Εμφανίζονται 1 - 20 Αποτελέσματα από 22 για την αναζήτηση '"ТЕРМОЭЛЕКТРИЧЕСКАЯ ДОБРОТНОСТЬ"', χρόνος αναζήτησης: 0,59δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 1 (2024); 59-64 ; Новые огнеупоры; № 1 (2024); 59-64 ; 1683-4518 ; 10.17073/1683-4518-2024-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2141/1731; CRC handbook of thermoelectrics; ed. by D. M. Rowe. ― CRC press, 2018.; Mohammed, M. A. A review of thermoelectric ZnO nanostructured ceramics for energy recovery / M. A. Mohammed, I. Sudin, A. M. Noor [et al.] // International Journal of Engineering & Technology. ― 2018. ― Vol. 7, № 2.29. ― Р. 27‒30. https://www.sciencepubco.com/index.php/ijet/article/view/13120.; Duan, B. Regulation of oxygen vacancy and reduction of lattice thermal conductivity in ZnO ceramic by high temperature and high pressure method / B. Duan, Y. Li, J. Li [et al.] // Ceram. Int. ― 2020. ― Vol. 46, № 16. ― Р. 26176‒26181.; Zeng, C. Enhanced thermoelectric performance of SmBaCuFeO5+δ/Ag composite ceramics / С. Zeng, S. Butt, Y. H. Lin [et al.] // J. Am. Ceram. Soc. ― 2016. ― Vol. 99, № 4. ― Р. 1266‒1270.; Combe, E. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process / E. Combe, E. Guilmeau, E. Savary [et al.] // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35, № 1. ― Р. 145‒151.; Li, W. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects / W. Li, L. Zheng, B. Ge [et al.] // Adv. Mater. ― 2017. ― Vol. 29, № 17. ― Article 1605887.; Pashkevich, A. V. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co / A. V. Pashkevich, A. K. Fedotov, E. N. Poddenezhny [et al.] // J. Alloys Compd. ― 2022. ― Vol. 895. ― Article 162621.; Tsubota, T. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion / T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai // J. Mater. Chem. ― 1997. ― Vol. 7, № 1. ― Р. 85‒90.; Abdel-Motaleb, I. M. Thermoelectric devices : principles and future trends / I. M. Abdel-Motaleb, S. M. Qadri // arXiv preprint arXiv. ― 2017. ― 1704. 07742. https://doi.org/10.48550/arXiv.1704.07742.; Radingoana, P. M. (2019). Université Paul SabatierToulouse III).; Lei, L. W. Synthesis and low field transport properties in a ZnO-doped La0.67Ca0.33MnO3 composite / L. W. Lei, Z. Y. Fu, J. Y. Zhang, H. Wang // Mater. Sci. Eng., B. ― 2006. ― Vol. 128, № 1‒3. ― Р. 70‒74.; Janotti, A. Fundamentals of zinc oxide as a semiconductor / A. Janotti, C. G. Van de Walle // Rep. Prog. Phys. ― 2009. ― Vol. 72, № 12. ― Article 126501.; Janotti, A. Native point defects in ZnO / A. Janotti, C. G. Van de Walle // Phys. Rev., B. ― 2007. ― Vol. 76, № 16. ― Article 165202.; Olorunyolemi, T. Thermal conductivity of zinc oxide: from green to sintered state / T. Olorunyolemi, A. Birnboim, Y. Carmel [et al.] // J. Am. Ceram. Soc. ― 2002. ― Vol. 85, № 5. ― Р. 1249‒1253.; Liang, X. Thermoelectric transport properties of naturally nanostructured Ga‒ZnO ceramics : effect of point defect and interfaces / X. Liang // J. Eur. Ceram. Soc. ― 2016. ― Vol. 36, № 7. ― Р. 1643‒1650. https://www.sciencedirect.com/science/article/pii/S095522191630067X.; Lu, L. The resistivity of zinc oxide under different annealing configurations and its impact on the leakage characteristics of zinc oxide thin-tilm / L. Lu, M. Wong // IEEE Transactions on Electron Devices. ― 2014. ― Vol. 61, № 4. ― Р. 1077‒1084.; Wagner, C. D. GE Muilenberg in Handbook of Х-ray photoelectron spectroscopy : a reference book of standard data for use in Х-ray photoelectron spectroscopy / C. D. Wagner. ― Physical Electronics Division, PerkinElmer Corp., Eden Prairie, USA, 1979.; Chen, M. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films / М. Chen, Х. Wang, Y. H. Yu [et al.] // Appl. Surf. Sci. ― 2000. ― Vol. 158, № 1/2. ― P. 134‒140.; Lin, C. C. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates / C. C. Lin, H. P. Chen, H. C. Liao, S. Y. Chen // Appl. Phys. Lett. ― 2005. ― Vol. 86, № 18. ― Article 183103.; Lu, Y. F. The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition / Y. F. Lu, H. Q. Ni, Z. H. Mai, Z. M. Ren // J. Appl. Phys. ― 2000. ― Vol. 88, № 1. ― Р. 498‒502.; Valtiner, M. Preparation and characterisation of hydroxide stabilised ZnO (0001)–Zn–OH surfaces / M. Valtiner, S. Borodin, G. Grundmeier // Physical Chemistry Chemical Physics. ― 2007. ― Vol. 9, № 19. ― P. 2406‒2412.; Ullah, M. Effects of Al and B co-doping on the thermoelectric properties of ZnO ceramics sintered in an argon atmosphere / M. Ullah, S. Ullah, A. Manan [et al.] // Appl. Phys., A. ― 2022. ― Vol. 128, № 2. ― Р. 1‒7.; Tsubota, T. Transport properties and thermoelectric performance of (Zn1–yMgy)1–xAlxO / T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai // J. Mater. Chem. ― 1998. ― Vol. 8 (2). ― P. 409‒412.; https://newogneup.elpub.ru/jour/article/view/2141

  2. 2
    Academic Journal

    Συνεισφορές: This research was funded by the State program of scientific research “PhysMatTech, New Materials and Technologies” (Belarus) under grant number 1.15.1., Исследование выполнено за счет Государственной программы научных исследований «Физматтех, новые материалы и технологии» (Беларусь) по гранту № 1.15.1.

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 2 (2023); 122-136 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 2 (2023); 122-136 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/518/422; Ponja S.D., Sathasivam S., Parkin I.P., Carmalt C.J. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Scientific Reports. 2020; 10(1): 638. https://doi.org/10.1038/s41598-020-57532-7; Lee Y.-P., Lin Ch-Ch., Hsiao Ch-Ch., Chou P.-A., Cheng Y.-Y., Hsieh Ch-Ch., Dai Ch-A. Nanopiezoelectric devices for energy generation based on ZnO nanorods / flexible-conjugated copolymer hybrids using all wet-coating processes. Micromachines. 2020; 11(1): 14. https://doi.org/10.3390/mi11010014; Bernik S., Daneu N. Characteristics of SnO2-doped ZnO-based varistor ceramics. Journal of the European Ceramic Society. 2001; 21(10-11): 1879—1882. https://doi.org/10.1016/S0955-2219(01)00135-2; Wu X., Lee J., Varshney V., Wohlwend J.L., Roy A.K., Luo T. Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics – a comparative study with gallium nitride. Scientific Reports. 2016; 6(1): 22504. https://doi.org/10.1038/srep22504; Sawalha A., Abu-Abdeen M., Sedky A. Electrical conductivity study in pure and doped ZnO ceramic system. Physica B: Condensed Matter. 2009; 404(8-11): 1316—1320. https://doi.org/10.1016/j.physb.2008.12.017; Winarski D. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method. Thesis diss. of master science. Graduate College of Bowling Green State University; 2015.; Chen H., Zheng L., Zeng J., Li G., Effect of Sr doping on nonlinear current–voltage properties of ZnO-based ceramics. Journal of Electronic Materials. 2021; 50(7): 4096—4103. https://doi.org/10.1007/s11664-021-08960-2; Mohammed M.A., Izman S., Alias M.N., Rajoo S., Uday M.B., Obayes N.H., Omar M.F. A review of thermoelectric ZnO nanostructured ceramics for energy recovery. International Journal of Engineering & Technology. 2018; 7(2.29): 27—30. https://doi.org/10.14419/IJET.V7I2.29.13120; Colder H., Guilmeau E., Harnois C., Marinel S., Retoux R., Savary E. Preparation of Ni-doped ZnO ceramics for thermoelectric applications. Journal of the European Ceramic Society. 2011; 31(15): 2957—2963. https://doi.org/10.1016/j.jeurceramsoc.2011.07.006; Jeong A., Suekuni K., Ohtakia M., Jang B.-K. Thermoelectric properties of In- and Ga-doped spark plasma sintered ZnO ceramics. Ceramics International. 2021; 47(17): 23927—23934. https://doi.org/10.1016/j.ceramint.2021.05.101; Levinson L.M., Hirano S. Ceramic transactions. In: Procced. materials of Inter. symposium. Vol. 41. Grain boundaries and interfacial phenomena in electronic ceramics. Westerville: American Ceramic Society; 1994.; Li J., Yang S., Pu Y., Zhu D. Effects of pre-calcination and sintering temperature on the microstructure and electrical properties of ZnO-based varistor ceramics. Materials Science in Semiconductor Processing. 2021; 123(6): 105529. https://doi.org/10.1016/j.mssp. 2020.105529; Liang X. Thermoelectric transport properties of naturally nanostructured Ga–ZnO ceramics: Effect of point defect and interfaces. Journal of the European Ceramic Society. 2016; 36(7): 1643—1650. https://doi.org/10.1016/j.jeurceramsoc.2016.02.017; Liang X. Thermoelectric transport properties of Fe-enriched ZnO with high-temperature nanostructure refinement. ACS Applied Materials & Interfaces. 2015; 7(15): 7927—7937. https://doi.org/10.1021/am509050a; Walia S., Balendhran S., Nili H., Zhuiykov S., Rosengarten G., Wang Q.H., Bhaskaran M., Sriram S., Strano M.S., Kalantar-zadeh K. Transition metal oxides – thermoelectric properties. Progress in Materials Science. 2013; 58(8): 1443—1489. https://doi.org/10.1016/j.pmatsci.2013.06.003; Li P., Zhang H., Gao C., Jiang G., Li Z. Electrical property of Al/La/Cu modified ZnO-based negative temperature coefficient (NTC) ceramics with high ageing stability. Journal of Materials Science: Materials in Electronics. 2019; 30(21): 19598—19608. https://doi.org/10.1007/s10854-019-02333-6; Pullar R.C., Piccirilloa C., Novais R.M., Quarta A., Bettini S., Iafisco M. A sustainable multi-function biomorphic material for pollution remediation or UV absorption: aerosol assisted preparation of highly porous ZnO-based materials from cork templates. Journal of Environmental Chemical Engineering. 2019; 7(2): 102936. https://doi.org/10.1016/j.jece.2019.102936; Sun Q., Li G., Tian T., Zeng J., Zhao K., Zheng L., Barre M., Dittmer J., Gouttenoire F., Rousseau A., Kassiba A.H. Co-doping effects of (Al, Ti, Mg) on the microstructure and electrical behavior of ZnO-based ceramics. Journal of the American Ceramic Society. 2020; 103(5): 3194—3204. https://doi.org/10.1111/jace.16999; Vu D.V., Le D.H., Nguyen C.X., Trinh T.Q. Comparison of structural and electric properties of ZnO-based n-type thin films with different dopants for thermoelectric applications. Journal of Sol-Gel Science and Technology. 2019; 91(1): 146—153. https://doi.org/10.1007/s10971-019-05024-0; Pashkevich A.V., Fedotov A.K., Poddenezhny E.N., Bliznyuk L.A., Fedotova J.A., Basov N.A., Kharchanka A.A., Zukowski P., Koltunowicz T.N., Korolik O.V., Fedotova V.V. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co. Journal of Alloys and Compounds. 2022; 895: 162621. https://doi.org/10.1016/j.jallcom.2021.162621; Пашкевич А.В., Близнюк Л.А., Федотов А.К., Ховайло В.В., Харченко А.А., Федотова В.В. Тепловые и термоэлектрические свойства керамики на основе оксида цинка, легированной железом. Журнал Белорусского государственного университета. Физика. 2022; (3): 56—67. https://doi.org/10.33581/2520-2243-2022-3-56-67; Wu Z.-H., Xie H.-Q., Zhai Y.-B. Preparation and thermoelectric properties of Co-doped ZnO synthesized by sol-gel. Journal of Nanoscience and Nanotechnology. 2015; 15(4): 3147—3150. https://doi.org/10.1166/jnn.2015.9658; Sawalha A., Abu-Abdeen M., Sedky A. Electrical conductivity study in pure and doped ZnO ceramic system. Physica B Condensed Matter. 2009; 404(8-11): 1316—1320. https://doi.org/10.1016/j.physb.2008.12.017; Gorokhova E.I., Anan’eva G.V., Eron’ko S.B., Oreshchenko E.A., Rodnyi P.A., Chernenko K.A., Khodyuk I.V., Lokshin E.P., Kunshina G.B., Gromov O.G., Lott K.P. Structural, optical, and scintillation characteristics of ZnO ceramics. Journal of Optical Technology. 2011; 78(11): 733—760. https://doi.org/10.1364/jot.78.000753; Кржижановская М.Г., Фирсова В.А., Бубнова Р.С. Применение метода Ритвельда для решения задач порошковой дифрактометрии. СПб.: Санкт-Петербургский университет; 2016. 67 с.; Зеер Г.М., Фоменко О.Ю., Ледяева О.Н. Применение сканирующей электронной микроскопии в решении актуальных проблем материаловедения. Журнал Сибирского федерального университета. Серия: Химия. 2009; 4(2): 287—293.; Bosi F., Biagioni C., Pasero M. Nomenclature and classification of the spinel supergroup. European Journal of Mineralogy. 2019; 31(1): 183—192. https://doi.org/10.1127/ejm/2019/0031-2788; Cheng H., Xu X.J., Hng H.H., Ma J. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceramics International. 2009; 35(8): 3067—3072. https://doi.org/10.1016/j.ceramint.2009.04.010; Chernyshova E., Serhiienko I., Kolesnikov E., Voronin A., Zheleznyy M., Fedotov A., Khovaylo V. Influence of NiO nanoparticles on the thermoelectric propertiesof (ZnO)1-x(NiO)x composites. Nanobiotechnology Reports. 2021; 16(3): 381—386. https://doi.org/10.1134/S2635167621030034; Adun H., Kavaz D., Wole-Osho I., Dagbasi M. Synthesis of Fe3O4–Al2O3–ZnO / water ternary hybrid nanofluid: Investigating the effects of temperature, volume concentration and mixture ratio on specific heat capacity, and development of hybrid machine learning for prediction. Journal of Energy Storage. 2021; 41(13-14): 102947. https://doi.org/10.1016/j.est.2021.102947; Barin I. Thermochemical data of pure substances. Weinheim, Federal Republic of Germany; N.Y., USA: VCH; 1995. 2003 p.; Kim H.-S., Gibbs Z.M., Tang Y., Wang H., Snyder G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials. 2015; 3(4): 041506. https://doi.org/10.1063/1.4908244; Gadzhiev G.G. The thermal and elastic properties of zinc oxide-based ceramics at high temperatures. High Temperature. 2003; 41(6): 778—782. https://doi.org/10.1023/b:hite.0000008333.59304.58; https://met.misis.ru/jour/article/view/518

  3. 3
    Academic Journal

    Συνεισφορές: This work was supported by the Ministry of Education of the Russian Federation (Decree of the government of the Russian Federation: Agreement #03.G25.31.0246)., Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках постановления Правительства Российской Федерации от 9 апреля 2010 г. №218 (Договор № 03.G25.31.0246).

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 1-6 (2020); 93-105 ; Альтернативная энергетика и экология (ISJAEE); № 1-6 (2020); 93-105 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1887/1613; РИФ – Термоэлектрические генераторы Электронный ресурс – Режим доступа: www.rifcorp.ru/products/termoelektricheskie-generatory – (Дата обращения: 07.11.2019.).; Криотерм – Термоэлектрический генератор ГТЭГ Электронный ресурс – Режим доступа: kryothermtec.com/ru/thermoelectric-generator-gteg.html – (Дата обращения: 07.11.2019.).; Термоинтэх – Генератор Термоэлектрический для нефтегазовой отрасли Электронный ресурс – Режим доступа: thermointech.ru/products/generatortermoelektricheskiy-gte – (Дата обращения: 07.11.2019.).; Гольцман, Б.М. Полупроводниковые термоэлектрические материалы на основе Bi2Te3 / Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. – М.: Наука, 1972. – 320 с. 5 Eibl, O. Thermoelectric Bi2Te3 nanomaterials / O.Eibl et al. – Wiley – VCH, Weinheim, 2015. – 317 p.; Maciá-Barber, E. Thermoelectric Materials: Advances and Applications / E. Maciá-Barber. – CRC Press, Florida, 2015. – 364 p.; Rowe, D.M. Thermoelectrics / D.M. Rowe. – CRC Press, 1995. – 701 p.; Riffat, S. Thermoelectrics: a Review of Present and Potential Applications / S. Riffat, X. Ma // Applied Thermal Engineering. – 2003. – Vol. 23. – Р. 913–935.; Heremans, J.P. Low-Dimensional Thermoelectricity / J.P. Heremans // Acta Physica Polonica A. – 2005. – Vol. 108. – No. 4. – P. 609–634.; Ezzahri, Y. Comparison of Thin Film Microrefrigerators Based on Si/SiGe Superlattice and Bulk SiGe / Y. Ezzahri et al. // J. Microelectronics. – 2008. – Vol. 39. – P. 981–991.; Venkatasubramanian, R. Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit / R. Venkatasubramanian et al. // Nature. – 2001. – Vol. 431. – P. 597–602.; Venkatasubramanian, R. MOCVD of Bi2Te3, Sb2Te3 and Their Superlattice Structures for Thin-film Thermoelectric Applications / R. Venkatasubramanian et al. // Journal of Crystal Growth. – 1997. – Vol. 170. – P. 721–817.; Funahashi, R. Thermoelectric properties of Pband Ca-doped (Bi2Sr2O4)xCoO2 whiskers / R. Funahashi, I.Matsubara // Appl. Phys. Lett. – 2001. – Vol. 79. – No.3. – P. 362–365.; Булат, Л.П. Влияние туннелирования на термоэлектрическую эффективность объемных наноструктурированных материалов / Л.П. Булат, Д.А. Пшенай-Северин // Физика твердого тела. – 2010. – T. 52. – Вып. 3. – C. 452–458.; Lin, H. Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2/ H. Lin et al. // Phys. Rev. B. – 2005. – Vol. 72. – No. 174113. – P. 1–7.; Harman, T. Quantum Dot Superlattice Thermoelectric Materials and Devices / T. Harman et al. // Science. – 2002. – Vol. 297. – P. 2229–2232.; Tavkhelidze, A. Large enhancement of the thermoelectric figure of merit in a ridged quantum well / A. Tavkhelidze // Nanotechnology. – 2009. – Vol. 20. – No. 405401. – P. 6.; Boukai, A. Silicon Nanowires as Efficient Thermoelectric Materials / A. Boukai et al. // Nature Letters. – 2008. – Vol. 451. – P. 168–171.; Hochbaum, A. Enhanced Thermoelectric Performance of Rough Silicon Nanowires / A. Hochbaum et al. // Nature Letters. – 2008. – Vol. 451. – P. 163–167.; Keyani, J. Assembly and Measurement of a Hybrid Nanowire-bulk Thermoelectric Device / J. Keyani, A.M. Stacy // Appl. Phys. Lett. – 2006. – Vol. 89. – P. 233106.; Шевельков, А.В. Химические аспекты создания термоэлектрических материалов / А.В. Шевельков // Успехи химии. – 2008. – Т. 77. – № 1. – С. 3–21.; Trawinski, B. Structure and thermoelectric properties of bismuth telluride-Carbon composites / B. Trawinski, et al. // Materials Research Bulletin. – 2018. – Vol. 99. – P. 10–17.; Bark, H. Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix / H. Bark et al. // Current Applied Physics. – 2013. – Vol. 13. – P. S111–S114.; Кульбачинский, В.А. Термоэлектрические свойства нанокомпозитов теллурида висмута с фуллеренами / В.А. Кульбачинский et al. // Физика и техника полупроводников. – 2011. – Т. 45. – Вып. 9. – С. 1241–1245.; Иванова, Л.Д. Термоэлектрические свойства твердого раствора Bi2Te2.4Se0.6 различного гранулометрического состава / Л.Д. Иванова и др. // Физика и техника полупроводников. – 2017. – Т. 51. – Вып. 8. – С. 1044–1047.; Драбкин, И.А. Термоэлектрические свойства материала на основе (Bi,Sb)2Te3, полученного методом искрового плазменного спекания / И.А. Драбкин и др. // Материалы электронной техники. – 2012. – № 3. – С. 18–21.; Bhame, S.D. Enhanced thermoelectric performance in spark plasma textured bulk n-type BiTe2.7Se0.3 and p-type Bi0.5Sb1.5Te3 / S.D. Bhame et al. // Appl. Phys. Lett. – 2013. – Vol. 102. – P. 211901.; Xie, W. High performance Bi2Te3 nanocomposites prepared by single-element-meltspinning spark-plasma sintering / W. Xie et al. // J Mater Sci. – 2013. – Vol. 48. – P. 2745–2760.; Hu, L.P. Improving thermoelectric properties of ntype bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement / L.P. Hu et al. // Acta Materialia. – 2012. – Vol. 60. – P. 4431–4437.; Zhai, R. Enhancing Thermoelectric Performance of n-type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Non-stoichiometry Mediated Intrinsic Point Defects / R. Zhai et al. // ACS Appl. Mater. Interfaces. – 2017. – Vol. 9. – P. 28577–28585.; Kim, D.H. Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi–Te-based thermoelectric materials / D.H. Kim et al. // Acta Materialia. – 2011. – Vol. 59. – P. 405–411.; Han, M.K. Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms / M.K. Han et al. // Materials. – 2017. – Vol. 10. – P. 1235.; Ge, Z.H. Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process / Z.H. Ge et al. // Scripta Materialia. – 2018. – Vol. 143. – P. 90–93.; Стильбанс, Л.С. Физика полупроводников / Л.С. Стильбанс. – М.: Советское радио, 1967. – 452 с.; Иоффе, А.Ф. Физика полупроводников / А.Ф. Иоффе. – М.: Изд-во АН СССР, 1957. – 494 с.; Ансельм, А.И. Введение в теорию полупроводников / А.И. Ансельм. – М.: Наука, 1978. – 616 с.; Hao, F. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ºC / F. Hao et al // Energy Environ. Sci. – 2016. – Vol. 9. – P. 3120–3127.; Sheng, S.L. Semiconductor physical electronics / S.L. Sheng. – Springer, 2006. – 697 p.; Tritt, T.M. Thermoelectric Phenomena, Materials and Applications / T.M. Tritt // Annu.Rev.Mater.Res. – 2011. – Vol. 41. – P. 433–448.; Snyder, G. Complex thermoelectric materials / G. Snyder // Nature Materials. – 2008. – Vol. 7 – P. 105–114.; Белоногов Е.К. Влияние фотонной обработки на структуру и субструктуру термоэлектрического материала Bi2Te3-хSeх / Е.К. Белоногов и др. // Перспективные материалы. – 2019. – № 12. – С. 31–38.; https://www.isjaee.com/jour/article/view/1887

  4. 4
  5. 5
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 12, No 3 (2017); 95-100 ; Тонкие химические технологии; Vol 12, No 3 (2017); 95-100 ; 2686-7575 ; 2410-6593 ; 10.32362/2410-6593-2017-12-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/99/100; Ioffe A.F., Stil'bans L., Iordanishvili E.K., Stavitskaya T. S. Thermoelectric cooling. Moscow-Leningrad: The Academy of Sciences of the USSR Publ., 1956. 108 р. (in Russ.).; Goldsmid H.J., Douglas R.W. The use of semiconductors in thermoelectric refrigeration // British J. Appl. Phys. 1954. V. 5. P. 386-390.; Ivanova L.D., Petrova L.I., Granatkina Yu.V., Zemskov V.S., Sokolov O.B., Skipidarov S.Ya., Kurganov V.A., Podbelsky V.V. Materials based on bismuth chalcogenides and antimony for cascades of thermal chillers // Neorganicheskie materialy (Inorganic Materials). 2011. V. 47. № 5. P. 521-527. (in Russ.).; Ivanova L.D., Petrova L.I., Granatkina Yu.V., Nikulin D.S., Raikina O.A. Crystallization and mechanical properties of solid solutions of chalcogenides of bismuth and antimony // Neorganicheskie materialy (Inorganic Materials). 2016. V. 52. № 3. P. 289-296. (in Russ.).; Ivanova L.D., Petrova L.I., Granatkina Yu.V., Nikhezina I.Yu., Alenkov V.V., Kichik S.A., Melnikov A.A. Influence of additives of powder obtained by spinning of melt on thermoelectric properties of bismuth and antimony chalcogenides // Neorganicheskie materialy (Inorganic Materials). 2017. V. 53. № 1. P. 1-7. (in Russ.).

  6. 6
    Academic Journal

    Συγγραφείς: Maryanchuk, P. D., Andrushchak, G. O.

    Πηγή: Sensor Electronics and Microsystem Technologies; Том 7, № 2 (2010); 61-63
    Сенсорная электроника и микросистемные технологии; Том 7, № 2 (2010); 61-63
    Сенсорна електроніка і мікросистемні технології; Том 7, № 2 (2010); 61-63

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://semst.onu.edu.ua/article/view/114248

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20