-
1Academic Journal
Πηγή: Клиническая онкогематология, Vol 17, Iss 2 (2024)
Θεματικοί όροι: триптаза, ген KIT, тучные клетки, мастоцитозы, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, тучноклеточный лейкоз, RC254-282, кладрибин, 3. Good health
Σύνδεσμος πρόσβασης: https://doaj.org/article/a8b38be1e2904fe5a63e061b53fc2241
-
2Academic Journal
Συγγραφείς: Natalya Mikryukova, Natalia Kalinina, Наталья Васильевна Микрюкова, Наталия Михайловна Калинина
Πηγή: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0
Θεματικοί όροι: Системный мастоцитоз, Синдром активации тучных клеток, Тучные клетки, Триптаза
Περιγραφή αρχείου: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/3197/2094; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3197/15000; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3197/15001; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3197/15002; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3197/15003; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3197/15054; Afrin L.B., Ackerley M.B., Bluestein L.S., Brewer J.H., Brook J.B., Buchanan A.D., Cuni J.R., Davey W.P., Dempsey T.T., Dorff S.R., Dubravec M.S., Guggenheim A.G., Hindman K.J., Hoffman B., Kaufman D.L., Kratzer S.J., Lee T.M., Marantz M.S., Maxwell A.J., McCann K.K., McKee D.L., Menk Otto L., Pace L.A., Perkins D.D., Radovsky L., Raleigh M.S., Rapaport S.A., Reinhold E.J., Renneker M.L., Robinson W.A., Roland A.M., Rosenbloom E.S., Rowe P.C., Ruhoy I.S., Saperstein D.S., Schlosser D.A., Schofield J.R., Settle J.E., Weinstock L.B., Wengenroth M., Westaway M., Xi S.C., Molderings G.J. Diagnosis of mast cell activation syndrome: A global “consensus-2.” Diagnosis. Walter de Gruyter GmbH., 2020, Vol. 8, no. 2, pp. 137-152. - doi.org/10.1515/dx-2020-0005; Akin C., Scott L.M., Kocabas C.N., Kushnir-Sukhov N., Brittain E., Noel P., Metcalfe D.D. Demonstration of an aberrant mast-cell population with clonal markers in a subset of patients with "idiopathic" anaphylaxis. Blood., 2007, Vol. 110, no. 7, pp. 2331-3. - doi:10.1182/blood-2006-06-028100; Butterfield J.H. Increased Excretion of Mast Cell Mediator Metabolites During Mast Cell Activation Syndrome. J Allergy Clin Immunol Pract., 2023 Vol. 11, no. 8, pp. 2542-2546. - doi:10.1016/j.jaip.2023.02.017; Buttgereit T., Gu S., Carneiro-Leão L., Gutsche A., Maurer M., Siebenhaar F. Idiopathic mast cell activation syndrome is more often suspected than diagnosed-A prospective real-life study. Allergy., 2022, Vol. 77, no. 9, pp. 2794-2802. - doi:10.1111/all.15304; Gülen T., Akin C., Bonadonna P., Siebenhaar F, Broesby-Olsen S., Brockow K., Niedoszytko M., Nedoszytko B., Oude Elberink H.N.G., Butterfield J.H., Sperr W.R., Alvarez-Twose I., Horny H.P., Sotlar K., Schwaab J., Jawhar M., Zanotti R., Nilsson G., Lyons J.J., Carter M.C., George T.I., Hermine O., Gotlib J., Orfao A., Triggiani M., Reiter A., Hartmann K., Castells M., Arock M., Schwartz L.B., Metcalfe D.D., Valent P. Selecting the Right Criteria and Proper Classification to Diagnose Mast Cell Activation Syndromes: A Critical Review. J Allergy Clin Immunol Pract., 2021, Vol. 9, no. 11, pp. 3918-3928. - doi:10.1016/j.jaip.2021.06.011; Gülen T., Akin C. Anaphylaxis and Mast Cell Disorders. Immunol Allergy Clin North Am., 2022, Vol. 42, no. 1, pp. 45-63. - doi:10.1016/j.iac.2021.09.007; Solomon B.D., Khatri P. Clustering of clinical symptoms using large language models reveals low diagnostic specificity of proposed alternatives to consensus mast cell activation syndrome criteria. J Allergy Clin Immunol., 2025, Vol. 155, no. 1, pp. 213-218. - doi:10.1016/j.jaci.2024.09.006; Sonneck K., Florian S., Müllauer L., Wimazal F., Födinger M., Sperr W.R., Valent P. Diagnostic and subdiagnostic accumulation of mast cells in the bone marrow of patients with anaphylaxis: Monoclonal mast cell activation syndrome. Int Arch Allergy Immunol., 2007, Vol. 142, no. 2, pp. 158-64. - doi:10.1159/000096442; Valent P., Akin C., Arock M. Reversible Elevation of Tryptase Over the Individual's Baseline: Why is It the Best Biomarker for Severe Systemic Mast Cell Activation and MCAS? Curr Allergy Asthma Rep., 2024, Vol. 24, no. 3, pp. 133-141. - doi:10.1007/s11882-024-01124-2; Valent P., Akin C., Bonadonna P., Hartmann K., Brockow K., Niedoszytko M., Nedoszytko B., Siebenhaar F., Sperr W.R., Oude Elberink J.N.G., Butterfield J.H., Alvarez-Twose I., Sotlar K., Reiter A., Kluin-Nelemans H.C., Hermine O., Gotlib J., Broesby-Olsen S., Orfao A., Horny H.P., Triggiani M., Arock M., Schwartz L.B., Metcalfe D.D. Proposed Diagnostic Algorithm for Patients with Suspected Mast Cell Activation Syndrome. J Allergy Clin Immunol Pract. 2019, Vol. 7, no. 4, pp. 1125-1133. - doi:10.1016/j.jaip.2019.01.006; Valent P., Akin C., Sperr W.R., Horny H.P., Arock M., Metcalfe D.D., Galli S.J. New Insights into the Pathogenesis of Mastocytosis: Emerging Concepts in Diagnosis and Therapy. Annu Rev Pathol., 2023, Vol. 24, no. 18, pp. 361-386. doi:10.1146/annurev-pathmechdis-031521-042618; Valent P., Hartmann K., Bonadonna P., Gülen T., Brockow K., Alvarez-Twose I., Hermine O., Niedoszytko M., Carter M.C., Hoermann G., Butterfield J.H., Lyons J.J., Sperr W.R., Greiner G., Sotlar K., Kluin-Nelemans H.C., Schwaab J., Lange M., George T.I., Siebenhaar F., Broesby-Olsen S., Jawhar M., Nedoszytko B., Castells M., Orfao A., Gotlib J., Reiter A., Horny H.P., Triggiani M., Arock M., Metcalfe D.D., Akin C. Global Classification of Mast Cell Activation Disorders: An ICD-10-CM-Adjusted Proposal of the ECNM-AIM Consortium. J Allergy Clin Immunol Pract., 2022, Vol. 10, no. 8, pp. 1941-1950. - doi:10.1016/j.jaip.2022.05.007; Weiler C.R., Austen K.F., Akin C., Barkoff M.S., Bernstein J.A., Bonadonna P., Butterfield J.H., Carter M., Fox C.C., Maitland A., Pongdee T., Mustafa S.S., Ravi A., Tobin M.C., Vliagoftis H., Schwartz L.B. AAAAI Mast Cell Disorders Committee Work Group Report: Mast cell activation syndrome (MCAS) diagnosis and management. J Allergy Clin Immunol., 2019, Vol. 144, no. 4, pp. 883- 896. - doi:10.1016/j.jaci.2019.08.023; Zaghmout T., Maclachlan L., Bedi N., Gülen T. Low Prevalence of Idiopathic Mast Cell Activation Syndrome Among 703 Patients With Suspected Mast Cell Disorders. J Allergy Clin Immunol Pract., 2024, Vol. 12, no. 3, pp. 753-761. - doi:10.1016/j.jaip.2023.11.041; https://www.mimmun.ru/mimmun/article/view/3197
Διαθεσιμότητα: https://www.mimmun.ru/mimmun/article/view/3197
-
3Academic Journal
Πηγή: Журнал медико-биологических исследований, Vol 12, Iss 1, Pp 32-39 (2024)
Θεματικοί όροι: tnfr1, тучные клетки, интрамуральный ганглий, кромогликат натрия, овальбумининдуцированная астма, фактор некроза опухоли-α, Sports medicine, RC1200-1245, Biology (General), QH301-705.5
Περιγραφή αρχείου: electronic resource
Relation: https://journals.narfu.ru/index.php/med/article/view/1440; https://doaj.org/toc/2542-1298; https://doaj.org/toc/2687-1491
Σύνδεσμος πρόσβασης: https://doaj.org/article/d8388e1b85fe483e8149150c587aacab
-
4Academic Journal
Συγγραφείς: I. F. Shlyk, M. V. Kharitonova, M. N. Morgunov, I. M. Blinov, E. D. Vasilyeva, D. Yu. Besedina, И. Ф. Шлык, М. В. Харитонова, М. Н. Моргунов, И. М. Блинов, Е. Д. Васильева, Д. Ю. Беседина
Συνεισφορές: The review article was carried out within the framework of the state assignment on the scientific topic “Immunological and biochemical predictors of coronary artery calcification, pathogenetic substantiation of the severity of its course and the creation of tools for predicting cardiovascular risk” 1023022000034-7-3.1.3, 3.2.4 dated 05/31/2024 approved by the Ministry healthcare of the Russian Federation., Обзорная статья выполнена в рамках государственного задания по научной теме «Иммунологические и биохимические предикторы кальциноза коронарных артерий, патогенетическое обоснование тяжести его течения и создание инструментов прогнозирования сердечно-сосудистого риска» 1023022000034-7-3.1.3, 3.2.4 от 31.05.2024, утвержденная Министерством здравоохранения РФ.
Πηγή: Medical Herald of the South of Russia; Том 15, № 4 (2024); 90-98 ; Медицинский вестник Юга России; Том 15, № 4 (2024); 90-98 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2024-15-4
Θεματικοί όροι: тучные клетки, coronary calcification, aortic valve calcification, macrophages, dendritic cells, mast cells, коронарный кальциноз, кальциноз аортального клапана, макрофаги, дендритные клетки
Περιγραφή αρχείου: application/pdf
Relation: https://www.medicalherald.ru/jour/article/view/2018/1068; Барбараш О.Л., Кашталап В.В., Шибанова И.А., Коков А.Н. Фундаментальные и прикладные аспекты кальцификации коронарных артерий. Российский кардиологический журнал. 2020;25(3S):4005. https://doi.org/10.15829/1560-4071-2020-4005; Zhang L, Yao J, Yao Y, Boström KI. Contributions of the Endothelium to Vascular Calcification. Front Cell Dev Biol. 2021;9:620882. https://doi.org/10.3389/fcell.2021.620882; Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med. 2022;9:895005. https://doi.org/10.3389/fcvm.2022.895005; Gambardella J, Wang X, Mone P, Khondkar W, Santulli G. Genetics of adrenergic signaling drives coronary artery calcification. Atherosclerosis. 2020;310:88-90. https://doi.org/10.1016/j.atherosclerosis.2020.07.025; Onnis C, Virmani R, Kawai K, Nardi V, Lerman A, et al. Coronary Artery Calcification: Current Concepts and Clinical Implications. Circulation. 2024;149(3):251-266. https://doi.org/10.1161/CIRCULATIONAHA.123.065657; Sorini Dini C, Nardi G, Ristalli F, Mattesini A, Hamiti B, Di Mario C. Contemporary Approach to Heavily Calcified Coronary Lesions. Interv Cardiol. 2019;14(3):154-163. https://doi.org/10.15420/icr.2019.19.R1; García-Rodríguez C, Parra-Izquierdo I, Castaños-Mollor I, López j, San Román JA, Sánchez Crespo M. Toll-Like Receptors, Inflammation, and Calcific Aortic Valve Disease. Front Physiol. 2018;9:201. https://doi.org/10.3389/fphys.2018.00201; den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett. 2014;162(2 Pt B):103-112. https://doi.org/10.1016/j.imlet.2014.10.011; Bakhshian Nik A, Hutcheson JD, Aikawa E. Extracellular Vesicles As Mediators of Cardiovascular Calcification. Front Cardiovasc Med. 2017;4:78. https://doi.org/10.3389/fcvm.2017.00078; Adamczak DM. The Role of Toll-Like Receptors and Vitamin D in Cardiovascular Diseases-A Review. Int J Mol Sci. 2017;18(11):2252. https://doi.org/10.3390/ijms18112252; Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, et al. Anti-inflammatory Action of Statins in Cardiovascular Disease: the Role of Inflammasome and Toll-Like Receptor Pathways. Clin Rev Allergy Immunol. 2021;60(2):175-199. https://doi.org/10.1007/s12016-020-08791-9; Tabas I, Lichtman AH. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity. 2017;47(4):621-634. https://doi.org/10.1016/j.immuni.2017.09.008; Yurdagul A Jr. Crosstalk Between Macrophages and Vascular Smooth Muscle Cells in Atherosclerotic Plaque Stability. Arterioscler Thromb Vasc Biol. 2022;42(4):372-380. https://doi.org/10.1161/ATVBAHA.121.316233; Li D, Fan C, Li X, Zhao L. The role of macrophage polarization in vascular calcification. Biochem Biophys Res Commun. 2024;710:149863. https://doi.org/10.1016/j.bbrc.2024.149863; Cao j, Zu X, Liu j. The roles of immune cells in atherosclerotic calcification. Vascular. 2022;30(5):902-913. https://doi.org/10.1177/17085381211032756; Jiao Y, Zhang T, Liu M, Zhou L, Qi M, et al. Exosomal PGE2 from M2 macrophages inhibits neutrophil recruitment and NET formation through lipid mediator class switching in sepsis. J Biomed Sci. 2023;30(1):62. https://doi.org/10.1186/s12929-023-00957-9; Shen L, Li H, Chen W, Su Y, Yu J, et al. Integrated application of transcriptome and metabolomics reveals potential therapeutic targets for the polarization of atherosclerotic macrophages. Biochim Biophys Acta Mol Basis Dis. 2022;1868(12):166550. https://doi.org/10.1016/j.bbadis.2022.166550; Villa-Bellosta R, Hamczyk MR, Andrés V. Alternatively activated macrophages exhibit an anticalcifying activity dependent on extracellular ATP/pyrophosphate metabolism. Am J Physiol Cell Physiol. 2016;310(10):C788-99. https://doi.org/10.1152/ajpcell.00370.2015; waring Oj, Skenteris NT, Biessen EAL, Donners MMPC. Two-faced janus: the dual role of macrophages in atherosclerotic calcification. Cardiovasc Res. 2022;118(13):2768-2777. https://doi.org/10.1093/cvr/cvab301; New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113(1):72-77. https://doi.org/10.1161/CIRCRESAHA.113.301036; jäger E, Murthy S, Schmidt C, Hahn M, Strobel S, et al. Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nat Commun. 2020;11(1):4243. https://doi.org/10.1038/s41467-020-17749-6; Miceli G, Basso MG, Pintus C, Pennacchio AR, Cocciola E, et al. Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. Int J Mol Sci. 2024;25(8):4351. https://doi.org/10.3390/ijms25084351; Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res. 2018;122(12):1722-1740. https://doi.org/10.1161/CIRCRESAHA.118.311362; Smith ER, Hanssen E, McMahon LP, Holt SG. Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One. 2013;8(4):e60904. https://doi.org/10.1371/journal.pone.0060904; Viegas CSB, Costa RM, Santos L, Videira PA, Silva Z, et al. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronicinflammatory diseases. PLoSOne.2017;12(5):e0177829. Erratum in: PLoS One. 2018;13(2):e0192875. https://doi.org/10.1371/journal.pone.0177829; Eshghjoo S, Kim DM, Jayaraman A, Sun Y, Alaniz RC. Macrophage Polarization in Atherosclerosis. Genes (Basel). 2022;13(5):756. https://doi.org/10.3390/genes13050756; Sakamoto A, Kawakami R, Mori M, Guo L, Paek KH, et al. CD163+ macrophages restrain vascular calcification, promoting the development of high-risk plaque. JCI Insight. 2023;8(5):e154922. https://doi.org/10.1172/jci.insight.154922; Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R. Coronary Artery Calcification and its Progression: what Does it Really Mean? JACC Cardiovasc Imaging. 2018;11(1):127-142. https://doi.org/10.1016/j.jcmg.2017.10.012; Neels JG, Gollentz C, Chinetti G. Macrophage death in atherosclerosis: potential role in calcification. Front Immunol. 2023;14:1215612. https://doi.org/10.3389/fimmu.2023.1215612; Zhang J, Ma CR, Hua YQ, Li L, Ni JY, et al. Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci. 2021;276:118957. https://doi.org/10.1016/j.lfs.2020.118957; Wang Z, Zhang L, Sun Z, Shao C, Li Y, et al. Mechanisms of Matrix Vesicles Mediating Calcification Transition in Diabetic Plaque. Heart Lung Circ. 2020;29(1):112-117. https://doi.org/10.1016/j.hlc.2019.04.022; He S, Wu C, xiao J, Li D, Sun Z, Li M. Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis. Scand J Immunol. 2018;87(4):e12648. https://doi.org/10.1111/sji.12648; Cao J, Chen C, Chen Q, Gao Y, Zhao Z, et al. Extracellular vesicle miR-32 derived from macrophage promotes arterial calcification in mice with type 2 diabetes via inhibiting VSMC autophagy. J Transl Med. 2022;20(1):307. https://doi.org/10.1186/s12967-022-03502-8; Sun Z, Li L, Zhang L, Yan J, Shao C, et al. Macrophage galectin-3 enhances intimal translocation of vascular calcifi-cation in diabetes mellitus. Am J Physiol Heart Circ Physiol. 2020;318(5):H1068-H1079. https://doi.org/10.1152/ajpheart.00690.2019; Shobeiri N, Bendeck MP. Interleukin-1β Is a Key Biomarker and Mediator of Inflammatory Vascular Calcification. Arterioscler Thromb Vasc Biol. 2017;37(2):179-180. https://doi.org/10.1161/ATVBAHA.116.308724; Zhang K, Zhang Y, Feng W, Chen R, Chen J, et al. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation. Arterioscler Thromb Vasc Biol. 2017;37(10):1933-1943. https://doi.org/10.1161/ATVBAHA.117.309161; Song X, Song Y, Ma Q, Fang K, Chang X. M1-Type Macrophages Secrete TNF-α to Stimulate Vascular Calcification by Upregulating CA1 and CA2 Expression in VSMCs. J Inflamm Res. 2023;16:3019-3032. https://doi.org/10.2147/jIR.S413358; Liang X, He W, Zhang H, Luo D, Zhang Z, et al. Inflammatory Cells Accelerated Carotid Artery Calcification via MMP9: Evidences From Single-Cell Analysis. Front Cardiovasc Med. 2021;8:766613. https://doi.org/10.3389/fcvm.2021.766613; Fu Y, Gao C, Liang Y, Wang M, Huang Y, et al. Shiſt of Macrophage Phenotype Due to Cartilage Oligomeric Matrix Protein Deficiency Drives Atherosclerotic Calcification. Circ Res. 2016;119(2):261-276. https://doi.org/10.1161/CIRCRESAHA.115.308021; Kurozumi A, Nakano K, Yamagata K, Okada Y, Nakayamada S, Tanaka Y. IL-6 and sIL-6R induces STAT3-dependent differentiation of human VSMCs into osteoblast-like cells through jMjD2B-mediated histone demethylation of RUNx2. Bone. 2019;124:53-61. https://doi.org/10.1016/j.bone.2019.04.006; Montanaro M, Scimeca M, Anemona L, Servadei F, Giacobbi E, et al. The Paradox Effect of Calcification in Carotid Atherosclerosis: Microcalcification is Correlated with Plaque Instability. Int J Mol Sci. 2021;22(1):395. https://doi.org/10.3390/ijms22010395; Šteiner I, Stejskal V, Žáček P. Mast cells in calcific aortic stenosis. Pathol Res Pract. 2018;214(1):163-168. https://doi.org/10.1016/j.prp.2017.07.016; Matilla L, Martín-Núñez E, Garaikoetxea M, Navarro A, Vico JA, et al. Characterization of the sex-specific pattern of angiogenesis and lymphangiogenesis in aortic stenosis. Front Cardiovasc Med. 2022;9:971802. https://doi.org/10.3389/fcvm.2022.971802; Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, et al. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne). 2023;10:1213320. https://doi.org/10.3389/fmed.2023.1213320; Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590-600. https://doi.org/10.1093/cvr/cvy010; Jiang W, Zhang Z, Li Y, Chen C, Yang H, et al. The Cell Origin and Role of Osteoclastogenesis and Osteoblastogenesis in Vascular Calcification. Front Cardiovasc Med. 2021;8:639740. https://doi.org/10.3389/fcvm.2021.639740; Passos LSA, Lupieri A, Becker-Greene D, Aikawa E. Innate and adaptive immunity in cardiovascular calcification. Atherosclerosis. 2020;306:59-67. https://doi.org/10.1016/j.atherosclerosis.2020.02.016; Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol. 2024;15:1395596. https://doi.org/10.3389/fimmu.2024.1395596; Šteiner I, Timbilla S, Stejskal V. Calcific aortic valve steno-sis - comparison of inflammatory lesions in the leſt, right, and non-coronary cusp. Pathol Res Pract. 2021;227:153636. https://doi.org/10.1016/j.prp.2021.153636; Skenteris NT, Hemme E, Delfos L, Karadimou G, Karlöf E, et al. Mast cells participate in smooth muscle cell reprogramming and atherosclerotic plaque calcification. Vascul Pharmacol. 2023;150:107167. https://doi.org/10.1016/j.vph.2023.107167; Grootaert MOj, Bennett MR. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res. 2021;117(11):2326-2339. https://doi.org/10.1093/cvr/cvab046; Yu X, Tan J, Diamond SL. Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions. J Thromb Haemost. 2018;16(2):316-329. https://doi.org/10.1111/jth.13907; Bouchareb R, Boulanger MC, Tastet L, Mkannez G, Nsaibia Mj, et al. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. Eur Heart J. 2019;40(17):1362-1373. https://doi.org/10.1093/eurheartj/ehy696; Varshney R, Murphy B, woolington S, Ghafoory S, Chen S, et al. Inactivation of platelet-derived TGF-β1 attenuates aortic stenosis progression in a robust murine model. Blood Adv. 2019;3(5):777-788. https://doi.org/10.1182/bloodadvances.2018025817; Qi H, Yang S, Zhang L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front Immunol. 2017;8:928. https://doi.org/10.3389/fimmu.2017.00928; Kopytek M, Kolasa-Trela R, Ząbczyk M, Undas A, Natorska J. NETosis is associated with the severity of aortic stenosis: Links with inflammation. Int J Cardiol. 2019;286:121-126. https://doi.org/10.1016/j.ijcard.2019.03.047; Nour-Eldine W, Joffre J, Zibara K, Esposito B, Giraud A, et al. Genetic Depletion or Hyperresponsiveness of Natural Killer Cells Do Not Affect Atherosclerosis Development. Circ Res. 2018;122(1):47-57. https://doi.org/10.1161/CIRCRESAHA.117.311743; Poli A, Michel T, Patil N, Zimmer j. Revisiting the Functional Impact of NK Cells. Trends Immunol. 2018;39(6):460-472. https://doi.org/10.1016/j.it.2018.01.011; Ji B, Liu XB. Coronary artery calcification: concepts and clinical applications. Ann Med Surg (Lond). 2024;86(5):2848-2855. https://doi.org/10.1097/MS9.0000000000002016; https://www.medicalherald.ru/jour/article/view/2018
-
5Academic Journal
Συγγραφείς: К. S. Titov, D. N. Grekov, Е. I. Zakurdaev, Z. V. Lorie, О. V. Paklina, Е. N. Gordienko, К. С. Титов, Д. Н. Греков, Е. И. Закурдаев, З. В. Лорие, О. В. Паклина, Е. Н. Гордиенко
Πηγή: Malignant tumours; Том 14, № 1 (2024); 67-73 ; Злокачественные опухоли; Том 14, № 1 (2024); 67-73 ; 2587-6813 ; 2224-5057
Θεματικοί όροι: тучные клетки, tumor microenvironment, macrophages, neutrophils, mast cells, опухолевое микроокружение, макрофаги, нейтрофилы
Περιγραφή αρχείου: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1293/928; Ferlay J., Shin H.R., Bray F., et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127(12):2893–917. https://doi.org/10.1002/ijc.25516; Клинические рекомендации. Рак молочной железы, 2021. Доступно по: https://cr.minzdrav.gov.ru/recomend/379_4 (дата размещения: 28.01.2021; Малыгин С.Е., Малыгин Е.Н., Петерсон С.Б. и соавт. Местные и региональные рецидивы после мастэктомии с одномоментной реконструкцией при раке молочной железы. Вестник РГМУ 2013;4:24–27.; Титов К.С., Оганесян А.П., Ротин Д.Л. и соавт. Опухолевые стволовые клетки при раке молочной железы. Роль в патогенезе и подходы к терапии. Злокачественные опухоли 2016;2:22–27. https://doi.org/10.18027/2224-5057-2016-2-22-27; Medrek C., Pontén F., Jirström K., Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 2012;12:306. https://doi.org/10.1186/1471-2407-12-306; Рябчиков Д.А., Чулкова С.В., Шамилов Ф.А. и соавт. Субпопуляции интратуморальных эффекторных клеток при раке молочной железы (обзор литературы и представление собственных данных). Креативная хирургия и онкология 2021;11(4):328–336. https://doi.org/10.24060/2076-3093-2021-11-4-328-336; Denkert C., von Minckwitz G., Darb-Esfahani S., et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 2018;19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X; Литвяков Н.В., Цыганов М.М., Ибрагимова М.К. и соавт. Экспрессия макрофаг-ассоциированных генов в опухоли молочной железы: связь с опухолевой прогрессией. Сибирский онкологический журнал 2017;16(6):47–56. https://doi.org/10.21294/18144861-2017-16-6-47-56; Голубцова А.К., Кантышева Е.Б., Новоселова А.В., Попугайло М.В. Нейтрофилы как факторы, которые способны стимулировать и тормозить развитие рака. Роль нейтрофилов в метастазировании, прогнозе и возможные точки для терапевтических вмешательств. Научное обозрение. Медицинские науки 2022;4:10–15. https://doi.org/10.17513/srms.1264; Лазарев А.Ф., Бобров И.П., Черданцева Т.М. и соавт. Тучные клетки и опухолевый рост. Сибирский онкологический журнал 2011;4(46):59–63.; Pe K.C. S., Saetung R., Yodsurang V., et al. Triple-negative breast cancer influences a mixed M1/M2 macrophage phenotype associated with tumor aggressiveness. PLoS ONE 2022;17(8):e0273044. https://doi.org/10.1371/journal.pone.0273044; Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014; Qiu S.Q., Waaijera S.J. H., Zwager M.C., et al. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat Rev 2018;70:178–189. https://doi.org/10.1016/j.ctrv.2018.08.010; Campbell M.J., Tonlaar N.Y., Garwood E.R., et al. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 2011;128(3):703–711. https://doi.org/10.1007/s10549-010-1154-y; Shiao S.L., Ruffell B., DeNardo D.G., et al. TH2-polarized CD4(+) T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol Res 2015;3(5):518–525. https://doi.org/10.1158/2326-6066.CIR-14-0232; Laoui D., Movahedi K., Van Overmeire E., et al. Tumor-associated macrophages in breast cancer: Distinct subsets, distinct functions. Int J Dev Biol 2011;55(7–9):861–7. https://doi.org/10.1387/ijdb.113371dl; Miyasato Y., Shiota T., Ohnishi K., et al. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci 2017;108(8):1693–1700. https://doi.org/10.1111/cas.13287; Mohammed Z.M. A., Going J.J., Edwards J., et al. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 2012;107(5):864–73. https://doi.org/10.1038/bjc.2012.347; Qian B.Z., Zhang H., Li J., et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med 2015;212(9):1433–48. https://doi.org/10.1084/jem.20141555; Muthuswamy R., Okada N.J., Jenkins F.J., et al. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav Immun 2017;62:78–86. https://doi.org/10.1016/j.bbi.2017.02.008; Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009;9(4):239–52. https://doi.org/10.1038/nrc2618; Sangaletti S., Di Carlo E., Gariboldi S., et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 2008;68(21):9050–9. https://doi.org/10.1158/0008-5472.CAN-08-1327; Chen J., Yao Y., Gong C., et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011;19(4):541–555. https://doi.org/10.1016/j.ccr.2011.02.006; Roh-Johnson M., Bravo-Cordero J.J., Patsialou A., et al. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 2014;33(33):4203–12. https://doi.org/10.1038/onc.2013.377; Stockmann C., Doedens A., Weidemann A., et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 2008;456(7223):814–8. https://doi.org/10.1038/nature07445; Junankar S., Shay G., Jurczyluk J., et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov 2015;5(1):35–42. https://doi.org/10.1158/21598290.CD-14-0621; Luo Y., Zhou H., Krueger J., et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 2006;116(8):2132–2141. https://doi.org/10.1172/JCI27648; Galmbacher K., Heisig M., Hotz C., et al. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression. PLoS One 2010;5(3):e9572. https://doi.org/10.1371/journal.pone.0009572; Willingham S.B., Volkmer J.P., Gentles A.J., et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 2012;109(17):6662–7. https://doi.org/10.1073/pnas.1121623109; Xu M., Liu M., Du X., et al. Intratumoral delivery of IL-21 overcomes anti-Her2/Neu resistance through shifting tumor-associated macrophages from M2 to M1 phenotype. J Immunol 2015;194(10):4997–5006. https://doi.org/10.4049/jimmunol.1402603; Wu L., Saxena S., Goel P., et al. Breast cancer cell-neutrophil interactions enhance neutrophil survival and pro-tumorigenic activities. Cancers (Basel) 2020;12(10):2884. https://doi.org/10.3390/cancers12102884; Li Y., Cao X., Liu Y., et al. Neutrophil extracellular traps formation and aggregation Orchestrate induction and resolution of sterile crystal-mediated inflammation. Front Immunol 2018;9:1559. https://doi.org/10.3389/fimmu.2018.01559; Albrengues J., Shields M.A., Ng D., et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227; Queen M.M., Ryan R.E., Holzer R.G., et al. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 2005;65(19):8896–904. https://doi.org/10.1158/0008-5472.CAN-05-1734; Soto-Perez-de-Celis E., Chavarri-Guerra Y., Leon-Rodriguez E., Gamboa-Dominguez A. Tumor-associated neutrophils in breast cancer subtypes. Asian Pac J Cancer Prev 2017;18(10):2689–2693. https://doi.org/10.22034/APJCP.2017.18.10.2689; Ocana A., Nieto-Jiménez C., Pandiella A., Templeton A.J. Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 2017;16(1):137. https://doi.org/10.1186/s12943-017-0707-7; He G., Zhang H., Zhou J., et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/ PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res 2015;34:141. https://doi.org/10.1186/s13046-015-0256-0; Mishalian I., Bayuh R., Eruslanov E., et al. Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17 a new mechanism of impaired antitumor immunity. Int J Cancer 2014;135(5):1178–86. https://doi.org/10.1002/ijc.28770; Huang S., Mills L., Mian B., et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 2002;161(1):125–34. https://doi.org/10.1016/S0002-9440(10)64164-8; Singh S., Sadanandam A., Nannuru K.C., et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res 2009;15(7):2380–6. https://doi.org/10.1158/1078-0432.CCR-08-2387; Marshall J.S., Portales-Cervantes L., Leong E. Mast cell responses to viruses and pathogen products. Int J Mol Sci 2019;20(17):4241. https://doi.org/10.3390/ijms20174241; Hanes M.R., Giacomantonio C.A., Marshall J.S. Mast cells and skin and breast cancers: A complicated and microenvironment-dependent role. Cells 2021;10(5):986. https://doi.org/10.3390/cells10050986; McHale C., Mohammed Z., Gomez G. Human skin-derived mast cells spontaneously secrete several angiogenesis-related factors. Front Immunol 2019;10:1445. https://doi.org/10.3389/fimmu.2019.01445; Wulaningsih W., Holmberg L., Garmo H., et al. Investigating the association between allergen-specific immunoglobulin E, cancer risk and survival. Oncoimmunology 2016;5(6):e1154250. https://doi.org/10.1080/2162402X.2016.1154250; Das Roy L., Curry J.M., Sahraei M., et al. Arthritis augments breast cancer metastasis: Role of mast cells and SCF/cKit signaling. Breast Cancer Res 2013;15(2):R32. https://doi.org/10.1186/bcr3412; Samoszuk M., Corwin M.A. Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Cancer 2003;107(1):159–63. https://doi.org/10.1002/ijc.11340; Majorini M.T., Cancila V., Rigoni A., et al. Infiltrating mast cell-mediated stimulation of estrogen receptor activity in breast cancer cells promotes the luminal phenotype. Cancer Res 2020;80(11):2311–2324. https://doi.org/10.1158/00085472.CAN-19-3596; Carpenco E., Ceauşu R.A., Cimpean A.M., et al. Mast cells as an indicator and prognostic marker in molecular subtypes of breast cancer. In Vivo 2019;33(3):743–748. https://doi.org/10.21873/invivo.11534; Cimpean A.M., Tamma R., Ruggieri S., et al. Mast cells in breast cancer angiogenesis. Crit Rev Oncol Hematol 2017;115:23–26. https://doi.org/10.1016/j.critrevonc.2017.04.009; Ueshima C., Kataoka T.R., Hirata M., et al. The killer cell Ig-like receptor 2DL4 expression in human mast cells and its potential role in breast cancer invasion. Cancer Immunol Res 2015;3(8):871–80. https://doi.org/10.1158/2326-6066. CIR-14-0199; Kuonen F., Laurent J., Secondini C., et al. Inhibition of the Kit ligand/c-Kit axis attenuates metastasis in a mouse model mimicking local breast cancer relapse after radiotherapy. Clin Cancer Res 2012;18(16):4365–74. https://doi.org/10.1158/1078-0432.CCR-11-3028; https://www.malignanttumors.org/jour/article/view/1293
-
6Academic Journal
Πηγή: University Therapeutic Journal, Vol 5, Iss 3 (2023)
Θεματικοί όροι: макрофаги, IgG, эозинофилы, тучные клетки, Medicine, аллергия, IgE
Σύνδεσμος πρόσβασης: https://doaj.org/article/152de6c97c31448aa9b09a69dc78701b
-
7Academic Journal
Συγγραφείς: Litus, I.O.
Πηγή: Health of Society; Том 9, № 1 (2020); 6-12
Здоровье общества-Zdorov'a suspil'stva; Том 9, № 1 (2020); 6-12
Здоров'я суспільства-Zdorov'a suspil'stva; Том 9, № 1 (2020); 6-12Θεματικοί όροι: фиброэпителиальные полипы кожи, тучные клетки, СОХ2, метаболический синдром, сахарный диабет 2 типа, фіброепітеліальні поліпи шкіри, опасисті клітини, метаболічний синдром, цукровий діабет 2 типу, skin fibroepithelial polyps, mast cells, COX2, metabolic syndrome, type 2 diabetes mellitus
Περιγραφή αρχείου: application/pdf
-
8Academic Journal
Συγγραφείς: E.A. Nikitin, Karina Maksimovna Chernavina, A.S. Orlova
Πηγή: Клиническая онкогематология, Vol 14, Iss 3 (2021)
Θεματικοί όροι: мутация KITD816V, таргетное лечение, иматиниб, ингибиторы тирозинкиназ, тучные клетки, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, мастоцитоз, RC254-282, 3. Good health
Σύνδεσμος πρόσβασης: https://doaj.org/article/fb4e39ea085e47ce8623d20fc1918e19
-
9Academic Journal
Συγγραφείς: N. V. Medvedeva, VG Potapenko, I. E. Belousova, T.G. Kulibaba, A.S. Nizamutdinova, I.S. Zyuzgin, E.A. Ukrainchenko, E.E. Leenman, A.M. Maksimova, D. V. Zaslavsky, L.A. Mazurok, Anna Klimovich, E.V. Lisukova, V.V. Baikov, Elena Belyakova, Elena V. Morozova, K.A. Skoryukova, M.V. Barabanshchikova, Yu.A. Krivolapov
Πηγή: Клиническая онкогематология, Vol 14, Iss 2 (2021)
Θεματικοί όροι: триптаза, С-KIT, индолентный мастоцитоз, тучные клетки, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, мастоцитоз, агрессивный мастоцитоз, RC254-282, 3. Good health
Σύνδεσμος πρόσβασης: https://doaj.org/article/2f6a9ab179664f4a97d6f5ccf63a241e
-
10
-
11Academic Journal
Θεματικοί όροι: тимус, тучные клетки, селен, надпочечники
-
12Academic Journal
Συγγραφείς: Akhmedzyanov, R. V., Kuzmina, S. S., Zavyalov, S. N., Ахмедзянов, Р. В., Кузьмина, С. С., Завьялов, С. Н.
Πηγή: Сборник статей
Θεματικοί όροι: TYPE 1 DIABETES MELLITUS, ALCOHOL INTOXICATION, MAST CELLS, PANCREAS, САХАРНЫЙ ДИАБЕТ 1 ТИПА, АЛКОГОЛЬНАЯ ИНТОКСИКАЦИЯ, ТУЧНЫЕ КЛЕТКИ, ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; http://elib.usma.ru/handle/usma/13981
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/13981
-
13Academic Journal
Συγγραφείς: O. S. Artashyan, Yu. S. Khramtsova, О. С. Арташян, Ю. С. Храмцова
Συνεισφορές: The work was carried out partly within the frame- work of the IIF UB RAS themes No. 122020900136-4
Πηγή: Medical Immunology (Russia); Том 25, № 3 (2023); 539-544 ; Медицинская иммунология; Том 25, № 3 (2023); 539-544 ; 2313-741X ; 1563-0625
Θεματικοί όροι: надпочечники, mast cells, stress, immune cells, adaptation, adrenal glands, тучные клетки, стресс, иммунные клетки, адаптация
Περιγραφή αρχείου: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2774/1676; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11546; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11547; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11548; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11549; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11550; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11551; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11552; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11553; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11554; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11555; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/11556; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/12121; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/12122; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/12137; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/12138; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/12139; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2774/12142; Ayyadurai S., Gibson A.J., D’Costa S., Overman E.L., Sommerville L.J., Poopal A.C., Mackey E., Li Y., Moeser A.J. Frontline Science: Corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. J. Leukoc. Biol., 2017, Vol. 102, no. 6, pp. 1299-1312.; da Silva E.Z., Jamur M.C., Oliver C. Mast cell function: a new vision of an old cell. J. Histochem. Cytochem., 2014, Vol. 62, no. 10, pp. 698-738.; Dhabhar F.S., Malarkey W.B., Neri E., McEwen B.S. Stress-induced redistribution of immune cells-from barracks to boulevards to battlefields: a tale of three hormones-Curt Richter Award winner. Psychoneuroendocrinology, 2012, Vol. 37, no. 9, pp. 1345-1368.; Durkin H.G., Waksman B.H. Thymus and tolerance. Is regulation the major function of the thymus? Immunol. Rev., 2001, Vol. 182, no. 1, pp. 33-57.; Komi D.E.A., Wöhrl S., Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin. Rev. Allergy Immunol., 2020, Vol. 58, no. 3, pp. 342-365.; Mukai K., Tsai M., Saito H., Galli S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rew., 2018, Vol. 282, no. 1, pp. 121-150.; Naumova E.M., Sergeeva V.E. Histochemical study of mast cells from the thymus of mice receiving ACTH1-24. Bulletin of Experimental Biology and Medicine, 2004, Vol. 138, pp. 93-96.; Polevshchikov A.V., Guselnikova V.V. Thymic mast cells: From morphology to physiology. Integrative Physiology, 2021, Vol. 2, no. 1, pp. 15-20.; Ribatti D., Crivellato E. The role of mast cell in tissue morphogenesis. Thymus, duodenum, and mammary gland as examples. Exp. Cell Res., 2016, Vol. 341, no. 1, pp. 105-109.; Soumelis V., Liu Y.J. Human thymic stromal lymphopoietin: a novel epithelial cell-derived cytokine and a potential key player in the induction of allergic inflammation. Springer Semin. Immunopathol., 2004, Vol. 25, no. 3, pp. 325-333.; Varricchi G., de Paulis A., Marone G., Galli S.J. Future needs in mast cell biology. Int. J. Mol. Sci., 2019, Vol. 20, no. 18, 4397. doi:10.3390/ijms20184397.; Yushkov B.G., Chereshnev V.A., Klimin V.G., Artashyan O.S. Mast cells: physiology and pathophysiology. Moscow: Meditsina, 2011. 240 p.; https://www.mimmun.ru/mimmun/article/view/2774
-
14Academic Journal
Συγγραφείς: O. V. Kalyuzhin, O. V. Proskurina, S. A. Sukhanova, N. V. Novikova, N. A. Kolganova, О. B. Калюжин, О. В. Проскурина, С. А. Суханова, Н. В. Новикова, Н. А. Колганова
Πηγή: Bulletin of Siberian Medicine; Том 22, № 1 (2023); 23-32 ; Бюллетень сибирской медицины; Том 22, № 1 (2023); 23-32 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-1
Θεματικοί όροι: дегрануляция, Staphylococcus aureus, thermophilic strain, asthma model, allergic inflammation, mast cells, basophils, degranulation, термофильный штамм, модель астмы, аллергическое воспаление, тучные клетки, базофилы
Περιγραφή αρχείου: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5128/3345; Chedid L., Audibert F. Chemically defined bacterial products with immunopotentiating activity. J Infect Dis. 1977;136(Suppl.):S246–S251. DOI:10.1093/infdis/136.supplement.s246.; Le Garrec Y. Immunomodifiers of bacterial origin. Comp. Immunol. Microbiol. Infect. Dis. 1986;9(2–3):137–141. DOI:10.1016/0147-9571(86)90005-6.; Пронин А.В., Санин А.В., Гинцбург А.Л. Бактериальные иммуномодуляторы и их место в иммуномодулирующей терапии. В кн.: Иммунотерапия. Руководство для врачей; под ред. Р.М. Хаитова, Р.И. Атауллаханова, А.Е. Шульженко. М.: ГЭОТАР-Медиа, 2000:191–212.; Терехова Е.П., Терехов Д.В., Себекина О.В. Применение препарата Рузам® в лечении и профилактике аллергических заболеваний. Практическая аллергология. 2021;1:54– 64. DOI:10.46393/2712-9667_2021_1_54-64.; Чучалин А.Г., Ковалева В., Колганова Н.А. Рузам – новый подход в лечении и профилактике аллергических заболеваний (экспериментальные и клинические данные). Русский медицинский журнал. 2003;11(22):1248–1252.; Ненашева Н.М., Терехова Е.П., Терехов Д.В. Эффективность ингаляционной иммунотерапии Рузамом у больных атопической бронхиальной астмой: влияние на частоту респираторных инфекций и обострений. Пульмонология. 2014;1:52–58. DOI:10.18093/0869-0189-2014-0-1-52-58.; Hutson P.A., Church M.K., Clay T.P., Miller P., Holgate S.T. Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration. Am. Rev. Respir. Dis. 1988;137(3):548–557. DOI:10.1164/ajrccm/137.3.548.; Ковалева В.Л. Методические указания по изучению фармакологических веществ, предназначенных для терапии бронхиальной астмы и других обструктивных заболеваний дыхательных путей. В кн.: Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ: 2-е изд.; под ред. Р.У. Хабриева. М.: Медицина, 2005:483–500.; Nagai H., Tsuji F., Goto S., Koda A. Pharmacological modulation of antigen-induced airway hyperresponsiveness by thromboxane A2 inhibitors in guinea pigs. Biol. Pharm. Bull. 1993;16(11):1099–1103. DOI:10.1248/bpb.16.1099.; Линднер Д.П., Поберий И.А., Родкин М.Я., Ефимов В.С. Морфометрический анализ популяции тучных клеток. Архив патологии. 1980;6:60–64.; Иммунологические методы; пер. с нем. А.П. Тарасова; под ред. Г. Фримеля. М.: Медицина, 1987:472.; Носейкина Е.М., Хвостова А.Е., Ларина Т.И., Митрохин Н.М. Базофилы крови морской свинки как тестовая система для оценки противоаллергической активности химических соединений in vitro. Кубанский научный медицинский вестник. 2011;6(129):96–100.; Rothschild A.M. Mechanisms of histamine release by compound 48-80. Br. J. Pharmacol. 1970;38(1):253–262. DOI:10.1111/j.1476-5381.1970.tb10354.x.; Andersson P. Antigen-induced bronchial anaphylaxis in actively sensitized guinea-pigs. Allergy. 1980;35(1):65–71. DOI:10.1111/j.1398-9995.1980.tb01718.x.; Seder R.A., Paul W.E., Dvorak A.M., Sharkis S.J., KageySobotka A., Niv Y. et al. Mouse splenic and bone marrow cell populations that express high-affinity Fc epsilon receptors and produce interleukin 4 are highly enriched in basophils. Proc. Natl. Acad. Sci. U S A. 1991;88(7):2835–2839. DOI:10.1073/pnas.88.7.2835.; Ikeda R.K., Miller M., Nayar J., Walker L., Cho J.Y., McElwain K. et al. Accumulation of peribronchial mast cells in a mouse model of ovalbumin allergen induced chronic airway inflammation: modulation by immunostimulatory DNA sequences. J. Immunol. 2003;171(9):4860–4867. DOI:10.4049/jimmunol.171.9.4860.; Schramm C.M., Puddington L., Wu C., Guernsey L., Gharaee-Kermani M., Phan S.H. et al. Chronic inhaled ovalbumin exposure induces antigen-dependent but not antigen-specific inhalational tolerance in a murine model of allergic airway disease. Am. J. Pathol. 2004;164(1):295–304. DOI:10.1016/S0002-9440(10)63119-7.; Brightling C.E., Bradding P., Symon F.A., Holgate S.T., Wardlaw A.J., Pavord I.D. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 2002;346(22):1699–1705. DOI:10.1056/NEJMoa012705.; Krystel-Whittemore M., Dileepan K.N., Wood J.G. Mast cell: A multi-functional master cell. Front. Immunol. 2016;6:620. DOI:10.3389/fimmu.2015.00620.; Дзодзикова М.Э. Особенности дегрануляции и апоптоз тучных клеток. Вестник Российского университета дружбы народов. Серия: Медицина. 2005;1(29):102–107.; Raveendran V.V., Smith D.D., Tan X., Sweeney M.E., Reed G.A., Flynn C.A. et al. Chronic ingestion of H1-antihistamines increase progression of atherosclerosis in apolipoprotein E-/mice. PLoS One. 2014;9(7):e102165. DOI:10.1371/journal.pone.0102165.; Bery A.I., Shepherd H.M., Li W., Krupnick A.S., Gelman A.E., Kreisel D. Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol. Life Sci. 2022;79(7):359. DOI:10.1007/s00018-022-04388-x.; Halle S., Dujardin H.C., Bakocevic N., Fleige H., Danzer H., Willenzon S. et al. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J. Exp. Med. 2009;206(12):2593– 2601. DOI:10.1084/jem.20091472.; Bradding P., Walls A.F., Holgate S.T. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol. 2006;117(6):1277–1284. DOI:10.1016/j.jaci.2006.02.039.; Williams C.M., Galli S.J. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 2000;105(5):847–859. DOI:10.1067/mai.2000.106485.; Cairns J.A., Walls A.F. Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J. Clin. Invest. 1997;99(6):1313–1321. DOI:10.1172/JCI119290.; Gruber B.L., Kew R.R., Jelaska A., Marchese M.J., Garlick J., Ren S., Schwartz L.B. et al. Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J. Immunol. 1997;158(5):2310–2317.; Garbuzenko E., Nagler A., Pickholtz D., Gillery P., Reich R., Maquart F.X. et al. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. Clin. Exp. Allergy. 2002;32(2):237–246. DOI:10.1046/j.1365-2222.2002.01293.x.; Nabe T., Matsuya K., Akamizu K., Fujita M., Nakagawa T., Shioe M. et al. Roles of basophils and mast cells infiltrating the lung by multiple antigen challenges in asthmatic responses of mice. Br. J. Pharmacol. 2013;169(2):462–476. DOI:10.1111/bph.12154.; Miyake K., Ito J., Karasuyama H. Role of basophils in a broad spectrum of disorders. Front. Immunol. 2022;13:902494. DOI:10.3389/fimmu.2022.902494.; Chandler C.E., Ernst R.K. Bacterial lipids: powerful modifiers of the innate immune response. F1000Res. 2017;6:F1000 Faculty Rev-1334. DOI:10.12688/f1000research.11388.1.; Krishnaswamy J.K., Jirmo A.C., Baru A.M., Ebensen T., Guzmán C.A., Sparwasser T. et al. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia. Am. J. Respir. Cell. Mol. Biol. 2012;47(6):852–863. DOI:10.1165/rcmb.2011-0414OC.; Velasco G., Campo M., Manrique O.J., Bellou A., He H., Arestides R.S. et al. Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am. J. Respir. Cell Mol. Biol. 2005;32(3):218–224. DOI:10.1165/rcmb.2003-0435OC.; Ma S.Q., Wei H.L., Zhang X. TLR2 regulates allergic airway inflammation through NF-κB and MAPK signaling pathways in asthmatic mice. Eur. Rev. Med. Pharmacol. Sci. 2018;22(10):3138–3146.DOI:10.26355/eurrev_201805_15073.; Kasakura K., Takahashi K., Aizawa T., Hosono A., Kaminogawa S. A TLR2 ligand suppresses allergic inflammatory reactions by acting directly on mast cells. Int. Arch. Allergy Immunol. 2009;150(4):359–369. DOI:10.1159/000226237.; Yu Y., Yip K.H., Tam I.Y., Sam S.W., Ng C.W., Zhang W. et al. Differential effects of the Toll-like receptor 2 agonists, PGN and Pam3CSK4 on anti-IgE induced human mast cell activation. PLoS One. 2014;9(11):e112989. DOI:10.1371/journal.pone.0112989.; Zhang Y.Y., Yu Y.Y., Zhang Y.R., Zhang W., Yu B. The modulatory effect of TLR2 on LL-37-induced human mast cells activation. Biochem. Biophys. Res. Commun. 2016;470(2):368– 374. DOI:10.1016/j.bbrc.2016.01.037.; https://bulletin.ssmu.ru/jour/article/view/5128
-
15Academic Journal
Πηγή: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :127-133
Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, mastocytosis, мутации KIT, PI3K-AKT, c-Kit receptor, тучные клетки, SCF, KIT mutations, MAPK, 3. Good health, JAK-STAT, 03 medical and health sciences, мастоцитоз, рецептор c-Kit, KIT D816V, STAT5
-
16Academic Journal
Συγγραφείς: N. G. Kulchenko, Н. Г. Кульченко
Πηγή: Research and Practical Medicine Journal; Том 9, № 1 (2022); 117-124 ; Research'n Practical Medicine Journal; Том 9, № 1 (2022); 117-124 ; 2410-1893 ; 10.17709/2410-1893-2022-9-1
Θεματικοί όροι: гемато-тестикулярный барьер, mast cells, pathogenesis, seminal plasma, ejaculate, inflammation, hemato-testicular barrier, тучные клетки, патогенез, семенная плазма, эякулят, воспаление
Περιγραφή αρχείου: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/779/476; Тарасова Т. В., Саушев И. В. Генетические причины азооспермии. Вестник Биомедицина и социология. 2019;4(2):16–20. https://doi.org/10.26787/nydha-2618-8783-2019-4-2-16-20; Тактаров В. Г., Ройтберг Г. Е., Алексеева М-Ф. Ф., Барсков И. В. Особенности клинического наблюдения варикоцеле в сочетании с патоспермией. Врач скорой помощи. 2020;(12):72–79. https://doi.org/10.33920/med-02-2012-05; Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018 Jun;15(6):369–384. https://doi.org/10.1038/s41585-018-0003-3; Гамидов С. И., Шатылко Т. В., Попова А. Ю., Гасанов Н. Г., Гамидов Р. С. Оксидативный стресс сперматозоидов: клиническое значение и коррекция. Медицинский совет. 2021;(3):19–27. https://doi.org/10.21518/2079-701X-2021-3-19-27; Сапожкова Ж. Ю., Милованова Г. А., Пацап О. И. Лабораторная диагностика мужского бесплодия. Маркеры. Часть I. Лабораторная и клиническая медицина. Фармация. 2021;1(1):57–68. https://doi.org/10.14489/lcmp.2021.01.pp.057-068; Саркисян Д. В., Виноградов И. В. Современный взгляд на лечение кист придатка яичка как фактора обструктивной азооспермии. Вестник урологии. 2019;7(3):47–54. https://doi.org/10.21886/2308-6424-2019-7-3-47-54; Костин А. А., Каприн А. Д., Семин А. В., Круглов Д. П., Даниелян А. А. Бесплодие как аспект качества жизни онкологических больных. Онкоурология. 2009;5(4):63–67. https://doi.org/10.17650/1726-9776-2009-5-4-63-67; Schuppe H-C, Pilatz A, Hossain H, Meinhardt A, Bergmann M, Haidl G, et al. Orchitis and male infertility. Urologe A. 2010 May;49(5):629–635. https://doi.org/10.1007/s00120-010-2256-1; Кадыров З. А., Москвичев Д. Д., Фаниев М. В. Показатели ингибина В в сыворотке крови у инфертильных больных. Андрология и генитальная хирургия. 2016;17(1):23–27. https://doi.org/10.17650/2070-9781-2016-17-1-23-27; Kulchenko N, Pashina N. Association of leukocyte activity and dna fragmentation in men with non-obstructive azoospermia. Georgian Med News. 2020 Feb;(299):26–29.; Atyakshin D, Samoilova V, Buchwalow I, Boecker W, Tiemann M. Characterization of mast cell populations using different methods for their identification. Histochem Cell Biol. 2017 Jun;147(6):683–694. https://doi.org/10.1007/s00418-017-1547-7; Frungieri MB, Weidinger S, Meineke V, Köhn FM, Mayerhofer A. Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARgamma: Possible relevance to human fibrotic disorders. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15072– 15077. https://doi.org/10.1073/pnas.232422999; Atiakshin D, Buchwalow I, Tiemann M. Mast cells and collagen fibrillogenesis. Histochem Cell Biol. 2020 Jul;154(1):21–40. https://doi.org/10.1007/s00418-020-01875-9; Shea-Donohue T, Stiltz J, Zhao A, Notari L. Mast cells. Curr Gastroenterol Rep. 2010 Oct;12(5):349–357. https://doi.org/10.1007/s11894-010-0132-1; Atiakshin D, Buchwalow I, Samoilova V, Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol. 2018 May;149(5):461–477. https://doi.org/10.1007/s00418-018-1659-8; Atiakshin D, Buchwalow I, Tiemann M. Mast cell chymase: morphofunctional characteristics. Histochem Cell Biol. 2019 Oct;152(4):253–269. https://doi.org/10.1007/s00418-019-01803-6; Wang X, Lin L, Chai X, Wu Y, Li Y, Liu X. Hypoxic mast cells accelerate the proliferation, collagen accumulation and phenotypic alteration of human lung fibroblasts. Int J Mol Med. 2020 Jan;45(1):175–185. https://doi.org/10.3892/ijmm.2019.4400; Соболева М. Ю., Никитюк Д. Б., Алексеева Н .Т., Клочкова С. В., Атякшин Д. А., Гзрасимова О. А. и др. Гистотопография тучных клеток кожи при моделировании ожога в условиях применения различных методов регионарного воздействия. Гены и Клетки. 2021;16(1):69–74. https://doi.org/10.23868/202104011; Wilgus TA, Ud-Din S, Bayat A. A Review of the Evidence for and against a Role for Mast Cells in Cutaneous Scarring and Fibrosis. Int J Mol Sci. 2020 Dec 18;21(24):E9673. https://doi.org/10.3390/ijms21249673; Ud-Din S, Wilgus TA, Bayat A. Mast Cells in Skin Scarring: A Review of Animal and Human Research. Front Immunol. 2020;11:552205. https://doi.org/10.3389/fimmu.2020.552205; Соболева М. Ю., Алексеева Н. Т., Клочкова С. В. Клеточно-матриксные взаимодействия при спонтанном заживлении ожоговой раны (ультраструктурные и цитологические особенности). Морфология. 2020;157(2-3):197–198.; Dong J, Chen L, Zhang Y, Jayaswal N, Mezghani I, Zhang W, et al. Mast Cells in Diabetes and Diabetic Wound Healing. Adv Ther. 2020 Nov;37(11):4519–4537. https://doi.org/10.1007/s12325-020-01499-4; Masini M, Suleiman M, Novelli M, Marselli L, Marchetti P, De Tata V. Mast Cells and the Pancreas in Human Type 1 and Type 2 Diabetes. Cells. 2021 Jul 23;10(8):1875. https://doi.org/10.3390/cells10081875; Bot I, Shi G-P, Kovanen PT. Mast cells as effectors in atherosclerosis. Arterioscler Thromb Vasc Biol. 2015 Feb;35(2):265–271. https://doi.org/10.1161/ATVBAHA.114.303570; Hermans M, Lennep JR van, van Daele P, Bot I. Mast Cells in Cardiovascular Disease: From Bench to Bedside. Int J Mol Sci. 2019 Jul 10;20(14):3395. https://doi.org/10.3390/ijms20143395; Wezel A, Lagraauw HM, van der Velden D, de Jager SCA, Quax PHA, Kuiper J, et al. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression. Atherosclerosis. 2015 Aug;241(2):289–296. https://doi.org/10.1016/j.atherosclerosis.2015.05.028; Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells. 2019 May 10;8(5):437. https://doi.org/10.3390/cells8050437; Haidl G, Duan Y-G, Chen S-J, Kohn F-M, Schuppe H-C, Allam J-P. The role of mast cells in male infertility. Expert Rev Clin Immunol. 2011 Sep;7(5):627–634. https://doi.org/10.1586/eci.11.57; Yamanaka K, Fujisawa M, Tanaka H, Okada H, Arakawa S, Kamidono S. Significance of human testicular mast cells and their subtypes in male infertility. Hum Reprod. 2000 Jul;15(7):1543–1547. https://doi.org/10.1093/humrep/15.7.1543; Кульченко Н. Г. Нарушение сперматогенеза. Морфологические аспекты. Вестник Российского университета дружбы народов. Серия: Медицина. 2018;22(3):265–271. https://doi.org/10.22363/2313-0245-2018-22-3-265-271; Apa DD, Cayan S, Polat A, Akbay E. Mast cells and fibrosis on testicular biopsies in male infertility. Arch Androl. 2002 Oct;48(5):337– 344. https://doi.org/10.1080/01485010290099183; Adam M, Schwarzer JU, Köhn FM, Strauss L, Poutanen M, Mayerhofer A. Mast cell tryptase stimulates production of decorin by human testicular peritubular cells: possible role of decorin in male infertility by interfering with growth factor signaling. Hum Reprod. 2011 Oct;26(10):2613–2625. https://doi.org/10.1093/humrep/der245; Welter H, Köhn FM, Mayerhofer A. Mast cells in human testicular biopsies from patients with mixed atrophy: increased numbers, heterogeneity, and expression of cyclooxygenase 2 and prostaglandin D2 synthase. Fertil Steril. 2011 Aug;96(2):309–313. https://doi.org/10.1016/j.fertnstert.2011.05.035; Abdel-Hamid AAM, Atef H, Zalata KR, Abdel-Latif A. Correlation between testicular mast cell count and spermatogenic epithelium in non-obstructive azoospermia. Int J Exp Pathol. 2018 Feb;99(1):22–28. https://doi.org/10.1111/iep.12261; Roaiah MMF, Khatab H, Mostafa T. Mast cells in testicular biopsies of azoospermic men. Andrologia. 2007 Oct;39(5):185–189. https://doi.org/10.1111/j.1439-0272.2007.00793.x; Windschuttl S, Nettersheim D, Schlatt S, Huber A, Welter H, Schwarzer JU, et al. Are testicular mast cells involved in the regulation of germ cells in man? Andrology. 2014 Jul;2(4):615–622. https://doi.org/10.1111/j.2047-2927.2014.00227.x; Elieh Ali Komi D, Shafaghat F, Haidl G. Significance of mast cells in spermatogenesis, implantation, pregnancy, and abortion: Cross talk and molecular mechanisms. Am J Reprod Immunol. 2020 May;83(5):e13228. https://doi.org/10.1111/aji.13228; Allam J-P, Langer M, Fathy A, Oltermann I, Bieber T, Novak N, et al. Mast cells in the seminal plasma of infertile men as detected by flow cytometry. Andrologia. 2009 Feb;41(1):1–6. https://doi.org/10.1111/j.1439-0272.2008.00879.x; Cincik M, Sezen SC. The mast cells in semen: their effects on sperm motility. Arch Androl. 2003 Aug;49(4):307–311. https://doi.org/10.1080/01485013090204995; El-Karaksy A, Mostafa T, Shaeer OK, Bahgat DR, Samir N. Seminal mast cells in infertile asthenozoospermic males. Andrologia. 2007 Dec;39(6):244–247. https://doi.org/10.1111/j.1439-0272.2007.00795.x; https://www.rpmj.ru/rpmj/article/view/779
-
17Academic Journal
Πηγή: Nauchno-prakticheskii zhurnal «Patogenez». :42-50
Θεματικοί όροι: hypokinesia, hyperkinesia, индекс пролиферативной активности Ki-67, тучные клетки, mast cells, гипокинезия, гиперкинезия, параневральные соединительнотканные структуры, paraneural connective tissue structures, 3. Good health, proliferative activity index Ki-67
Σύνδεσμος πρόσβασης: http://pathogenesis.pro/index.php/pathogenesis/article/download/157/149
-
18Academic Journal
Συγγραφείς: V. G. Potapenko, V. V. Baykov, E. G. Boychenko, D. V. Zaslavsky, O. L. Krasnogorskaya, Yu. A. Krivolapov, E. V. Lisukova, S. Ya. Seminiv, K. A. Skoryukova, A. A. Sydikov, T. G. Kulibaba, В. Г. Потапенко, В. В. Байков, Э. Г. Бойченко, Д. В. Заславский, О. Л. Красногорская, Ю. А. Криволапов, Е. В. Лисукова, С. Я. Семинив, К. А. Скорюкова, А. А. Сыдиков, Т. Г. Кулибаба
Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 8, № 2 (2021); 13-25 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 8, № 2 (2021); 13-25 ; 2413-5496 ; 2311-1267
Θεματικοί όροι: симптом Унны—Дарье, tryptase, antihistamine drug, mast cells, Unna—Darie symptom, триптаза, антигистаминные средства, тучные клетки
Περιγραφή αρχείου: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/722/661; Branford W.A. Edward Nettleship (1845-1913) and the description of urticaria pigmentosa. Int J Dermatol 1994;33(3):214-6. doi:10.1111/j.1365-4362.1994.tb04957.x.; Brockow K. Epidemiology, prognosis, and risk factors in mastocytosis. Immunol Allergy Clin North Am 2014;34(2):283-95. doi:10.1016/j.iac.2014.01.003.; Azana J.M., Torrelo A., Mediero I.G., Zambrano A. Urticaria pigmentosa: a review of 67 pediatric cases. Pediatr Dermatol 1994;11(2):102-6. doi:10.1111/j.1525-1470.1994.tb00560.x.; Потапенко В.Г., Скорюкова К.А. Мастоцитоз у детей и взрослых. Результаты анализа российской группы пациентов. Клиническая патофизиология 2017;3:54-60.; Schwartz L.B. Clinical utility of tryptase levels in systemic mastocytosis and associated hematologic disorders. Leuk Res 2001;25(7):553-62. doi:10.1016/s0145-2126(01)00020-0.; Sperr W.R., Jordan J.H., Fiegl M., Escribano L., Bellas C., Dirnhofer S., Semper H., Simonitsch-Klupp I., Horny H.P., Valent P. Serum tryptase levels in patients with mastocytosis: correlation with mast cell burden and implication for defining the category of disease. Int Arch Allergy Immunol 2002;128(2):136-41. doi:10.1159/000059404.; Heide R., Beishuizen A., De Groot H., Den Hollander J.C., Van Doormaal J.J., De Monchy J.G., Pasmans S.G., Van Gysel D., Oranje A.P.; Dutch National Mastocytosis Work Group. Mastocytosis in children: a protocol for management. Pediatr Dermatol 2008;25(4):493-500. doi:10.1111/j.1525-1470.2008.00738.x.; Carter M.C., Metcalfe D.D. Paediatric mastocytosis. Arch Dis Child 2002;86(5):315-9. doi:10.1136/adc.86.5.315.; Vaughan S.T., Jones G.N. Systemic mastocytosis presenting as profound cardiovascular collapse during anaesthesia. Anaesthesia 1998;53(8):804-7. doi:10.1046/j.1365-2044.1998.00536.x.; Горланов И.А., Леина Л.М., Милявская И.Р., Заславский Д.В. Болезни кожи новорожденных и грудных детей: краткое руководство для врачей. СПб: Фолиант, 2016. С. 170-174.; Giesen M.J., Keizer E., van de Pol J., Knoben J., Wensing M., Giesen P. The impact of demand management strategies on parents’ decisionmaking for out-of-hours primary care: findings from a survey in The Netherlands. BMJ Open 2017;7(5): e014605. doi:10.1136/bmjopen-2016-014605.; Потапенко В.Г., Скорюкова К.А., Лисукова Е.В., Бойченко Э.Г., Кулибаба Т. Г. Мастоцитоз у детей. Клиническая и лабораторная характеристика группы 111 пациентов. Педиатрия. Журнал им. Г.Н. Сперанского 2018;97(4):135-40. doi:10.24110/0031-403X-2018-97-4-135-140.; Hartmann K., Escribano L., Grattan C., Brockow K., Carter M.C., Alvarez-Twose I., Matito A., Broesby-Olsen S., Siebenhaar F., Lange M., Niedoszytko M., Castells M., Oude Elberink J.N.G., Bonadonna P., Zanotti R., Hornick J.L., Torrelo A., Grabbe J., Rabenhorst A., Nedoszytko B., Butterfield J.H., Gotlib J., Reiter A., Radia D., Hermine O., Sotlar K., George T.I., Kristensen T.K., Kluin-Nelemans H.C., Yavuz S., Hagglund H., Sperr W.R., Schwartz L.B., Triggiani M., Maurer M., Nilsson G., Horny H.P., Arock M., Orfao A., Metcalfe D.D., Akin C., Valent P. Cutaneous manifestations in patients with mastocytosis: Consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma & Immunology; and the European Academy of Allergology and Clinical Immunology. J Allergy Clin Immunol 2016;137(1):35-45. doi:10.1016/j.jaci.2015.08.034.; Horny H.P., Akin C., Arber D.A., Peterson L.C., Tefferi A., Metcalfe D.D., Bennett J.M., Bain B.J., Escribano L., Valent P. Mastocytosis. In: Swerdlow S., Campo E., Harris N. (eds.). WHO classification of tumours of haematopoietic and lymphoid tissues, 4th revise. Lyon, France: IARC Press, 2017.; Sebelefsky C., Voitl J., Karner D., Klein F., Voitl P., Bock A. Internet use of parents before attending a general pediatric outpatient clinic: does it change their information level and assessment of acute diseases? BMC Pediatr 2016;16:129. doi:10.1186/s12887-016-0677-8.; Meni C., Bruneau J., Georgin-Lavialle S., Le Sache de Peufeilhoux L., Damaj G., Hadj-Rabia S., Fraitag S., Dubreuil P., Hermine O., Bodemer C. Paediatric mastocytosis: a systematic review of 1747 cases. Br J Dermatol 2015;172(3):642-51. doi:10.1111/bjd.13567.; Akoglu G., Erkin G., Cakir B., Boztepe G., Sahin S., Karaduman A., Atakan N., Akan T., Kolemen F. Cutaneous mastocytosis: demographic aspects and clinical features of 55 patients. J Eur Acad Dermatol Venereol 2006;20(8):969-73. doi:10.1111/j.1468-3083.2006.01696.x.; Kiszewski A.E., Duran-Mckinster C., Orozco-Covarrubias L., Gutierrez-Castrellon P., Ruiz-Maldonado R. Cutaneous mastocytosis in children: a clinical analysis of 71 cases. J Eur Acad Dermatol Venereol 2004;18(3):285-90. doi:10.1111/j.1468-3083.2004.00830.x.; Schena D., Galvan A., Tessari G., Girolomoni G. Clinical features and course of cutaneous mastocytosis in 133 children. Br J Dermatol 2016;174(2):411-3. doi:10.1111/bjd.14004.; Caplan R.M. The natural course of urticaria pigmentosa. Analysis and follow-up of 112 cases. Arch Dermatol 1963;87:146-57. doi:10.1001/archderm.1963.01590140008002.; Ben-Amitai D., Metzker A., Cohen H.A. Pediatric cutaneous mastocytosis: a review of 180 patients. Isr Med Assoc J 2005;7(5):320-2. PMID: 15909466.; Valent P., Akin C., Escribano L., Fodinger M., Hartmann K., Brockow K., Castells M., Sperr W.R., Kluin-Nelemans H.C., Hamdy N.A., Lortholary O., Robyn J., van Doormaal J., Sotlar K., Hauswirth A.W., Arock M., Hermine O., Hellmann A., Triggiani M., Niedoszytko M., Schwartz L.B., Orfao A., Horny H.P., Metcalfe D.D. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Invest 2007;37(6):435-53. doi:10.1111/j.1365-2362.2007.01807.x.; Hannaford R., Rogers M. Presentation of cutaneous mastocytosis in 173 children. Australas J Dermatol 2001;42(1):15-21. doi:10.1046/j.1440-0960.2001.00466.x.; Matito A., Morgado J.M., Sanchez-Lopez P., Alvarez-Twose I., Sanchez-Munoz L., Orfao A., Escribano L. Management of Anesthesia in Adult and Pediatric Mastocytosis: A Study of the Spanish Network on Mastocytosis (REMA) Based on 726 Anesthetic Procedures. Int Arch Allergy Immunol 2015;167(1):47-56. doi:10.1159/000436969.; Мастоцитоз у взрослых и детей. Рекомендации для пациентов и их близких. [Электронный ресурс]: http://spbsverdlovka.ru/patsientam/biblioteka-patsienta/703-mastotsitoz-u-detej-i-vzroslykh-rekomendatsii-dlya-patsientov-i-ikh-blizkikh.html.; О мастоцитозе из первых рук. Видеозапись мероприятия [Электронный ресурс]: http://spbsverdlovka.ru/patsientam/biblioteka-patsienta/704-o-mastotsitoze-iz-pervykh-ruk-videotranslyatsiya.html.; Roupe G. Urticaria pigmentosa and sunlight. J Am Acad Dermatol 1987;16(2 Pt 1):387-8. doi:10.1016/s0190-9622(87)80134-2.; https://journal.nodgo.org/jour/article/view/722
-
19Academic Journal
Συγγραφείς: Sholan R.F.
Συνεισφορές: Автор выражает благодарность сотрудникам отделения почечных болезней и трансплантологии Республиканского лечебно-диагностического центра и центральной научно-исследовательской лаборатории Азербайджанского медицинского университета.
Πηγή: Russian Journal of Infection and Immunity; Vol 11, No 6 (2021); 1101-1107 ; Инфекция и иммунитет; Vol 11, No 6 (2021); 1101-1107 ; 2313-7398 ; 2220-7619
Θεματικοί όροι: interstitial cystitis, bladder pain syndrome, Hunner's ulcer, inflammation, cytokines, mast cells, plasma cells, интерстициальный цистит, синдром болезненного мочевого пузыря, язва Гуннера, интерстициальный неязвенный цистит, воспаление, цитокины, тучные клетки, плазмоциты
Περιγραφή αρχείου: application/pdf
Relation: https://iimmun.ru/iimm/article/view/1644/1376; https://iimmun.ru/iimm/article/downloadSuppFile/1644/6135; https://iimmun.ru/iimm/article/downloadSuppFile/1644/6136; https://iimmun.ru/iimm/article/downloadSuppFile/1644/6137; https://iimmun.ru/iimm/article/downloadSuppFile/1644/6138; https://iimmun.ru/iimm/article/downloadSuppFile/1644/6139; https://iimmun.ru/iimm/article/downloadSuppFile/1644/7333; https://iimmun.ru/iimm/article/view/1644
-
20Academic Journal
Συγγραφείς: Gimaldinova N.E., Lyubovtseva L.A., Lyubovtseva E.V.
Πηγή: Russian Journal of Infection and Immunity; Vol 11, No 6 (2021); 1067-1074 ; Инфекция и иммунитет; Vol 11, No 6 (2021); 1067-1074 ; 2313-7398 ; 2220-7619
Θεματικοί όροι: granular luminescent cells, catecholamines, serotonin, fat cells, autonomic nervous system, tuberculosis, APUD system, гранулярные люминесцирующие клетки, катехоламины, серотонин, тучные клетки, вегетативная нервная система, туберкулез, APUD-система
Περιγραφή αρχείου: application/pdf
Relation: https://iimmun.ru/iimm/article/view/1632/1374; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6120; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6121; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6122; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6123; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6124; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6125; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6126; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6127; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6128; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6129; https://iimmun.ru/iimm/article/downloadSuppFile/1632/6157; https://iimmun.ru/iimm/article/downloadSuppFile/1632/7303; https://iimmun.ru/iimm/article/view/1632