116.310489.; Nielsen JB, Thorolfsdottir RB, Fritsche LG, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50(9):1234-1239. doi:10.1038/s41588-018-0171-3.; Roselli C, Rienstra M, Ellinor PT. Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ Res. 2020;127(1):21-33. doi:10.1161/CIRCRESAHA.120.316575.; Kim JA, Chelu MG, Li N. Genetics of atrial fibrillation. Curr Opin Cardiol. 2021;36(3):281-287. doi:10.1097/HCO.0000000000000840.; Sheng Y, Wang YY, Chang Y, et al. Deciphering mechanisms of cardiomyocytes and non-cardiomyocyte transformation in myocardial remodeling of permanent atrial fibrillation. J Adv Res. 2024;61:101-117. doi:10.1016/j.jare.2023.09.012.; Поморцев А.В., Карахалис М.Н., Матулевич С.А., и др. Пороки развития сердца плода: факторы риска и возможности ультразвукового метода при первом скрининге. Инновационная медицина Кубани. 2023;(4):51-59. https://doi.org/10.35401/2541-9897-2023-8-4-51-59; Molck MC, Simioni M, Paiva Vieira T, et al. Genomic imbalances in syndromic congenital heart disease. J Pediatr (Rio J). 2017;93(5):497-507. doi:10.1016/j.jped.2016.11.007.; Xu W, Ahmad A, Dagenais S, Iyer RK, Innis JW. Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3. Am J Med Genet A. 2012;158A(3):635-40. doi:10.1002/ajmg.a.34425.; Strehle EM, Yu L, Rosenfeld JA, et al. Genotype-phenotype analysis of 4q deletion syndrome: proposal of a critical region. Am J Med Genet A. 2012;158A(9):2139-51. doi:10.1002/ajmg.a.35502.; Liang F, Wang B, Geng J, et al. SORBS2 is a genetic factor contributing to cardiac malformation of 4q deletion syndrome patients. Elife. 2021;10:e67481. doi:10.7554/eLife.67481.; Бондарь И.А., Демин А.А., Гражданкина Д.В. Сахарный диабет 2 типа: взаимосвязь исходных клинико-лабораторных и эхокардиографических показателей с отдалёнными неблагоприятными сердечно-сосудистыми событиями. Сахарный диабет. 2022;25(2):136-144. https://doi.org/10.14341/DM12823; Lu T, Chai Q, Jiao G, et al. Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovasc Res. 2019;115(1):145-153. doi:10.1093/cvr/cvy137.; Vujkovic M, Keaton JM, Lynch JA, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680-691. doi:10.1038/s41588-020-0637-y.; Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020;582(7811):240-245. doi:10.1038/s41586-020-2263-3.; Lu T, Lee HC. Coronary Large Conductance Ca2+-Activated K+ Channel Dysfunction in Diabetes Mellitus. Front Physiol. 2021;12:750618. doi:10.3389/fphys.2021.750618.; Nystoriak MA, Nieves-Cintrón M, Nygren PJ, et al. AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res. 2014;114(4):607-15. doi:10.1161/CIRCRESAHA.114.302168.; Yi F, Wang H, Chai Q, et al. Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem. 2014;289(15):10853-10864. doi:10.1074/jbc.M113.520940; Sun X, Qian LL, Li Y, et al. Regulation of KCNMA1 transcription by Nrf2 in coronary arterial smooth muscle cells. J Mol Cell Cardiol. 2020;140:68-76. doi:10.1016/j.yjmcc.2020.03.001.; Турушева А.В., Котовская Ю.В., Фролова Е.В., и др. Влияние артериальной гипертензии на смертность и развитие гериатрических синдромов. Артериальная гипертензия. 2022;28(4):419-427. https://doi.org/10.18705/1607-419X-2022-28-4-419-427; Hoffmann TJ, Ehret GB, Nandakumar P, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49(1):54-64. doi:10.1038/ng.3715.; Кобалава Ж.Д., Конради А.О., Недогода С.В., и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(9):6117. https://doi.org/10.15829/1560-4071-2024-6117. EDN: GUEWLU; Wang D, Uhrin P, Mocan A, Waltenberger B, et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv. 2018;36(6):1586-1607. doi:10.1016/j.biotechadv.2018.04.006.; Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res. 2021;44(2):129-146. doi:10.1038/s41440-020-00553-6.; Zheng F, Ye C, Ge R, et al. MiR-21-3p in extracellular vesicles from vascular fibroblasts of spontaneously hypertensive rat promotes proliferation and migration of vascular smooth muscle cells. Life Sci. 2023;330:122023. doi:10.1016/j.lfs.2023.122023.; Holtzclaw JD, Grimm PR, Sansom SC. Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens. 2011;20(5):512-7. doi:10.1097/MNH.0b013e3283488889.; Yang Y, Li PY, Cheng J, et al. Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension. 2013;61(2):519-25. doi:10.1161/HYPERTENSIONAHA.111.00211.; Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med. 2023;55(12):2519-2530. doi:10.1038/s12276-023-01130-w.; Pinard A, Jones GT, Milewicz DM. Genetics of Thoracic and Abdominal Aortic Diseases. Circ Res. 2019;124(4):588-606. doi:10.1161/CIRCRESAHA.118.312436.; Wang C, Qu B, Wang Z, et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis. 2015;238(2):201-6. doi:10.1016/j.atherosclerosis.2014.11.027.

  2. 2
    Academic Journal

    Συνεισφορές: государственное задание “Наука”

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 31, № 3 (2016); 7-15 ; Сибирский журнал клинической и экспериментальной медицины; Том 31, № 3 (2016); 7-15 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2016-31-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/221/222; Влаопулос С., Зумпурлис В.С. JNK: ключевой модулятор внутриклеточной сигнальной системы // Биохимия. – 2004. – № 69(8). – С. 1038–1050.; Зюзьков Г.Н., Жданов В.В., Удут Е.В. и др. Роль JNK и участие p53 в реализации ростового потенциала мезенхимных клеток предшественников в условиях in vitro // Бюллетень экспериментальной биологии и медицины. – 2015. – № 159(2). – С. 205–208.; Маслов Л.Н., Мрочек А.Г., Щепёткин И.А. и др. Роль протеинкиназ в формировании адаптивного феномена ишемического посткондиционирования сердца // Рос. физиологический журнал им. И.М. Сеченова. – 2013. – № 99(4). – С. 433–452.; Рязанцева Н.В., Новицкий В.В., Часовских Н.Ю. и др. Роль редокс зависимых сигнальных систем в регуляции апоптоза при окислительном стрессе // Цитология. – 2009. – № 51(4). – С. 329–334.; Aoki H., Kang P.M., Hampe J. et al. Direct activation of mitochondrial apoptosis machinery by c Jun N terminal kinase in adult cardiac myocytes // J. Biol. Chem. – 2002. – Vol. 277(12). – P. 10244–10250.; Armstrong S.C. Protein kinase activation and myocardial ischemia/reperfusion injury // Cardiovasc. Res. – 2004. – Vol. 61(3). – P. 427–436.; Arslan F., Lai R.C., Smeets M.B. et al. Mesenchymal stem cell derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/ reperfusion injury // Stem Cell Res. – 2013. – Vol. 10(3). – P. 301–312.; Atochin D.N., Schepetkin I.A., Khlebnikov A.I. et al. A novel dual NO donating oxime and c Jun N terminal kinase inhibitor protects against cerebral ischemia reperfusion injury in mice // Neurosci. Lett. – 2016. – Vol. 618. – P. 45–49.; Barancik M., Htun P., Schaper W. Okadaic acid and anisomycin are protective and stimulate the SAPK/JNK pathway // J. Cardiovasc. Pharmacol. – 1999. – Vol. 34(2). – P. 182–190.; Becatti M., Taddei N., Cecchi C. et al. SIRT1 modulates MAPK pathways in ischemic reperfused cardiomyocytes // Cell. Mol. Life Sci. – 2012. – Vol. 69(13). – P. 2245–2260.; Bode A.M., Dong Z. The functional contrariety of JNK // Mol. Carcinog. – 2007. – Vol. 46(8). – P. 591–598.; Bogoyevitch M.A., Kobe B. Uses for JNK: the many and varied substrates of the c-Jun-N-terminal kinases // Microbiol. Mol. Biol. Rev. – 2006. – Vol. 70(4). – P. 1061–1095.; Chambers J.W., Pachori A., Howard S. et al. Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats // J. Biol. Chem. – 2013. – Vol. 288(6). – P. 4000–4011.; Chaudhury H., Zakkar M., Boyle J. et al. C-Jun-N terminal kinase primes endothelial cells at atheroprone sites for apoptosis // Arterioscler. Thromb. Vasc. Biol. – 2010. – Vol. 30(3). – P. 546–553.; Chen Y.C., Jinn T.R., Chung T.Y. et al. Magnesium lithospermate B extracted from Salvia miltiorrhiza elevates intracellular Ca2+ level in SH SY5Y cells // Acta Pharmacol. Sin. – 2010. – Vol. 31(8). – P. 923–929.; Clerk A., Fuller S.J., Michael A. et al. Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun-N-terminal kinases and p38 mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses // J. Biol. Chem. – 1998. – Vol. 273(13). – P. 7228–7234.; Dougherty C.J., Kubasiak L.A., Frazier D.P. et al. Mitochondrial signals initiate the activation of c Jun N terminal kinase (JNK) by hypoxia-reoxygenation // FASEB J. – 2004. – Vol. 18(10). – P. 1060–1070.; Dougherty C.J., Kubasiak L.A., Prentice H. et al. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress // Biochem. J. – 2002. – Vol. 362 (Pt. 3). – P. 561–571.; Duplain H. Salvage of ischemic myocardium: a focus on JNK // Adv. Exp. Med. Biol. – 2006. – Vol. 588. – P. 157–164.; Engelbrecht A.M., Niesler C., Page C. et al. P38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes // Basic Res. Cardiol. – 2004. – Vol. 99(5). – P. 338–350.; Ferrandi C., Ballerio R., Gaillard P. et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats // Br. J. Pharmacol. – 2004. – Vol. 142(6). – P. 953–960.; Frazier D.P., Wilson A., Dougherty C.J. et al. PKC alpha and TAK-1 are intermediates in the activation of c-Jun NH2 terminal kinase by hypoxia reoxygenation // Am. J. Physiol. Heart Circ. Physiol. – 2007. – Vol. 292(4). – P. H1675–1684.; Fryer R.M., Patel H.H., Hsu A.K. et al. Stress activated protein-kinase phosphorylation during cardioprotection in the ischemic myocardium // Am. J. Physiol. Heart. Circ. Physiol. – 2001. – Vol. 281(3). – P. H1184–1192.; Gehringer M., Muth F., Koch P., Laufer S.A. c-Jun N-terminal kinase inhibitors: a patent review (2010–2014) // Expert Opin. Ther. Pat. – 2015. – Vol. 25(8). – P. 849–872.; Gupta S., Barrett T., Whitmarsh A.J. et al. Selective interaction of JNK protein kinase isoforms with transcription factors // The EMBO Journal. – 1996. – Vol. 15(11). – P. 2760–2770.; Hausenloy D.J., Yellon D.M. Survival kinases in ischemic preconditioning and postconditioning // Cardiovasc. Res. – 2006. – Vol. 70(2). – P. 240–253.; Hausenloy D.J., Yellon D.M. Preconditioning and postconditioning: united at reperfusion // Pharmacol. Ther. – 2007. – Vol. 116(2). – P. 173–191.; He H., Li H.L., Lin A. et al. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia // Cell Death Differ. – 1999. – Vol. 6(10). – P. 987–991.; Hreniuk D., Garay M., Gaarde W. et al. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes // Mol. Pharmacol. – 2001. – Vol. 59(4). — P. 867–874.; Ip Y.T., Davis R.J. Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development // Curr. Opin. Cell Biol. – 1998. – Vol. 10(2). – P. 205–219.; Irving E.A., Bamford M. Role of mitogen and stress-activated kinases in ischemic injury // J. Cereb. Blood Flow Metab. – 2002. – Vol. 22(6). – P. 631–647.; Jang S., Javadov S. Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: the role of mitochondrial JNK // PLoS One. – 2014. – Vol. 9(11). – P. e113526.; Javadov S., Jang S., Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives // Pharmacol. Ther. – 2014. – Vol. 144(2). – P. 202–225.; Johnson G.L., Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease // Biochim. Biophys. Acta. – 2007. – Vol. 1773(8). – P. 1341–1348.; Kaiser R.A., Liang Q., Bueno O. et al. Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia–reperfusion induced cell death in vivo // J. Biol. Chem. – 2005. – Vol. 280(38). – P. 32602–32608.; Khalid S., Drasche A., Thurner M. et al. c-Jun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation // Sci. Rep. – 2016. – Vol. 6. – P. 20930.; Khandoudi N., Delerive P., Berrebi-Bertrand I. et al. Rosiglitazone, a peroxisome proliferator activated receptor-gamma, inhibits the Jun NH(2) terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury // Diabetes. – 2002. – Vol. 51(5). – P. 1507–1514.; Knight R.J., Buxton D.B. Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart // Biochem. Biophys. Res. Commun. – 1996. – Vol. 218(1). – P. 83–88.; Laderoute K.R., Webster K.A. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes // Circ. Res. – 1997. – Vol. 80(3). – P. 336–344.; Li H.H., Du J., Fan Y.N. et al. The ubiquitin ligase MuRF1 protects against cardiac ischemia/reperfusion injury by its proteasome-dependent degradation of phospho c-Jun // Am. J. Pathol. – 2011. – Vol. 178(3). – P. 1043–1058.; Li C., Gao Y., Tian J. et al. Sophocarpine administration preserves myocardial function from ischemia reperfusion in rats via NF-кB inactivation // J. Ethnopharmacol. – 2011. – Vol. 135(3). – P. 620–625.; Li X.M., Ma Y.T., Yang Y.N. et al. Ischemic postconditioning protects hypertrophic myocardium by ERK1/2 signaling pathway: experiment with mice // Zhonghua Yi Xue Za Zhi. – 2009. – Vol. 89(12). – P. 846–850.; Li C., Wang T., Zhang C. et al. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen activated protein kinase signaling pathways // Gene. – 2016. – Vol. 577(2). – P. 275–280.; Liu Q., Wang J., Liang Q. et al. Sparstolonin B attenuates hypoxia-reoxygenation induced cardiomyocyte inflammation // Exp. Biol. Med. (Maywood). – 2014. – Vol. 239(3). – P. 376–384.; Liu X., Xu F., Fu Y. et al. Calreticulin induces delayed cardioprotection through mitogen; activated protein kinases // Proteomics. – 2006. – Vol. 6(13). – P. 3792–3800.; Liu H.T., Zhang H.F., Si R. et al. Insulin protects isolated hearts from ischemia/reperfusion injury: cross talk between PI3-K/Akt and JNKs // Acta Physiol. Sin. – 2007. – Vol. 59(5). – P. 651–659.; Liu X.H., Zhang Z.Y., Sun S. et al. Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress // Shock. – 2008. – Vol. 30(4). – P. 422–427.; Messoussi A., Feneyrolles C., Bros A. et al. Recent progress in the design, study, and development of c-Jun N-terminal kinase inhibitors as anticancer agents // Chem. Biol. – 2014. – Vol. 21(11). – P. 1433–1443.; Milano G., Morel S., Bonny C. et al. A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia reperfusion injury and infarct size in vivo // Am. J. Physiol. Heart Circ. Physiol. – 2007. – Vol. 292(4). – P. H1828–1835.; Morrison A., Yan X., Tong C. et al. Acute rosiglitazone treatment is cardioprotective against ischemia reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice // Am. J. Physiol. Heart Circ. Physiol. – 2011. – Vol. 301(3). – P. H895–902.; Nakano A., Baines C.P., Kim S.O. et al. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK // Circ. Res. – 2000. – Vol. 86(2). – P. 144–151.; Nijboer C.H., van der Kooij M.A., van Bel F. et al. Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic ischemic brain injury // Brain Behav. Immun. – 2010. – Vol. 24(5). – P. 812– 821.; Oshikawa J., Kim S.J., Furuta E. et al. Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells // Am. J. Physiol. Heart Circ. Physiol. – 2012. – Vol. 302(3). – P. H724–732.; Ping P., Zhang J., Huang S. et al. PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits // Am. J. Physiol. – 1999. – Vol. 277(5 Pt. 2). – P. H1771–1785.; Qi D., Hu X., Wu X. et al. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion // J. Clin. Invest. – 2009. – Vol. 119(12). – P. 3807–3816.; Rose B.A., Force T., Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale // Physiol. Rev. – 2010. – Vol. 90(4). – P. 1507–1546.; Sato M., Bagchi D., Tosaki A. et al. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion induced activation of JNK-1 and C-JUN // Free Radic. Biol. Med. – 2001. – Vol. 31(6). – P. 729–737.; Shang L., Ananthakrishnan R., Li Q. et al. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways // PLoS One. – 2010. – Vol. 5(4). – P. e10092.; Shao Z., Bhattacharya K., Hsich E. et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo // Circ. Res. – 2006. – Vol. 98(1). – P. 111–118.; Shi S., Li Q.S., Li H. et al. Anti-apoptotic action of hydrogen sulfide is associated with early JNK inhibition // Cell Biol. Int. – 2009. – Vol. 33(10). – P. 1095–1101.; Song Z.F., Ji X.P., Li X.X. et al. Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation // Cell Mol. Med. – 2008. – Vol. 12(4). – P. 1220–1228.; Sun L., Isaak C.K., Zhou Y. et al. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion induced-apoptosis // Life Sci. – 2012. – Vol. 91(5–6). – P. 151–158.; Sun H.Y., Wang N.P., Halkos M. et al. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways // Apoptosis. – 2006. – Vol. 11(9). – P. 1583–1593.; Talmor D., Applebaum A., Rudich A. et al. Activation of mitogen-activated protein kinases in human heart during cardiopulmonary bypass // Circ. Res. – 2000. – Vol. 86(9). – P. 1004–1007.; Vassalli G., Milano G., Moccetti T. Role of Mitogen-Activated Protein Kinases in myocardial ischemia reperfusion injury during heart transplantation // J. Transplant. – 2012. – Vol. 2012. – P. 928954.; Waetzig V., Herdegen T. Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage // Trends Pharmacol. Sci. – 2005. – Vol. 26(9). – P. 455–461.; Walshe C.M., Laffey J.G., Kevin L. et al. Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK dependent mechanism // Intensive Care Med. Exp. – 2015. – Vol. 3(1). – P. 35.; Wang Z., Huang H., He W. et al. Regulator of G-protein signaling 5 protects cardiomyocytes against apoptosis during in vitro cardiac ischemia-reperfusion in mice by inhibiting both JNK and P38 signaling pathways [Electronic resource] // Biochem. Biophys. Res. Commun. – 2016. – Vol. 473(2). – P. 551–557.; Wang J., Yang L., Rezaie A.R. et al. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling // J. Thromb. Haemost. – 2011. – Vol. 9(7). – P. 1308–1317.; Wei J., Wang W., Chopra I. et al. C-Jun N-terminal kinase (JNK-1) confers protection against brief but not extended ischemia during acute myocardial infarction // J. Biol. Chem. – 2011. – Vol. 286(16). – P. 13995–14006.; Wei C., Zhao Y., Wang L. et al. H2S restores the cardioprotection from ischemic post-conditioning in isolated aged rat hearts // Cell Biol. Int. – 2015. – Vol. 39(10). – P. 1173–1176.; Wiltshire C., Gillespie D.A., May G.H. Sab (SH3BP5), a novel mitochondria-localized JNK interacting protein // Biochem. Soc. Trans. – 2004. – Vol. 32 (Pt. 6). – P. 1075–1077.; Wu J., Li J., Zhang N. et al. Stem cell-based therapies in ischemic-heart diseases: a focus on aspects of microcirculation and inflammation // Basic Res. Cardiol. – 2011. – Vol. 106(3). – P. 317–324.; Xie P., Guo S., Fan Y. et al. Atrogin-1/MAFbx enhances simulated ischemia/reperfusion induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK-activation // J. Biol. Chem. – 2009. – Vol. 284(9). – P. 5488–5496.; Xu J., Qin X., Cai X. et al. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury-following ischemia/reperfusion // Biochim. Biophys. Acta. – 2015. – Vol. 1852(2). – P. 262–270.; Xu T., Wu X., Chen Q. et al. The anti-apoptotic and cardioprotective effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway // PLoS One. – 2014. – Vol. 9(7). – P. e102292.; Xu H., Yao Y., Su Z. et al. Endogenous HMGB1 contributes to ischemia reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-alpha/JNK // Am. J. Physiol. Heart Circ. Physiol. – 2011. – Vol. 300(3). – P. H913–921.; Yang L.M., Xiao Y.L., Ou Yang J.H. Inhibition of magnesium lithospermate B on the c-Jun N-terminal kinase 3 mRNA-expression in cardiomyocytes encountered ischemia/reperfusion injury // Acta Pharmacol. Sin. – 2003. – Vol. 38(7). – P. 487–491.; Yin T., Sandhu G., Wolfgang C.D. et al. Tissue specific pattern of stress kinase activation in ischemic/reperfused heart and kidney // J. Biol. Chem. – 1997. – Vol. 272(32). – P. 19943–19950.; Yue T.L., Wang C., Gu J.L. et al. Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart // Circ. Res. – 2000. – Vol. 86(6). – P. 692–699.; Zaha V.G., Qi D., Su K.N. et al. AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia // J. Mol. Cell. Cardiol. – 2016. – Vol. 91. – P. 104–113.; Zhang J., Li X.X., Bian H.J. et al. Inhibition of the activity of Rho-kinase reduces cardiomyocyte apoptosis in heart ischemia/reperfusion via suppressing JNK-mediated AIF translocation // Clin. Chim. Acta. – 2009. – Vol. 401(1–2). – P. 76–80.; Zhang G.M., Wang Y., Li T.D. et al. Change of JNK MAPK and its influence on cardiocyte apoptosis in ischemic postconditioning // J. Zhejiang Univ. – 2009. – Vol. 38(6). – P. 611–619.; Zhang G.M., Wang Y., Li T.D. et al. Post conditioning with gradually increased reperfusion provides better cardioprotection in rats // World J. Emerg. Med. – 2014. – Vol. 5(2). – P. 128–134.; Zinkel S., Gross A., Yang E. BCL2 family in DNA damage and cell cycle control // Cell Death Differ. – 2006. – Vol. 13(8). – P. 1351–1359.; https://www.sibjcem.ru/jour/article/view/221