Εμφανίζονται 1 - 9 Αποτελέσματα από 9 για την αναζήτηση '"ТРИБОКОРРОЗИЯ"', χρόνος αναζήτησης: 0,49δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The research was supported by the Russian Science Foundation, grant No. 20-79-10104-П, Исследование выполнено за счет гранта Российского научного фонда № 20-79-10104-П.

    Πηγή: Izvestiya. Non-Ferrous Metallurgy; № 3 (2024); 87-96 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 3 (2024); 87-96 ; 2412-8783 ; 0021-3438

    Περιγραφή αρχείου: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1635/755; https://cvmet.misis.ru/jour/article/view/1635/756; Lu Z., Mao Y., Ren S., Pu J., Fu Z., Fan X., Gao S., Fan J. A novel design of VAlTiCrCu/WC alternate multilayer structure to enhance the mechanical and tribo-corrosion properties of the high-entropy alloy coating. Materials Characterization. 2021;176:111115. https://doi.org/10.1016/J.MATCHAR.2021.111115; Kuruvila R., Kumaran S.T., Khan M.A., Uthayakumar M. A brief review on the erosion-corrosion behavior of engineering materials. Corrosion Reviews. 2018;36:435—447. https://doi.org/10.1515/CORRREV-2018-0022/HTML; Feng Z., Huang J., Guo H., Zhang X., Li Y., Fang B., Li Y., Song G.L., Liu J. A magnetic “Band-Aid” incorporated with Fe3O4 NPs modified epoxy binder for in-situ repair of organic coating under seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023;676:132317. https://doi.org/10.1016/J.COLSURFA.2023.132317; Liu Z.X., Li Y., Xie X.H., Qin J., Wang Y. The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater. Ceramics International. 2021;47:25655—25663. https://doi.org/10.1016/J.CERAMINT.2021.05.291; Usta O., Korkut E. Prediction of cavitation development and cavitation erosion on hydrofoils and propellers by Detached Eddy Simulation. Ocean Engineering. 2019;191:106512. https://doi.org/10.1016/J.OCEANENG.2019.106512; Shao T., Ge F., Dong Y., Li K., Li P., Sun D., Huang F. Microstructural effect on the tribo-corrosion behaviors of magnetron sputtered CrSiN coatings. Wear. 2018; (416-417):44—53. https://doi.org/10.1016/J.WEAR.2018.10.001; Niu D., Zhang X., Sui X., Shi Z., Lu X., Wang C., Wang Y., Hao J., Tailoring the tribo-corrosion response of (CrNbTiAlV)CxNy coatings by controlling carbon content. Tribology International. 2023;179:108179. https://doi.org/10.1016/J.TRIBOINT.2022.108179; Ma Y., Li Y., Wang F. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment. Corrosion Science. 2010; 52: 1796—1800. https://doi.org/10.1016/j.corsci.2010.01.022; Wang D., Luo H., Zhao S., Tan J., Liang X., Yang J., Zhou S. Seawater-triggered self-renewable amphiphilic coatings with low water swelling and excellent biofilm prevention properties. Progress in Organic Coatings. 2013;175:107351. https://doi.org/10.1016/J.PORGCOAT.2022.107351; Zhang X., Yu Y., Li T., Wang L., Qiao Z., Liu Z., Liu W. Effect of the distribution of Cu on the tribo-corrosion mechanisms of CoCrFeNiCu0.3 high-entropy alloys. Tribology International. 2024;193:109401. https://doi.org/10.1016/J.TRIBOINT.2024.109401; Wu P., Gan K., Yan D., Fu Z., Li Z. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corrosion Science. 2021;183:109341. https://doi.org/10.1016/J.CORSCI.2021.109341; Kuptsov K.A., Antonyuk M.N., Sheveyko A.N., Bondarev A. V., Ignatov S.G., Slukin P. V., Dwivedi P., Fraile A., Polcar T., Shtansky D. V. High-entropy Fe—Cr— Ni—Co—(Cu) coatings produced by vacuum electrospark deposition for marine and coastal applications. Surface and Coatings Technology. 2023;453:129136. https://doi.org/10.1016/J.SURFCOAT.2022.129136; Liu Z., Cui T., Chen Y., Dong Z. Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion. Bioelectrochemistry. 2023;152:108412. https://doi.org/10.1016/j.bioelechem.2023.108412; Zeng Y., Yan W., Shi X., Yan M., Shan Y., Yang K. Enhanced bio-corrosion resistance by Cu alloying in a micro-alloyed pipeline steel. Acta Metall Sin Engl Lett. 2022;35(10):1731—1743. https://doi.org/10.1007/s40195-022-01392-9; Shi Y., Yang B., Liaw P. Corrosion-resistant high-entropy alloys: A review. Metals. 2017;7(2):43. https://doi.org/10.3390/met7020043; Zhang C., Lu X., Zhou H., Wang Y., Sui X., Shi Z.Q., Hao J. Construction of a compact nanocrystal structure for (CrNbTiAlV)Nx high-entropy nitride films to improve the tribo-corrosion performance. Surface and Coatings Technology. 2022;429:127921. https://doi.org/10.1016/J.SURFCOAT.2021.127921; Shon Y., Joshi S.S., Katakam S., Shanker Rajamure R., Dahotre N.B. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior. Materials Letters. 2015;142:122—125. https://doi.org/10.1016/J.MATLET.2014.11.161; Jin G., Cai Z., Guan Y., Cui X., Liu Z., Li Y., Dong M., Zhang D. High temperature wear performance of lasercladded FeNiCoAlCu high-entropy alloy coating. Applied Surface Science. 2018;445:113—122. https://doi.org/10.1016/J.APSUSC.2018.03.135; Li Q.H., Yue T.M., Guo Z.N., Lin X. Microstructure and corrosion properties of alcocrfeni high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2013;44: 1767—1778. https://doi.org/10.1007/S11661-012-1535-4/FIGURES/15; An Z., Jia H., Wu Y., Rack P.D., Patchen A.D., Liu Y., Ren Y., Li N., Liaw P.K. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Materials Research Letters. 2015;3:203—209. https://doi.org/10.1080/21663831.2015.1048904; Шевейко А.Н., Купцов К.А., Кирюханцев-Корнеев Ф.В., Левашов А.E., Штанский Д.В. Гибридная технология осаждения твердых износостойких покрытий, сочетающая процессы электроискрового легирования, катодно-дугового испарения и магнетронного напыления. Известия вузов. Порошковая металлургия и функциональные покрытия. 2018;(4):92—103. https://doi.org/10.17073/1997-308X-2018-4-92-103; Sheveyko A.N., Kuptsov K.A., Antonyuk M.N., Bazlov A.I., Shtansky D.V. Electro-spark deposition of amorphous Fe-based coatings in vacuum and in argon controlled by surface wettability. Materials Letters. 2022;318:132195. https://doi.org/10.1016/J.MATLET.2022.132195; https://cvmet.misis.ru/jour/article/view/1635

  2. 2
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Усов А. В. Возможности повышения эксплуатационных характеристик рабочих поверхностей цилиндров технологическими методами / А. В. Усов, М. В. Куницын // Високі технології в машинобудуванні = High technologies in machine engineering : зб. наук. пр. – Харків : НТУ "ХПІ", 2018. – Вип. 1. – С. 168-176.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/38398

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9