-
1Academic Journal
Συγγραφείς: Artem G. Atoyan, Margarita A. Zholkovskaya, Amina A. Savlokhova, Anastasia S. Toryanik, Umsaitin M. Mamaeva, Akhmed A. Believ, Amir Kh. Khatukaev, Saida M. Borlakova, Luiza A. Arapieva, Anastasia D. Rocheva, Daria D. Gorokhova, Savely A. Okulov, Ilya G. Nasonov, Kseniya V. Korchmar, Артем Григорьевич Атоян, Маргарита Александровна Жолковская, Амина Ахметовна Савлохова, Анастасия Сергеевна Торяник, Умсайтин Мурадовна Мамаева, Ахмед Алимпашаевич Белиев, Амир Хасанович Хатукаев, Саида Маратовна Борлакова, Луиза Алихановна Арапиева, Анастасия Дмитриевна Рочева, Дарья Денисовна Горохова, Савелий Александрович Окулов, Илья Геннадьевич Насонов, Ксения Вадимовна Корчмарь
Συνεισφορές: Авторы заявляют об отсутствии финансирования исследования.
Πηγή: Complex Issues of Cardiovascular Diseases; Online First ; Комплексные проблемы сердечно-сосудистых заболеваний; Online First ; 2587-9537 ; 2306-1278
Θεματικοί όροι: Терапевтическая мишень, Cardiovascular diseases, RNA-binding proteins, Cardiac remodeling, Ion channels, Atrial fibrillation, Therapeutic target, Сердечно-сосудистые заболевания, РНК-связывающие белки, Ремоделирование сердца, Ионные каналы, Фибрилляция предсердий
Περιγραφή αρχείου: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1714/1062; Mensah GA, Fuster V, Roth GA. A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action. J Am Coll Cardiol. 2023;82(25):2343-2349. doi:10.1016/j.jacc.2023.11.003.; Косолапов ВП, Ярмонова МВ. Анализ высокой сердечно-сосудистой заболеваемости и смертности взрослого населения как медико-социальной проблемы и поиск путей ее решения. Уральский медицинский журнал. 2021;20(1):58-64. https://doi.org/10.52420/2071-5943-2021-20-1-58-64; Боровкова Н.Ю., Токарева А.С., Савицкая Н.Н., и др. Современное состояние проблемы сердечно-сосудистых заболеваний в Нижегородском регионе: возможные пути снижения смертности. Российский кардиологический журнал. 2022;27(5):5024. https://doi.org/10.15829/1560-4071-2022-5024; Фозилов Х.Г., Атаниязов Х.Х., Хамидуллаева Г.А., и др. Раннее выявление и контроль факторов риска сердечно-сосудистых заболеваний в приаралье: опыт Узбекистана. Кардиология. 2024;64(1):37-43. https://doi.org/10.18087/cardio.2024.1.n2614; Li C, Zheng Y, Liu Y, et al. The interaction protein of SORBS2 in myocardial tissue to find out the pathogenic mechanism of LVNC disease. Aging (Albany NY). 2022;14(2):800-810. doi:10.18632/aging.203841; Zhang S, Tong Y. Advances in the previous two decades in our understanding of the post-translational modifications, functions, and drug perspectives of ArgBP2 and its family members. Biomed Pharmacother. 2022;155:113853. doi:10.1016/j.biopha.2022.113853.; Jaufmann J, Franke FC, Sperlich A, et al. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J. 2021;35(4):e21470. doi:10.1096/fj.202002495R.; Ichikawa T, Kita M, Matsui TS, et al. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci. 2017;130(20):3517-3531. doi:10.1242/jcs.200691.; Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells. 2022;11(23):3815. doi:10.3390/cells11233815.; Murase K, Ito H, Kanoh H, et al. Cell biological characterization of a multidomain adaptor protein, ArgBP2, in epithelial NMuMG cells, and identification of a novel short isoform. Med Mol Morphol. 2012;45(1):22-8. doi:10.1007/s00795-010-0537-9.; Zhang Q, Gao X, Li C, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36(7):2247-60. doi:10.1523/JNEUROSCI.2528-15.2016.; Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol. 2020;92(5):e12951. doi:10.1111/sji.12951.; GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)–Analysis Working Group; Statistical Methods groups–Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site–NDRI; Biospecimen Collection Source Site–RPCI; Biospecimen Core Resource–VARI; Brain Bank Repository–University of Miami Brain Endowment Bank; Leidos Biomedical–Project Management; ELSI Study; Genome Browser Data Integration &Visualization–EBI; Genome Browser Data Integration &Visualization–UCSC Genomics Institute, University of California Santa Cruz; Lead analysts:; Laboratory, Data Analysis &Coordinating Center (LDACC):; NIH program management:; Biospecimen collection:; Pathology:; eQTL manuscript working group:; Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213. doi:10.1038/nature24277.; Lv Q, Dong F, Zhou Y, et al. RNA-binding protein SORBS2 suppresses clear cell renal cell carcinoma metastasis by enhancing MTUS1 mRNA stability. Cell Death Dis. 2020;11(12):1056. doi:10.1038/s41419-020-03268-1.; Ding Y, Yang J, Chen P, et al. Knockout of SORBS2 Protein Disrupts the Structural Integrity of Intercalated Disc and Manifests Features of Arrhythmogenic Cardiomyopathy. J Am Heart Assoc. 2020;9(17):e017055. doi:10.1161/JAHA.119.017055.; Sanger JM, Wang J, Gleason LM, et al. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken). 2010;67(12):808-23. doi:10.1002/cm.20490.; Qian LL, Sun X, Yang J, et al. Changes in ion channel expression and function associated with cardiac arrhythmogenic remodeling by Sorbs2. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166247. doi:10.1016/j.bbadis.2021.166247.; Sun X, Lee HC, Lu T. Sorbs2 Deficiency and Vascular BK Channelopathy in Diabetes. Circ Res. 2024;134(7):858-871. doi:10.1161/CIRCRESAHA.123.323538.; Zhao L, Wang W, Huang S, et al. The RNA binding protein SORBS2 suppresses metastatic colonization of ovarian cancer by stabilizing tumor-suppressive immunomodulatory transcripts. Genome Biol. 2018;19(1):35. doi:10.1186/s13059-018-1412-6.; Van Nostrand EL, Freese P, Pratt GA, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583(7818):711-719. doi:10.1038/s41586-020-2077-3.; Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22(3):185-198. doi:10.1038/s41576-020-00302-y.; Timmer LT, den Hertog E, Versteeg D, et al. Cardiomyocyte SORBS2 expression increases in heart failure and regulates integrin interactions and extracellular matrix composition. Cardiovasc Res. 2025;121(4):585-600. doi:10.1093/cvr/cvaf021.; Dovinova I, Kvandová M, Balis P, et al. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases. Physiol Res. 2020;69(Suppl 4):S541-S553. doi:10.33549/physiolres.934612.; Zhu L, Choudhary K, Gonzalez-Teran B, et al. Transcription Factor GATA4 Regulates Cell Type-Specific Splicing Through Direct Interaction With RNA in Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitors. Circulation. 2022;146(10):770-787. doi:10.1161/CIRCULATIONAHA.121.057620.; Lu T, Sun X, Li Y, et al. Role of Nrf2 Signaling in the Regulation of Vascular BK Channel β1 Subunit Expression and BK Channel Function in High-Fat Diet-Induced Diabetic Mice. Diabetes. 2017;66(10):2681-2690. doi:10.2337/db17-0181.; Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, et al. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel). 2022; 11(2):235. doi:10.3390/antiox11020235.; Артеменков АА. Дислипидемии плазмы крови: патогенез и диагностическое значение. Обзор литературы. Пермский медицинский журнал (сетевое издание "Perm medical journal"). 2023;40(1):78-93. doi:10.17816/pmj40178-93; Liu MM, Peng J, Guo YL, et al. SORBS2 as a molecular target for atherosclerosis in patients with familial hypercholesterolemia. J Transl Med. 2022;20(1):233. doi:10.1186/s12967-022-03381-z.; Feng X, Yu W, Li X, et al. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 2017 Jul 15;136:136-149. doi:10.1016/j.bcp.2017.04.014.; Ren K, Li H, Zhou HF, et al. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1. Aging (Albany NY). 2019;11(23):10992-11009. doi:10.18632/aging.102498.; Jiang M, Li X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun. 2017;482(4):849-856. doi:10.1016/j.bbrc.2016.11.123.; Калашников В.Ю., Мичурова М.С. Атеросклеротические сердечно-сосудистые заболевания и сахарный диабет 2‑го типа. Как учесть все нюансы в выборе терапии? Кардиология. 2021;61(1):78-86. https://doi.org/10.18087/cardio.2021.1.n1148; Xiong X, Zhou J, Fu Q, et al. The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy. Lipids Health Dis. 2022;21(1):60. doi:10.1186/s12944-022-01673-3.; Каширских Д.А., Хотина В.А., Сухоруков В.Н., и др. Клеточные и тканевые маркеры атеросклероза. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(2):102-113. https://doi.org/10.17802/2306-1278-2020-9-2-102-113; Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132(12):1243-1252. doi:10.1042/CS20180306.; Zhu Y, Xian X, Wang Z, et al. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules. 2018;8(3):80. doi:10.3390/biom8030080.; Badimon L, Peña E, Arderiu G, et al. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol. 2018;9:430. doi:10.3389/fimmu.2018.00430.; Akinyelure OP, Colantonio LD, Chaudhary NS, et al. Inflammation biomarkers and incident coronary heart disease: the Reasons for Geographic And Racial Differences in Stroke Study. Am Heart J. 2022;253:39-47. doi:10.1016/j.ahj.2022.07.001; Kumari P, Kumar H. Dimensions of inflammation in host defense and diseases. Int Rev Immunol. 2022;41(1):1-3. doi:10.1080/08830185.2022.2014174.; Vdovenko D, Bachmann M, Wijnen WJ, et al. The adaptor protein c-Cbl-associated protein (CAP) limits pro-inflammatory cytokine expression by inhibiting the NF-κB pathway. Int Immunopharmacol. 2020;87:106822. doi:10.1016/j.intimp.2020.106822.; Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136-46. doi:10.1172/JCI70577.; Wang H, Bei Y, Shen S, et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol. 2016;94:43-53. doi:10.1016/j.yjmcc.2016.03.014.; Shan B, Li JY, Liu YJ, et al. LncRNA H19 Inhibits the Progression of Sepsis-Induced Myocardial Injury via Regulation of the miR-93-5p/SORBS2 Axis. Inflammation. 2021;44(1):344-357. doi:10.1007/s10753-020-01340-8.; Алиева АМ, Алмазова ИИ, Резник ЕВ, и др. Гипертрофическая кардиомиопатия: современный взгляд на проблему. CardioСоматика. 2020;11(1):39-45. doi:10.26442/22217185.2020.1.200116; Галеева З.М., Галявич А.С., Балеева Л.В., и др. О причинах дилатационной кардиомиопатии в молодом возрасте. Южно-Российский журнал терапевтической практики. 2022;3(3):85-90. https://doi.org/10.21886/2712-8156-2022-3-3-85-90; McLendon JM, Zhang X, Matasic DS, et al. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc. 2022;11(13):e025687. doi:10.1161/JAHA.122.025687.; Gagliano Taliun SA, VandeHaar P, Boughton AP, et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat Genet. 2020;52(6):550-552. doi:10.1038/s41588-020-0622-5.; Ashar FN, Mitchell RN, Albert CM, et al. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J. 2018;39(44):3961-3969. doi:10.1093/eurheartj/ehy474.; Li C, Liu F, Liu S, et al. Elevated myocardial SORBS2 and the underlying implications in left ventricular noncompaction cardiomyopathy. EBioMedicine. 2020;53:102695. doi:10.1016/j.ebiom.2020.102695.; Li C, Zhang L, Hu X, et al. SORBS2 upregulation may contribute to dysfunction in LVNC via the Notch pathway. Acta Biochim Biophys Sin (Shanghai). 2022;55(2):327-329. doi:10.3724/abbs.2022177; Guo A, Wang Y, Chen B, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362(6421):eaan3303. doi:10.1126/science.aan3303; Prins KW, Asp ML, Zhang H, et al. Microtubule-Mediated Misregulation of Junctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling in mdx Mice. JACC Basic Transl Sci. 2016;1(3):122-130. doi:10.1016/j.jacbts.2016.02.002; Халиков А.А., Кузнецов К.О., Искужина Л.Р., Халикова Л.В. Судебно-медицинские аспекты внезапной аутопсия-отрицательной сердечной смерти. Судебно-медицинская экспертиза. 2021;64(3):59‑63. https://doi.org/10.17116/sudmed20216403159; Петрова Е.А., Кольцова Е.А. Нарушения ритма сердца и инсульт. Consilium Medicum. 2017; 19 (2): 30–34.; Канорский С.Г. Фибрилляция предсердий в старческом возрасте: современные возможности лечения. Южно-Российский журнал терапевтической практики. 2022;3(1):7-14. https://doi.org/10.21886/2712-8156-2022-3-1-7-14; Антипов Г.Н., Постол А.С., Котов С.Н., и др. Сравнение ремоделирования предсердий после процедур «лабиринт-3» и «криолабиринт» при сочетанных вмешательствах на сердце: ретроспективное исследование. Кубанский научный медицинский вестник. 2022;29(2):14-27. https://doi.org/10.25207/1608-6228-2022-29-2-14-27; Nattel S, Dobrev D. Controversies About Atrial Fibrillation Mechanisms: Aiming for Order in Chaos and Whether it Matters. Circ Res. 2017 ;120(9):1396-1398. doi:10.1161/CIRCRESAHA.116.310489.; Nielsen JB, Thorolfsdottir RB, Fritsche LG, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50(9):1234-1239. doi:10.1038/s41588-018-0171-3.; Roselli C, Rienstra M, Ellinor PT. Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ Res. 2020;127(1):21-33. doi:10.1161/CIRCRESAHA.120.316575.; Kim JA, Chelu MG, Li N. Genetics of atrial fibrillation. Curr Opin Cardiol. 2021;36(3):281-287. doi:10.1097/HCO.0000000000000840.; Sheng Y, Wang YY, Chang Y, et al. Deciphering mechanisms of cardiomyocytes and non-cardiomyocyte transformation in myocardial remodeling of permanent atrial fibrillation. J Adv Res. 2024;61:101-117. doi:10.1016/j.jare.2023.09.012.; Поморцев А.В., Карахалис М.Н., Матулевич С.А., и др. Пороки развития сердца плода: факторы риска и возможности ультразвукового метода при первом скрининге. Инновационная медицина Кубани. 2023;(4):51-59. https://doi.org/10.35401/2541-9897-2023-8-4-51-59; Molck MC, Simioni M, Paiva Vieira T, et al. Genomic imbalances in syndromic congenital heart disease. J Pediatr (Rio J). 2017;93(5):497-507. doi:10.1016/j.jped.2016.11.007.; Xu W, Ahmad A, Dagenais S, Iyer RK, Innis JW. Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3. Am J Med Genet A. 2012;158A(3):635-40. doi:10.1002/ajmg.a.34425.; Strehle EM, Yu L, Rosenfeld JA, et al. Genotype-phenotype analysis of 4q deletion syndrome: proposal of a critical region. Am J Med Genet A. 2012;158A(9):2139-51. doi:10.1002/ajmg.a.35502.; Liang F, Wang B, Geng J, et al. SORBS2 is a genetic factor contributing to cardiac malformation of 4q deletion syndrome patients. Elife. 2021;10:e67481. doi:10.7554/eLife.67481.; Бондарь И.А., Демин А.А., Гражданкина Д.В. Сахарный диабет 2 типа: взаимосвязь исходных клинико-лабораторных и эхокардиографических показателей с отдалёнными неблагоприятными сердечно-сосудистыми событиями. Сахарный диабет. 2022;25(2):136-144. https://doi.org/10.14341/DM12823; Lu T, Chai Q, Jiao G, et al. Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovasc Res. 2019;115(1):145-153. doi:10.1093/cvr/cvy137.; Vujkovic M, Keaton JM, Lynch JA, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680-691. doi:10.1038/s41588-020-0637-y.; Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020;582(7811):240-245. doi:10.1038/s41586-020-2263-3.; Lu T, Lee HC. Coronary Large Conductance Ca2+-Activated K+ Channel Dysfunction in Diabetes Mellitus. Front Physiol. 2021;12:750618. doi:10.3389/fphys.2021.750618.; Nystoriak MA, Nieves-Cintrón M, Nygren PJ, et al. AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res. 2014;114(4):607-15. doi:10.1161/CIRCRESAHA.114.302168.; Yi F, Wang H, Chai Q, et al. Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem. 2014;289(15):10853-10864. doi:10.1074/jbc.M113.520940; Sun X, Qian LL, Li Y, et al. Regulation of KCNMA1 transcription by Nrf2 in coronary arterial smooth muscle cells. J Mol Cell Cardiol. 2020;140:68-76. doi:10.1016/j.yjmcc.2020.03.001.; Турушева А.В., Котовская Ю.В., Фролова Е.В., и др. Влияние артериальной гипертензии на смертность и развитие гериатрических синдромов. Артериальная гипертензия. 2022;28(4):419-427. https://doi.org/10.18705/1607-419X-2022-28-4-419-427; Hoffmann TJ, Ehret GB, Nandakumar P, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49(1):54-64. doi:10.1038/ng.3715.; Кобалава Ж.Д., Конради А.О., Недогода С.В., и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(9):6117. https://doi.org/10.15829/1560-4071-2024-6117. EDN: GUEWLU; Wang D, Uhrin P, Mocan A, Waltenberger B, et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv. 2018;36(6):1586-1607. doi:10.1016/j.biotechadv.2018.04.006.; Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res. 2021;44(2):129-146. doi:10.1038/s41440-020-00553-6.; Zheng F, Ye C, Ge R, et al. MiR-21-3p in extracellular vesicles from vascular fibroblasts of spontaneously hypertensive rat promotes proliferation and migration of vascular smooth muscle cells. Life Sci. 2023;330:122023. doi:10.1016/j.lfs.2023.122023.; Holtzclaw JD, Grimm PR, Sansom SC. Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens. 2011;20(5):512-7. doi:10.1097/MNH.0b013e3283488889.; Yang Y, Li PY, Cheng J, et al. Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension. 2013;61(2):519-25. doi:10.1161/HYPERTENSIONAHA.111.00211.; Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med. 2023;55(12):2519-2530. doi:10.1038/s12276-023-01130-w.; Pinard A, Jones GT, Milewicz DM. Genetics of Thoracic and Abdominal Aortic Diseases. Circ Res. 2019;124(4):588-606. doi:10.1161/CIRCRESAHA.118.312436.; Wang C, Qu B, Wang Z, et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis. 2015;238(2):201-6. doi:10.1016/j.atherosclerosis.2014.11.027.
Διαθεσιμότητα: https://www.nii-kpssz.com/jour/article/view/1714
-
2Academic Journal
Συγγραφείς: M. V. Shvedova, Y. Anfinogenova, S. V. Popov, I. A. Shchepetkin, D. N. Atochin, М. В. Шведова, Я. Д. Анфиногенова, С. В. Попов, И. А. Щепеткин, Д. Н. Аточин
Συνεισφορές: государственное задание “Наука”
Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 31, № 3 (2016); 7-15 ; Сибирский журнал клинической и экспериментальной медицины; Том 31, № 3 (2016); 7-15 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2016-31-3
Θεματικοί όροι: апоптоз, c-Jun-N терминальная киназа, ингибитор JNK, ишемически–реперфузионное повреждение, миокард, терапевтическая мишень, c-Jun-N terminal kinase, JNK inhibitor, ischemia/reperfusion injury, myocardium, therapeutic target
Περιγραφή αρχείου: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/221/222; Влаопулос С., Зумпурлис В.С. JNK: ключевой модулятор внутриклеточной сигнальной системы // Биохимия. – 2004. – № 69(8). – С. 1038–1050.; Зюзьков Г.Н., Жданов В.В., Удут Е.В. и др. Роль JNK и участие p53 в реализации ростового потенциала мезенхимных клеток предшественников в условиях in vitro // Бюллетень экспериментальной биологии и медицины. – 2015. – № 159(2). – С. 205–208.; Маслов Л.Н., Мрочек А.Г., Щепёткин И.А. и др. Роль протеинкиназ в формировании адаптивного феномена ишемического посткондиционирования сердца // Рос. физиологический журнал им. И.М. Сеченова. – 2013. – № 99(4). – С. 433–452.; Рязанцева Н.В., Новицкий В.В., Часовских Н.Ю. и др. Роль редокс зависимых сигнальных систем в регуляции апоптоза при окислительном стрессе // Цитология. – 2009. – № 51(4). – С. 329–334.; Aoki H., Kang P.M., Hampe J. et al. Direct activation of mitochondrial apoptosis machinery by c Jun N terminal kinase in adult cardiac myocytes // J. Biol. Chem. – 2002. – Vol. 277(12). – P. 10244–10250.; Armstrong S.C. Protein kinase activation and myocardial ischemia/reperfusion injury // Cardiovasc. Res. – 2004. – Vol. 61(3). – P. 427–436.; Arslan F., Lai R.C., Smeets M.B. et al. Mesenchymal stem cell derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/ reperfusion injury // Stem Cell Res. – 2013. – Vol. 10(3). – P. 301–312.; Atochin D.N., Schepetkin I.A., Khlebnikov A.I. et al. A novel dual NO donating oxime and c Jun N terminal kinase inhibitor protects against cerebral ischemia reperfusion injury in mice // Neurosci. Lett. – 2016. – Vol. 618. – P. 45–49.; Barancik M., Htun P., Schaper W. Okadaic acid and anisomycin are protective and stimulate the SAPK/JNK pathway // J. Cardiovasc. Pharmacol. – 1999. – Vol. 34(2). – P. 182–190.; Becatti M., Taddei N., Cecchi C. et al. SIRT1 modulates MAPK pathways in ischemic reperfused cardiomyocytes // Cell. Mol. Life Sci. – 2012. – Vol. 69(13). – P. 2245–2260.; Bode A.M., Dong Z. The functional contrariety of JNK // Mol. Carcinog. – 2007. – Vol. 46(8). – P. 591–598.; Bogoyevitch M.A., Kobe B. Uses for JNK: the many and varied substrates of the c-Jun-N-terminal kinases // Microbiol. Mol. Biol. Rev. – 2006. – Vol. 70(4). – P. 1061–1095.; Chambers J.W., Pachori A., Howard S. et al. Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats // J. Biol. Chem. – 2013. – Vol. 288(6). – P. 4000–4011.; Chaudhury H., Zakkar M., Boyle J. et al. C-Jun-N terminal kinase primes endothelial cells at atheroprone sites for apoptosis // Arterioscler. Thromb. Vasc. Biol. – 2010. – Vol. 30(3). – P. 546–553.; Chen Y.C., Jinn T.R., Chung T.Y. et al. Magnesium lithospermate B extracted from Salvia miltiorrhiza elevates intracellular Ca2+ level in SH SY5Y cells // Acta Pharmacol. Sin. – 2010. – Vol. 31(8). – P. 923–929.; Clerk A., Fuller S.J., Michael A. et al. Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun-N-terminal kinases and p38 mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses // J. Biol. Chem. – 1998. – Vol. 273(13). – P. 7228–7234.; Dougherty C.J., Kubasiak L.A., Frazier D.P. et al. Mitochondrial signals initiate the activation of c Jun N terminal kinase (JNK) by hypoxia-reoxygenation // FASEB J. – 2004. – Vol. 18(10). – P. 1060–1070.; Dougherty C.J., Kubasiak L.A., Prentice H. et al. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress // Biochem. J. – 2002. – Vol. 362 (Pt. 3). – P. 561–571.; Duplain H. Salvage of ischemic myocardium: a focus on JNK // Adv. Exp. Med. Biol. – 2006. – Vol. 588. – P. 157–164.; Engelbrecht A.M., Niesler C., Page C. et al. P38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes // Basic Res. Cardiol. – 2004. – Vol. 99(5). – P. 338–350.; Ferrandi C., Ballerio R., Gaillard P. et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats // Br. J. Pharmacol. – 2004. – Vol. 142(6). – P. 953–960.; Frazier D.P., Wilson A., Dougherty C.J. et al. PKC alpha and TAK-1 are intermediates in the activation of c-Jun NH2 terminal kinase by hypoxia reoxygenation // Am. J. Physiol. Heart Circ. Physiol. – 2007. – Vol. 292(4). – P. H1675–1684.; Fryer R.M., Patel H.H., Hsu A.K. et al. Stress activated protein-kinase phosphorylation during cardioprotection in the ischemic myocardium // Am. J. Physiol. Heart. Circ. Physiol. – 2001. – Vol. 281(3). – P. H1184–1192.; Gehringer M., Muth F., Koch P., Laufer S.A. c-Jun N-terminal kinase inhibitors: a patent review (2010–2014) // Expert Opin. Ther. Pat. – 2015. – Vol. 25(8). – P. 849–872.; Gupta S., Barrett T., Whitmarsh A.J. et al. Selective interaction of JNK protein kinase isoforms with transcription factors // The EMBO Journal. – 1996. – Vol. 15(11). – P. 2760–2770.; Hausenloy D.J., Yellon D.M. Survival kinases in ischemic preconditioning and postconditioning // Cardiovasc. Res. – 2006. – Vol. 70(2). – P. 240–253.; Hausenloy D.J., Yellon D.M. Preconditioning and postconditioning: united at reperfusion // Pharmacol. Ther. – 2007. – Vol. 116(2). – P. 173–191.; He H., Li H.L., Lin A. et al. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia // Cell Death Differ. – 1999. – Vol. 6(10). – P. 987–991.; Hreniuk D., Garay M., Gaarde W. et al. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes // Mol. Pharmacol. – 2001. – Vol. 59(4). — P. 867–874.; Ip Y.T., Davis R.J. Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development // Curr. Opin. Cell Biol. – 1998. – Vol. 10(2). – P. 205–219.; Irving E.A., Bamford M. Role of mitogen and stress-activated kinases in ischemic injury // J. Cereb. Blood Flow Metab. – 2002. – Vol. 22(6). – P. 631–647.; Jang S., Javadov S. Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: the role of mitochondrial JNK // PLoS One. – 2014. – Vol. 9(11). – P. e113526.; Javadov S., Jang S., Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives // Pharmacol. Ther. – 2014. – Vol. 144(2). – P. 202–225.; Johnson G.L., Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease // Biochim. Biophys. Acta. – 2007. – Vol. 1773(8). – P. 1341–1348.; Kaiser R.A., Liang Q., Bueno O. et al. Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia–reperfusion induced cell death in vivo // J. Biol. Chem. – 2005. – Vol. 280(38). – P. 32602–32608.; Khalid S., Drasche A., Thurner M. et al. c-Jun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation // Sci. Rep. – 2016. – Vol. 6. – P. 20930.; Khandoudi N., Delerive P., Berrebi-Bertrand I. et al. Rosiglitazone, a peroxisome proliferator activated receptor-gamma, inhibits the Jun NH(2) terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury // Diabetes. – 2002. – Vol. 51(5). – P. 1507–1514.; Knight R.J., Buxton D.B. Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart // Biochem. Biophys. Res. Commun. – 1996. – Vol. 218(1). – P. 83–88.; Laderoute K.R., Webster K.A. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes // Circ. Res. – 1997. – Vol. 80(3). – P. 336–344.; Li H.H., Du J., Fan Y.N. et al. The ubiquitin ligase MuRF1 protects against cardiac ischemia/reperfusion injury by its proteasome-dependent degradation of phospho c-Jun // Am. J. Pathol. – 2011. – Vol. 178(3). – P. 1043–1058.; Li C., Gao Y., Tian J. et al. Sophocarpine administration preserves myocardial function from ischemia reperfusion in rats via NF-кB inactivation // J. Ethnopharmacol. – 2011. – Vol. 135(3). – P. 620–625.; Li X.M., Ma Y.T., Yang Y.N. et al. Ischemic postconditioning protects hypertrophic myocardium by ERK1/2 signaling pathway: experiment with mice // Zhonghua Yi Xue Za Zhi. – 2009. – Vol. 89(12). – P. 846–850.; Li C., Wang T., Zhang C. et al. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen activated protein kinase signaling pathways // Gene. – 2016. – Vol. 577(2). – P. 275–280.; Liu Q., Wang J., Liang Q. et al. Sparstolonin B attenuates hypoxia-reoxygenation induced cardiomyocyte inflammation // Exp. Biol. Med. (Maywood). – 2014. – Vol. 239(3). – P. 376–384.; Liu X., Xu F., Fu Y. et al. Calreticulin induces delayed cardioprotection through mitogen; activated protein kinases // Proteomics. – 2006. – Vol. 6(13). – P. 3792–3800.; Liu H.T., Zhang H.F., Si R. et al. Insulin protects isolated hearts from ischemia/reperfusion injury: cross talk between PI3-K/Akt and JNKs // Acta Physiol. Sin. – 2007. – Vol. 59(5). – P. 651–659.; Liu X.H., Zhang Z.Y., Sun S. et al. Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress // Shock. – 2008. – Vol. 30(4). – P. 422–427.; Messoussi A., Feneyrolles C., Bros A. et al. Recent progress in the design, study, and development of c-Jun N-terminal kinase inhibitors as anticancer agents // Chem. Biol. – 2014. – Vol. 21(11). – P. 1433–1443.; Milano G., Morel S., Bonny C. et al. A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia reperfusion injury and infarct size in vivo // Am. J. Physiol. Heart Circ. Physiol. – 2007. – Vol. 292(4). – P. H1828–1835.; Morrison A., Yan X., Tong C. et al. Acute rosiglitazone treatment is cardioprotective against ischemia reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice // Am. J. Physiol. Heart Circ. Physiol. – 2011. – Vol. 301(3). – P. H895–902.; Nakano A., Baines C.P., Kim S.O. et al. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK // Circ. Res. – 2000. – Vol. 86(2). – P. 144–151.; Nijboer C.H., van der Kooij M.A., van Bel F. et al. Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic ischemic brain injury // Brain Behav. Immun. – 2010. – Vol. 24(5). – P. 812– 821.; Oshikawa J., Kim S.J., Furuta E. et al. Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells // Am. J. Physiol. Heart Circ. Physiol. – 2012. – Vol. 302(3). – P. H724–732.; Ping P., Zhang J., Huang S. et al. PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits // Am. J. Physiol. – 1999. – Vol. 277(5 Pt. 2). – P. H1771–1785.; Qi D., Hu X., Wu X. et al. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion // J. Clin. Invest. – 2009. – Vol. 119(12). – P. 3807–3816.; Rose B.A., Force T., Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale // Physiol. Rev. – 2010. – Vol. 90(4). – P. 1507–1546.; Sato M., Bagchi D., Tosaki A. et al. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion induced activation of JNK-1 and C-JUN // Free Radic. Biol. Med. – 2001. – Vol. 31(6). – P. 729–737.; Shang L., Ananthakrishnan R., Li Q. et al. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways // PLoS One. – 2010. – Vol. 5(4). – P. e10092.; Shao Z., Bhattacharya K., Hsich E. et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo // Circ. Res. – 2006. – Vol. 98(1). – P. 111–118.; Shi S., Li Q.S., Li H. et al. Anti-apoptotic action of hydrogen sulfide is associated with early JNK inhibition // Cell Biol. Int. – 2009. – Vol. 33(10). – P. 1095–1101.; Song Z.F., Ji X.P., Li X.X. et al. Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation // Cell Mol. Med. – 2008. – Vol. 12(4). – P. 1220–1228.; Sun L., Isaak C.K., Zhou Y. et al. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion induced-apoptosis // Life Sci. – 2012. – Vol. 91(5–6). – P. 151–158.; Sun H.Y., Wang N.P., Halkos M. et al. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways // Apoptosis. – 2006. – Vol. 11(9). – P. 1583–1593.; Talmor D., Applebaum A., Rudich A. et al. Activation of mitogen-activated protein kinases in human heart during cardiopulmonary bypass // Circ. Res. – 2000. – Vol. 86(9). – P. 1004–1007.; Vassalli G., Milano G., Moccetti T. Role of Mitogen-Activated Protein Kinases in myocardial ischemia reperfusion injury during heart transplantation // J. Transplant. – 2012. – Vol. 2012. – P. 928954.; Waetzig V., Herdegen T. Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage // Trends Pharmacol. Sci. – 2005. – Vol. 26(9). – P. 455–461.; Walshe C.M., Laffey J.G., Kevin L. et al. Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK dependent mechanism // Intensive Care Med. Exp. – 2015. – Vol. 3(1). – P. 35.; Wang Z., Huang H., He W. et al. Regulator of G-protein signaling 5 protects cardiomyocytes against apoptosis during in vitro cardiac ischemia-reperfusion in mice by inhibiting both JNK and P38 signaling pathways [Electronic resource] // Biochem. Biophys. Res. Commun. – 2016. – Vol. 473(2). – P. 551–557.; Wang J., Yang L., Rezaie A.R. et al. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling // J. Thromb. Haemost. – 2011. – Vol. 9(7). – P. 1308–1317.; Wei J., Wang W., Chopra I. et al. C-Jun N-terminal kinase (JNK-1) confers protection against brief but not extended ischemia during acute myocardial infarction // J. Biol. Chem. – 2011. – Vol. 286(16). – P. 13995–14006.; Wei C., Zhao Y., Wang L. et al. H2S restores the cardioprotection from ischemic post-conditioning in isolated aged rat hearts // Cell Biol. Int. – 2015. – Vol. 39(10). – P. 1173–1176.; Wiltshire C., Gillespie D.A., May G.H. Sab (SH3BP5), a novel mitochondria-localized JNK interacting protein // Biochem. Soc. Trans. – 2004. – Vol. 32 (Pt. 6). – P. 1075–1077.; Wu J., Li J., Zhang N. et al. Stem cell-based therapies in ischemic-heart diseases: a focus on aspects of microcirculation and inflammation // Basic Res. Cardiol. – 2011. – Vol. 106(3). – P. 317–324.; Xie P., Guo S., Fan Y. et al. Atrogin-1/MAFbx enhances simulated ischemia/reperfusion induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK-activation // J. Biol. Chem. – 2009. – Vol. 284(9). – P. 5488–5496.; Xu J., Qin X., Cai X. et al. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury-following ischemia/reperfusion // Biochim. Biophys. Acta. – 2015. – Vol. 1852(2). – P. 262–270.; Xu T., Wu X., Chen Q. et al. The anti-apoptotic and cardioprotective effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway // PLoS One. – 2014. – Vol. 9(7). – P. e102292.; Xu H., Yao Y., Su Z. et al. Endogenous HMGB1 contributes to ischemia reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-alpha/JNK // Am. J. Physiol. Heart Circ. Physiol. – 2011. – Vol. 300(3). – P. H913–921.; Yang L.M., Xiao Y.L., Ou Yang J.H. Inhibition of magnesium lithospermate B on the c-Jun N-terminal kinase 3 mRNA-expression in cardiomyocytes encountered ischemia/reperfusion injury // Acta Pharmacol. Sin. – 2003. – Vol. 38(7). – P. 487–491.; Yin T., Sandhu G., Wolfgang C.D. et al. Tissue specific pattern of stress kinase activation in ischemic/reperfused heart and kidney // J. Biol. Chem. – 1997. – Vol. 272(32). – P. 19943–19950.; Yue T.L., Wang C., Gu J.L. et al. Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart // Circ. Res. – 2000. – Vol. 86(6). – P. 692–699.; Zaha V.G., Qi D., Su K.N. et al. AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia // J. Mol. Cell. Cardiol. – 2016. – Vol. 91. – P. 104–113.; Zhang J., Li X.X., Bian H.J. et al. Inhibition of the activity of Rho-kinase reduces cardiomyocyte apoptosis in heart ischemia/reperfusion via suppressing JNK-mediated AIF translocation // Clin. Chim. Acta. – 2009. – Vol. 401(1–2). – P. 76–80.; Zhang G.M., Wang Y., Li T.D. et al. Change of JNK MAPK and its influence on cardiocyte apoptosis in ischemic postconditioning // J. Zhejiang Univ. – 2009. – Vol. 38(6). – P. 611–619.; Zhang G.M., Wang Y., Li T.D. et al. Post conditioning with gradually increased reperfusion provides better cardioprotection in rats // World J. Emerg. Med. – 2014. – Vol. 5(2). – P. 128–134.; Zinkel S., Gross A., Yang E. BCL2 family in DNA damage and cell cycle control // Cell Death Differ. – 2006. – Vol. 13(8). – P. 1351–1359.; https://www.sibjcem.ru/jour/article/view/221