Εμφανίζονται 1 - 20 Αποτελέσματα από 165 για την αναζήτηση '"ТРАНСГЕННЫЕ РАСТЕНИЯ"', χρόνος αναζήτησης: 0,60δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The work was carried out with financial support from the budget theme of the Federal Center of Agriculture Research of the South-East Region (Saratov, Russia) FNWF-2023-0006 and the state task of the Ministry of Science and Higher Education of the Russian Federation for the Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”, theme No. 121031700141-7. HPLC analysis of the amino acid composition of flour proteins was carried out using the equipment of the Center for Collective Use “Symbiosis” of the Institute of Biochemistry and Physiology of Plants and Microoganisms of RAS (Saratov, Russia). qPCR analysis of the copy number of the genetic construct was carried out at the Research and Education Center for Molecular Genetic and Cellular Technologies of the V.I. Razumovsky Saratov State Medical University.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 1 (2024); 63-73 ; Вавиловский журнал генетики и селекции; Том 28, № 1 (2024); 63-73 ; 2500-3259 ; 10.18699/vjgb-24-01

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4056/1806; Aboubacar A., Axtell J.D., Huang C.P., Hamaker B.R. A rapid protein digestibility assay for identifying highly digestible sorghum lines. Cereal Chem. 2001;78(2):160-165. DOI 10.1094/CCHEM.2001.78.2.160; Bharathi J.K., Anandan R., Benjamin L.K., Muneer S., Prakash M.A.S. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. Plant Physiol. Biochem. 2023;194:600-618. DOI 10.1016/j.plaphy.2022.11.035; Borisenko N., Elkonin L., Kenzhegulov O. Inheritance of the genetic construct for RNA-silencing of the γ-kafirin gene (gKAF1) in the progeny of transgenic sorghum plants. BIO Web Conf. 2022;43: 03015. DOI 10.1051/bioconf/20224303015; Casu R.E., Selivanova A., Perroux J.M. High-throughput assessment of transgene copy number in sugarcane using real-time quantitative PCR. Plant Cell Rep. 2012;31(1):167-177. DOI 10.1007/s00299-011-1150-7; Chiang H.H., Hwang I., Goodman H.M. Isolation of the Arabidopsis GA4 locus. Plant Cell. 1995;7(2):195-201. DOI 10.1105/tpc.7.2.195; da Silva L.S. Transgenic sorghum: Effects of altered kafirin synthesis on kafirin polymerisation, protein quality, protein body structure and endosperm texture. Thesis. Pretoria: University of Pretoria South Africa, 2012; da Silva L.S., Taylor J., Taylor J.R.N. Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion. J. Agric. Food Chem. 2011a;59(17):9265-9270. DOI 10.1021/jf201878p; da Silva L.S., Jung R., Zhao Z., Glassman K., Grootboom A.W., Mehlo L., O’Kennedy M.M., Taylor J., Taylor J.R.N. Effect of suppressing the synthesis of different kafirin subclasses on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines. J. Cereal Sci. 2011b;54(1):160-167. DOI 10.1016/j.jcs.2011.04.009; Deineko E.V., Zagorskaya A.A., Shumny V.K. T-DNA-induced mutations in transgenic plants. Russ. J. Genet. 2007;43(1):1-11. DOI 10.1134/S1022795407010012; de Mesa-Stonestreet N.J., Alavi S., Bean S.R. Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J. Food Sci. 2010;75(5):90-104. DOI 10.1111/j.1750-3841.2010.01623.x; Duressa D., Weerasoriya D., Bean S.R., Tilley M., Tesso T. Genetic basis of protein digestibility in grain sorghum. Crop Sci. 2018;58(6): 2183-2199. DOI 10.2135/cropsci2018.01.0038; Elkonin L.A., Italianskaya J.V., Fadeeva I.Yu., Bychkova V.V., Kozhemyakin V.V. In vitro protein digestibility in grain sorghum: effect of genotype and interaction with starch digestibility. Euphytica. 2013; 193:327-337. DOI 10.1007/s10681-013-0920-4; Elkonin L.A., Domanina I.V., Ital’yanskaya Yu.V. Genetic engineering as a tool for modification of seed storage proteins and improvement of nutritional value of cereal grain. Agricult. Biol. 2016a;51(1): 17-30. DOI 10.15389/agrobiology.2016.1.17eng; Elkonin L.A., Italianskaya J.V., Domanina I.V., Selivanov N.Y., Rakitin A.L., Ravin N.V. Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation. Russ. J. Plant Physiol. 2016b;63(5):678-689. DOI 10.1134/S1021443716050046; Elkonin L.A., Panin V.M., Kenzhegulov O.A., Sarsenova S.Kh. RNAi-mutants of Sorghum bicolor (L.) Moench with improved digestibility of seed storage proteins. In: Jimenez-Lopez J.C. (Ed.). Grain and Seed Proteins Functionality. London: Intech Open Ltd., 2021;1-17. DOI 10.5772/intechopen.96204; Feldmann K.A., Marks M.D., Christianson M.L., Quatrano R.S. A Dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science. 1989;243(4896):1351-1354. DOI 10.1126/science.243.4896.1351; Grootboom A.W., Mkhonza N.L., Mbambo Z., O’Kennedy M.M., da Silva L.S., Taylor J., Taylor J.R.N., Chikwamba R., Mehlo L. Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum. Plant Cell Rep. 2014; 33(3):521-537. DOI 10.1007/s00299-013-1556-5; Guo Q., Liu Q., Smith N.A., Liang G., Wang M.B. RNA silencing in plants: mechanisms, technologies and applications in horticultural crops. Curr. Genomics. 2016;17(6):476-489. DOI 10.2174/1389202917666160520103117; Jackson A.L., Bartz S.R., Schelter J., Kobayashi S.V., Burchard J., Mao M., Li B., Cavet G., Linsley P.S. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 2003;21(6): 635-638. DOI 10.1038/nbt831; Kumar T., Dweikat I., Sato S., Ge Z., Nersesian N., Chen H., Elthon T., Bean S., Ioerger B.P., Tilley M., Clemente T. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnol. J. 2012;10:533-544. DOI 10.1111/j.1467-7652.2012.00685.x; Muhammad T., Zhang F., Zhang Y., Liang Y. RNA interference: a natural immune system of plants to counteract biotic stressors. Cells. 2019;8(1):38. DOI 10.3390/cells8010038; Ndimba R.J., Kruger J., Mehlo L., Barnabas A., Kossmann J., Ndimba B.K. A comparative study of selected physical and biochemical traits of wild-type and transgenic sorghum to reveal differences relevant to grain quality. Front. Plant Sci. 2017;8:952. DOI 10.3389/fpls.2017.00952; Nunes A., Correia I., Barros A., Delgadillo I. Sequential in vitro pepsin digestion of uncooked and cooked sorghum and maize samples. J. Agric. Food Chem. 2004;52(7):2052-2058. DOI 10.1021/jf0348830; Oria M.P., Hamaker B.R., Axtell J.D., Huang C.P. A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc. Natl. Acad. Sci. USA. 2000;97(10): 5065-5070. DOI 10.1073/pnas.080076297; Ram H., Soni P., Salvi P., Gandass N., Sharma A., Kaur A., Sharma T.R. Insertional mutagenesis approaches and their use in rice for functional genomics. Plants. 2019;8(9):310. DOI 10.3390/plants8090310; Senthil-Kumar M., Mysore K.S. Caveat of RNAi in plants: the off-target effect. Methods Mol. Biol. 2011;744:13-25. DOI 10.1007/978-1-61779-123-9_2; Smith N.A., Singh S.P., Wang M.-B., Stoutjesdijk P., Green A., Waterhouse P.M. Total silencing by intron-spliced hairpin RNAs. Nature. 2000;407(6802):319-320. DOI 10.1038/35030305; Tesso T., Ejeta G., Chandrashekar A., Huang C.P., Tandjung A., Lewamy M., Axtell J., Hamaker B.R. A novel modified endosperm texture in a mutant high-protein digestibility/high-lysine grain sorghum (Sorghum bicolor (L.) Moench). Cereal Chem. 2006;83(2):194-201. DOI 10.1094/CC-83-0194; Wang L., Gao L., Liu G., Meng R., Liu Y., Li J. An efficient sorghum transformation system using embryogenic calli derived from mature seeds. PeerJ. 2021;9:e11849. DOI 10.7717/peerj.11849; Wilson A.K., Latham J.R., Steinbrecher R.A. Transformation-induced mutations in transgenic plants: Analysis and biosafety implications. Biotechnol. Genet. Eng. Rev. 2006;23:209-238. DOI 10.1080/02648725.2006.10648085; Wong J.H., Lau T., Cai N., Singh J., Pedersen J.F., Vensel W.H., Hurkman W.J., Wilson J.D., Lemaux P.G., Buchanan B.B. Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm. J. Cereal Sci. 2009;49(1):73-82. DOI 10.1016/j.jcs.2008.07.013; Zhuravlyov V.S., Dolgikh V.V., Timofeev S.A., Gannibal F.B. RNA interference method in plant protection against insect pests. Vestnik Zashchity Rastenij = Plant Protection News. 2022;105(1):28-39. DOI 10.31993/2308-6459-2022-105-1-15219 (in Russian); https://vavilov.elpub.ru/jour/article/view/4056

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 64, № 3 (2020); 325-331 ; Доклады Национальной академии наук Беларуси; Том 64, № 3 (2020); 325-331 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2020-64-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/887/884; Short Cationic Peptidomimetic Antimicrobials / R. kuppusamy [et al.] // Antibiotics (Basel). – 2019. – Vol. 8, N 2. – P. 44. https://doi.org/10.3390/antibiotics8020044; Zasloff, M. Antimicrobial Peptides of Multicellular Organisms: My Perspective / M. Zasloff // Adv. Exp. Med. Biol. – 2019. – Vol. 1117. – P. 3–6. https://doi.org/10.1007/978-981-13-3588-4_1; Мусин, Х. Г. Антимикробные пептиды – потенциальная замена традиционным антибиотикам / Х. Г. Мусин // Инфекция и иммунитет. – 2018. – Т. 8, № 3. – С. 295–308. https://doi.org/10.15789/2220-7619-2018-3-295-308; Sinha, R. Antimicrobial Peptides: Recent Insights on biotechnological Interventions and future perspectives / R. Sinha, P. Shukla // Protein Pept. Lett. – 2019. – Vol. 26, N 2. – P. 79–87. https://doi.org/10.2174/0929866525666181026160852; Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers / W. F. Bennett [et al.] // J. Chem. Theory Comput. – 2016. – Vol. 12, N 9. – P. 4524–4533. https://doi.org/10.1021/acs.jctc.6b00265; Ilyas, H. An approach towards structure based antimicrobial peptide design for use in development of transgenic plants: a strategy for plant disease management / H. Ilyas, A. Datta, A. Bhunia // Curr. Med. Chem. – 2017. – Vol. 24, N 13. – P. 1350–1364. https://doi.org/10.2174/0929867324666170116124558; Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology / E. Holaskova [et al.] // Biotechnol. Adv. – 2015. – Vol. 33, N 6. – P. 1005–1023. https://doi.org/10.1016/j.biotechadv.2015.03.007; Molecular farming of antimicrobial peptides: available platforms and strategies for improving protein biosynthesis using modified virus vectors / M. L. Leite [et al.] // An. Acad. Bras. Ciênc. – 2019. – Vol. 91, N 1. – P. e20180124. https://doi.org/10.1590/0001-3765201820180124; Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field / A. Weinhold [et al.] // eLife. – 2018. – Vol. 7. – P. e28715. https://doi.org/10.7554/elife.28715; yeung, A. T. Multifunctional cationic host defence peptides and their clinical applications / A. T. yeung, S. L. Gellatly, R. E. Hancock // CMLS. – 2011. – Vol. 68, N 13. – P. 2161–2176. https://doi.org/10.1007/s00018-011-0710-x; Cavallarin, L. Cecropin A – derived peptides are potent inhibitors of fungal plant pathogens / L. Cavallarin, D. Andreu, B. San Segundo // Mol. Plant Microbe Interact. – 1998. – Vol. 11, N 3. – P. 218–227. https://doi.org/10.1094/mpmi.1998.11.3.218; Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens / M. Osusky [et al.] // Nat. Biotechnol. – 2000. – Vol. 18, N 11. – P. 1162–1166. https://doi.org/10.1038/81145; Production of cecropin A in transgenic rice plants has an impact on host gene expression / S. Campo [et al.] // Plant Biotechnol. J. – 2008. – Vol. 6, N 6. – P. 585–608. https://doi.org/10.1111/j.1467-7652.2008.00339.x; Трансгенные растения картофеля белорусских сортов, экспрессирующие гены антимикробных пептидов цекропин-мелиттинового типа / Н. Л. Вутто [и др.] // Генетика. – 2010. – Т. 46, № 12. – С. 1626–1634.; Jabs, T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals / T. Jabs // Biochem. Pharmacol. – 1999. – Vol. 57, N 3. – P. 231–245. https://doi.org/10.1016/s0006-2952(98)00227-5; https://doklady.belnauka.by/jour/article/view/887

  7. 7
    Academic Journal

    Πηγή: Биотехнология в растениеводстве, животноводстве и сельскохозяйственной микробиологии. :93-94

  8. 8
  9. 9
  10. 10
  11. 11
    Conference

    Συγγραφείς: Егорова, А. А.

    Συνεισφορές: Герасимова, С. В.

    Relation: Перспективы развития фундаментальных наук : сборник научных трудов XIV Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 25-28 апреля 2017 г. Т. 4 : Биология и фундаментальная медицина. — Томск, 2017.; http://earchive.tpu.ru/handle/11683/44849

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/44849

  12. 12
    Academic Journal

    Συνεισφορές: Томский государственный университет Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт) Кафедра физиологии растений и биотехнологии

    Πηγή: Plant growth regulation. 2013. Vol. 70, № 1. P. 61-69

    Περιγραφή αρχείου: application/pdf

    Συνδεδεμένο Πλήρες Κείμενο
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Πηγή: Scientific studies from theory to practice; № 3(9); 141-143 ; Научные исследования: от теории к практике; № 3(9); 141-143 ; ISSN: 2413-3957 ; 2413-3957

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/pissn/2413-3957; https://interactive-plus.ru/e-articles/262/Action262-112356.pdf; 1. Королев А.А. Гигиена питания [Текст]: Учеб. для студ. высш. учеб. заведений / А.А. Королев. – М.: Академия, 2006. – 528 с.; 2. Ловкис З.В. Качество и безопасность продуктов питания [Текст]: Учеб. пособие / З.В. Ловкис, И.М. Почицкая, И.В. Мельситова, В.В. Литвяк. – Минск: РУП «Научно-практический центр Национальной академии наук Беларуси по продовольствию»; Белоруский государственный университет, 2008. – 336 c.; 3. Генетически модифицированные продукты [Электронный ресурс] – Режим доступа: http://www.eurolab.ua/encyclopedia/690/5999/?page=2

  18. 18
  19. 19
  20. 20