Εμφανίζονται 1 - 20 Αποτελέσματα από 77 για την αναζήτηση '"ТВЁРДОФАЗНАЯ ЭКСТРАКЦИЯ"', χρόνος αναζήτησης: 0,86δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The work was performed within the framework of the grant of the Russian Science Foundation (project No. 24–16–00171 “Cyclic peptides from Linum usitatissimum. Features of production, biological activity and prospects for their food application”)., Работа выполнена в рамках гранта Российского Научного Фонда (проект № 24-16-00171 «Циклические пептиды Linum usitatissimum. Особенности получения, биологическая активность и перспективы их пищевого применения»)

    Πηγή: Food systems; Vol 7, No 4 (2024); 535-542 ; Пищевые системы; Vol 7, No 4 (2024); 535-542 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/624/354; Food and Agriculture Organization of the United Nations (FAO) (2022). FAOSTAT. Crops and livestock products. Retrieved from https://www.fao.org/faostat/en/#data/QCL Accessed August 30, 2024.; Shim, Youn Young, Gui, B., Arnison, P. G., Wang, Y., Reaney, M. J. T. (2014). Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends in Food Science and Technology, 38(1), 5–20. https://doi.org/10.1016/j.tifs.2014.03.011; Bekhit, A. E.-D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Mohamed Ahmed, I. A. et al. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129–152. https://doi.org/10.1016/j.bcab.2017.11.017; Dzuvor, C. K. O., Taylor, J. T., Acquah, C., Pan, S., Agyei, D. (2018). Bioprocessing of functional ingredients from flaxseed. Molecules, 23(10), Article 2444. https://doi.org/10.3390/molecules23102444; Yang, J., Wen, C., Duan, Y., Deng, Q., Peng, D., Zhang, H. et al. (2021). The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends in Food Science and Technology, 118(Part A), 252–260. https://doi.org/10.1016/j.tifs.2021.09.025; Shim, Y. Y., Song, Z., Jadhav, P. D., Reaney, M. J. T. (2019). Orbitides from flaxseed (Linum usitatissimum L.): A comprehensive review. Trends in Food Science and Technology, 93, 197–211. https://doi.org/10.1016/j.tifs.2019.09.007; Saharan, R., Kumar, S., Khokra, S. L., Singh, S., Tiwari, A., Tiwari, V. et al. (2022). A comprehensive review on therapeutic potentials of natural cyclic peptides. Current Nutrition and Food Science, 18(5), 441–449. https://doi.org/10.2174/1573401318666220114153509; Xiong, Q., Lee, Y.-Y., Li, K.-Y., Li, W.-Z., Du, Y., Liu, X. et al. (2022). Status of linusorbs in cold-pressed flaxseed oil during oxidation and their response toward antioxidants. Food Research International, 161, Article 111861. https://doi.org/10.1016/j.foodres.2022.111861; Fojnica, A., Leis, H.-J., Murkovic, M. (2022). Identification and characterization of the stability of hydrophobic cyclolinopeptides from flaxseed oil. Frontiers in Nutrition, 9, Article 903611. https://doi.org/10.3389/fnut.2022.903611; Mueed, A., Madjirebaye, P., Shibli, S., Deng, Z. (2022). Flaxseed peptides and cyclolinopeptides: A critical review on proteomic approaches, biological activity, and future perspectives. Journal of Agricultural and Food Chemistry, 70(46), 14600–14612. https://doi.org/10.1021/acs.jafc.2c06769; Fojnica, A., Gromilic, Z., Vranic, S., Murkovic, M. (2023). Anticancer potential of the cyclolinopeptides. Cancers, 15(15), Article 3874. https://doi.org/10.3390/cancers15153874; Okinyo-Owiti, D. P., Burnett, P.-G. G., Reaney, M. J. T. (2014). Simulated moving bed purification of flaxseed oil orbitides: Unprecedented separation of cyclolinopeptides C and E. Journal of Chromatography B, 965, 231–237. https://doi.org/10.1016/j.jchromb.2014.06.037; Gui, B., Shim, Y. Y., Reaney, M. J. T. (2012). Distribution of cyclolinopeptides in flaxseed fractions and products. Journal of Agricultural and Food Chemistry, 60(35), 8580–8589. https://doi.org/10.1021/jf3023832; Lang, T., Frank, O., Lang, R., Hofmann, T., Behrens, M. (2022). Activation spectra of human bitter taste receptors stimulated with cyclolinopeptides corresponding to fresh and aged linseed oil. Journal of Agricultural and Food Chemistry, 70(14), 4382–4390. https://doi.org/10.1021/acs.jafc.2c00976; Okinyo-Owiti, D. P., Young, L., Burnett, P.-G. G., Reaney, M. J. T. (2014). New flaxseed orbitides: Detection, sequencing, and 15N incorporation. Biopolymers, 102(2), 168–175. https://doi.org/10.1002/bip.22459; Lao, Y. W., Mackenzie, K., Vincent, W., Krokhin, O. V. (2014). Characterization and complete separation of major cyclolinopeptides in flaxseed oil by reversedphase chromatography. Journal of Separation Science, 37(14), 1788–1796. https://doi.org/10.1002/jssc.201400193; Tan, N.-H., Zhou, J. (2006). Plant cyclopeptides. Chemical Reviews, 106(3), 840– 895. https://doi.org/10.1021/cr040699h; Kaufmann, H. P., Tobschirbel, A. (1959). About an oligopeptide from flax seeds. Chemische Berichte, 92(11), 2805–2809. https://doi.org/10.1002/cber.19590921122 (In German); Deng, S., Li, J., Luo, T., Deng, Z. (2022). Flaxseed cyclic peptide [1–9-NαC]- linusorb B3 (CLA) improves oxidative stability of flaxseed oil by chelating metal ions and intermediate oxidative products. Journal of Agricultural and Food Chemistry, 70(50), 15776–15786. https://doi.org/10.1021/acs.jafc.2c06102; Morita, H., Shishido, A., Matsumoto, T., Takeya, K., Itokawa, H., Hirano, T. et al. (1997). A new immunosuppressive cyclic nonapeptide, cyclolinopeptide B from Linum usitatissimum. Bioorganic Medicinal Chemistry Letters, 7(10), 1269–1272. https://doi.org/10.1016/s0960-894x(97)00206-0; Morita, H., Shishido, A., Matsumoto, T., Itokawa, H., Takeya, K. (1999). Cyclolinopeptides B–E, new cyclic peptides from Linum usitatissimum. Tetrahedron, 55(4), 967–976. https://doi.org/10.1016/s0040-4020(98)01086-2; Olivia C. (2013) High Throughput Screeening of Flax (Linum usitatissimum L.) Cyclolinopeptides. Thesis Degree of Master of Science University of Saskatchewan, Saskatoon. Retrieved from https://harvest.usask.ca/items/25362000-bf73–443d80c4–22af6b940f57 Accessed August 21, 2024.; Matsumoto, T., Shishido, A., Morita, H., Itokawa, H., Takeya, K. (2001). Cyclolinopeptides F-I, cyclic peptides from linseed. Phytochemistry, 57(2), 251–260. https://doi.org/10.1016/s0031-9422(00)00442-8; Stefanowicz, P. (2004). Electrospray mass spectrometry and tandem mass spectrometry of the natural mixture of cyclic peptides from linseed. European Journal of Mass Spectrometry, 10(5), 665–671. https://doi.org/10.1255/ejms.657; Stefanowicz, P. (2001). Detection and sequencing of new cyclic peptides from linseed by electrospray ionization mass spectrometry. Acta Biochimica Polonica, 48(4), 1125–1129. https://doi.org/10.18388/abp.2001_3877; Dahiya, R., Dahiya, S., Shrivastava, J., Fuloria, N. K., Gautam, H., Mourya, R. et al. (2021). Natural cyclic polypeptides as vital phytochemical constituents from seeds of selected medicinal plants. Archiv Der Pharmazie — Chemistry in Life Sciences, 354(4), Article 2000446. https://doi.org/10.1002/ardp.202000446; Reaney, M. J., Jia, Y., Shen, J., Schock, C., Tyler, N., Elder. J. et al. (2008). Recovery of hydrophobic peptides from oils. Patent US No. 8383172.; Burnett, P.-G. G., Jadhav, P. D., Okinyo-Owiti, D. P., Poth, A. G., Reaney, M. J. T. (2015). Glycine-containing flaxseed orbitides. Journal of Natural Products, 78(4), 681–688. https://doi.org/10.1021/np5008558; Gui, B., Shim, Y. Y., Datla, R. S. S., Covello, P. S., Stone, S. L., Reaney, M. J. T. (2012). Identification and quantification of cyclolinopeptides in five flaxseed cultivars. Journal of Agricultural and Food Chemistry, 60(35), 8571–8579. https://doi.org/10.1021/jf301847u; Zou, X.-G., Chen, X.-L., Hu, J.-N., Wang, Y.-F., Gong, D.-M., Zhu, X.-M. et al. (2017). Comparisons of proximate compositions, fatty acids profile and micronutrients between fiber and oil flaxseeds (Linum usitatissimum L.). Journal of Food Composition and Analysis, 62, 168–176. https://doi.org/10.1016/j.jfca.2017.06.001; Wang, D. (2014). Extraction of Orbitides from Flaxseed. Thesis Degree of Master of Science University of Saskatchewan, Saskatoon. Retrieved from http://hdl.handle.net/10388/ETD2014-02-1435 Accessed August 30, 2024.; Aladedunye, F., Sosinska, E., Przybylski, R. (2013). Flaxseed cyclolinopeptides: Analysis and storage stability. Journal of the American Oil Chemists’ Society, 90(3), 419–428. https://doi.org/10.1007/s11746-012-2173-0; Burnett, P.-G. G., Olivia, C. M., Okinyo-Owiti, D. P., Reaney, M. J. T. (2016). Orbitide composition of the flax core collection (FCC). Journal of Agricultural and Food Chemistry, 64(25), 5197–5206. https://doi.org/10.1021/acs.jafc.6b02035; Cai, Z.-Z., Xu, C.-X., Song, Z.-L., Li, J.-L., Zhang, N., Zhao, J.-H. et al. (2024). A two-step method of cyclolinopeptide (linusorb) preparation from flaxseed cake via dry-screening. Food Chemistry, 449, Article 139243. https://doi.org/10.1016/j.foodchem.2024.139243; Zou, X.-G., Li, J., Sun, P.-L., Fan, Y.-W., Yang, J.-Y., Deng, Z.-Y. (2020). Orbitides isolated from flaxseed induce apoptosis against SGC7901 adenocarcinoma cells. International Journal of Food Sciences and Nutrition, 71(8), 929–939. https://doi.org/10.1080/09637486.2020.1750573; Zou, X.-G., Hu, J.-N., Zhu, X.-M., Wang, Y.-F., Deng, Z.-Y. (2018). Methionine sulfone-containing orbitides, good indicators to evaluate oxidation process of flaxseed oil. Food Chemistry, 250, 204–212. https://doi.org/10.1016/j.foodchem.2018.01.030; Zeng, J., Xiao, T., Ni, X., Wei, T., Liu, X., Deng, Z.-Y. et al. (2022). The comparative analysis of different oil extraction methods based on the quality of flaxseed oil. Journal of Food Composition and Analysis, 107, Article 104373. https://doi.org/10.1016/j.jfca.2021.104373; Kaneda, T., Nakajima, Y., Koshikawa, S., Nugroho, A. E., Morita, H. (2019). Cyclolinopeptide F, a cyclic peptide from flaxseed inhibited RANKLinduced osteoclastogenesis via downergulation of RANK expression. Journal of Natural Medicines, 73(3), 504–512. https://doi.org/10.1007/s11418-019-01292-w; Brühl, L., Bonte, A., N’Diaye, K., Matthäus, B. (2022). Oxidation of cyclo-lino peptides in linseed oils during storage. European Journal of Lipid Science and Technology, 124(12), Article 2200137. https://doi.org/10.1002/ejlt.202200137; Liu, X., Cai, Z.-Z., Lee, W. J., Lu, X.-X., Reaney, M. J. T., Zhang, J.-P. et al. (2021). A practical and fast isolation of 12 cyclolinopeptides (linusorbs) from flaxseed oil via preparative HPLC with phenyl-hexyl column. Food Chemistry, 351, Article 129318. https://doi.org/10.1016/j.foodchem.2021.129318; Brühl, L., Matthäus, B., Fehling, E., Wiege, B., Lehmann, B., Luftmann, H. et al. (2007). Identification of bitter off-taste compounds in the stored cold pressed linseed oil. Journal of Agricultural and Food Chemistry, 55(19), 7864–7868. https://doi.org/10.1021/jf071136k; https://www.fsjour.com/jour/article/view/624

  2. 2
    Academic Journal

    Πηγή: Drug development & registration; Том 13, № 3 (2024); 199-207 ; Разработка и регистрация лекарственных средств; Том 13, № 3 (2024); 199-207 ; 2658-5049 ; 2305-2066

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1911/1310; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1911/2424; Moosmann B., Huppertz L. M., Hutter M., Buchwald A., Ferlaino S., Auwärter V. Detection and identification of the designer benzodiazepine flubromazepam and preliminary data on its metabolism and pharmacokinetics. Journal of Mass Spectrometry. 2013;48(11):1150–1159.; Воронина Т. А., Середенин С. Б. Перспективы поиска новых анксиолитиков. Экспериментальная и клиническая фармакология. 2002;65(5):4–17.; Городничев А. В., Костюкова Е. Г. Место феназепама в современном применении бензодиазепиновых транквилизаторов. Современная терапия психических расстройств. 2011;2:26–29.; Середенин С. Б., Воронина Т. А., Незнамов Г. Г., Жердев В. П. Феназепам: 25 лет в медицинской практике. Москва: Наука; 2007. 222 с.; Осадший Ю. Ю., Вобленко Р. А., Арчаков Д. С., Тараканова Е. А. Место бензодиазепинов в современной терапии психических расстройств (обзор доказательных исследований). Современная терапия психических расстройств. 2016;1:2–10.; Brunetti P., Giorgetti R., Tagliabracci A., Huestis M. A., Busardò F. P. Designer benzodiazepines: a review of toxicology and public health risks. Pharmaceuticals. 2021;14(6):560. DOI:10.3390/ph14060560.; Kerrigan S., Mellon M. B. Hinners P. Detection of phenazepam in impaired driving. Journal of Analytical Toxicology. 2013;37(8):605–610. DOI:10.1093/jat/bkt075.; Stephenson J. B., Golz D. E., Brasher M. J. Phenazepam and its Effects on Driving. Journal of Analytical Toxicology. 2013;37(1):25–29. DOI:10.1093/jat/bks080.; Воронина Т. А. Ларионов В. Б., Головенко Н. Я., Неробкова Л. Н., Гайдуков И. О. Роль 3-оксиметаболита феназепама и леваны в реализации их нейротропного действия. Фармакокинетика и фармакодинамика. 2014;1:44–49.; Zastrozhin M. S., Skryabin V. Yu., Sorokin A. S., Petukhov A. E., Smirnov V. V., Pankratenko E. P., Grishina E. A., Ryzhikova K. A., Panov A. S., Savchenko L. M., Bryun E. A., Sychev D. A. CYP3A subfamily activity affects the equilibrium concentration of Phenazepam® in patients with anxiety disorders and comorbid alcohol use disorder. Pharmacogenomics. 2020;21(7):449–457. DOI:10.2217/pgs-2019-0071.; Pennings E., van Amsterdam J. G. C., Schoones J. W., Kershaw S. Phenazepam Pre-Review Report Agenda item 5.8 Expert Committee on Drug Dependence Thirty-seventh Meeting. World Health Organization. 2015.; Жердев В. П., Воронина Т. А., Гарибова Т. Л., Колыванов Г. Б., Литвин А. А., Сариев А. К., Тохмахчи В. Н., Васильев А. Е. Оценка фармакокинетики и эффективности феназепама у крыс при трансдермальном и энтеральном способах введения. Экспериментальная и клиническая фармакология. 2003;66(1):50–53.; Ékonomov A. L., Zherdev V. P. Method of quantitative gas-chromatographic determination of phenazepam and its metabolite 3-hydroxyphenazepam in plasma. Pharmaceutical Chemistry Journal. 1980;14(8):579–582.; O’Connor L. C., Torrance H. J., McKeown D. A. ELISA detection of phenazepam, etizolam, pyrazolam, flubromazepam, diclazepam and delorazepam in blood using Immunalysis® benzodiazepine kit. Journal of Analytical Toxicology. 2016;40(2):159–161. DOI:10.1093/jat/bkv122.; Mastrovito R. A., Papsun D. M., Logan B. K. The Development and Validation of a Novel Designer Benzodiazepines Panel by LC-MS-MS. Journal of Analytical Toxicology. 2021;45(5):423–428. DOI:10.1093/jat/bkab013.; Yang C.-A., Tsai C.-Y., H.-C. Liu, Liu R. H., Lin D.-L. Designer benzodiazepines and their metabolites in post- and antemortem specimens: Quantitation by UHPLC-MS/MS and findings in Taiwan. Toxicologie Analytique et Clinique. 2022;34(3):S180. DOI:10.1016/j.toxac.2022.06.312.; Mei V., Concheiro M., Pardi J., Cooper G. Validation of an LC-MS/MS Method for the Quantification of 13 Designer Benzodiazepines in Blood. Journal of Analytical Toxicology. 2019;43(9):688–695. DOI:10.1093/jat/bkz063.; Pettersson Bergstrand M., Beck O., Helander A. Urine analysis of 28 designer benzodiazepines by liquid chromatography-high-resolution mass spectrometry. Clinical Mass Spectrometry. 2018;10:25–32. DOI:10.1016/j.clinms.2018.08.004.; Crichton M. L., Shenton C. F., Drummond G., Beer L. J., Seetohul L. N., Maskell P. D. Analysis of phenazepam and 3-hydroxyphenazepam in post-mortem fluids and tissues. Drug Testing and Analysis. 2015;7(10):926–936. DOI:10.1002/dta.1790.; Bioanalytical Method Validation. Guidance for Industry. New Hampshire: Biopharmaceutics; 2018. 44 p.; https://www.pharmjournal.ru/jour/article/view/1911

  3. 3
    Academic Journal

    Συνεισφορές: The article was published as part of the research topic No. FGUS-2022-0004 of the state assignment of the V.M. Gorbatov Federal Research Center for Food Systems of RAS., Работа выполнена в рамках выполнения исследований по государственному заданию FGUS-2022-0004 Федерального научного центра пищевых систем им. В.М. Горбатова РАН.

    Πηγή: Food systems; Vol 5, No 4 (2022); 298-307 ; Пищевые системы; Vol 5, No 4 (2022); 298-307 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2022-5-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/203/206; Оганесянц, Л. А., Песчанская, В. А., Осипова, В. П., Дубинина, Е. В., Алиева, Г. А. (2013). Качественный и количественный состав летучих компонентов плодовых водок. Виноделие и виноградарство, 6, 22–24.; Дубинина, Е. В., Алиева, Г. А. (2015). Исследование корреляционной зависимости между органолептической оценкой и содержанием летучих компонентов плодовых водок. Виноделие и виноградарство, 3, 29–34.; Оганесянц, Л. А., Лорян, Г. В. (2015). Летучие компоненты шелковичных дистиллятов. Виноделие и виноградарство, 2, 17–20.; Трофимченко, В. А., Севостьянова, Е. М., Осипова, В. П., Преснякова, О. П. (2019). Критерии оценки подготовленной воды при производстве плодовых водок. Пиво и напитки, 4, 10–14. https://doi.org/10.24411/2072–9650–2019–10011; Дубинина, Е. В., Севостьянова, Е. М., Крикунова, Л. Н., Ободеева, О. Н. (2021). Влияние минерального состава умягченной воды на качественные показатели спиртных напитков из растительного сырья. Ползуновский вестник, 1, 11–19. https://doi.org/10.25712/ASTU.2072–8921.2021.01.002; Белкин, Ю. Д., Пастухова, В. О. (20 января 2018). Новые подходы к идентификации и экспертизе качества плодовых водок. Инновационные технологии в науке и образовании. Сборник статей VII Международной научно-практической конференции: в 2 частях. Пенза, 2018.; Baldovini, N., Chaintreau, A. (2020). Identification of key odorants in complex mixtures occurring in nature. Natural Product Reports, 37(12), 1589–1626. https://doi.org/10.1039/d0np00020e; Magdas, D. A., David, M., Berghian-Grosan, C. (2022). Fruit spirits fingerprint pointed out through artificial intelligence and FT-Raman spectroscopy. Food Control, 133, Article 108630. https://doi.org/10.1016/j.foodcont.2021.108630; Popović, B. T., Mitrović, O.V., Leposavić, A. P., Paunović, S. A., Jevremović, D. R., Nikićević, N. J. et al. (2019). Chemical and sensory characterization of plum spirits obtained from cultivar Čačanska Rodna and its parent cultivars. Journal of the Serbian Chemical Society, 84(12), 1381–1390. https://doi.org/10.2298/JSC190307061P; Jakubíková, M., Sádecká, J., Kleinová, A. (2018). On the use of the fluorescence, ultraviolet–visible and near infrared spectroscopy with chemometrics for the discrimination between plum brandies of different varietal origins. Food Chemistry, 239, 889–897. http://doi.org/10.1016/j.foodchem.2017.07.008; Jakubíková, M., Sádecká, J., Hroboňová, K. (2019). Classification of plum brandies based on phenol and anisole compounds using HPLC. European Food Research and Technology, 245(8), 1709–1717. https://doi.org/10.1007/s00217–019–03291–3; Kamiloglu, S. (2019). Authenticity and traceability in beverages. Food Chemistry, 277, 2–24. https://doi.org/10.1016/j.foodchem.2018.10.091; Coldea, T. E, Socaciu, C., Moldovan, Z., Mudura, E. (2014). Minor volatile compounds in traditional homemade fruit brandies from Transylvania-Romania, as determined by GC–MS analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 530–537. https://doi.org/10.15835/nbha4229607; Bajer, T., Hill, M.,Ventura, K., Bajerova, P. (2020). Authentification of fruit spirits using HS-SPME/GC-FID and OPLS methods. Scientific Reports, 10(1), Article 18965. https://doi.org/10.1038/s41598–020–75939–0; Winterová, R., Mikulicova, R., Mazac, J., Havelec, P. (2008). Assessment of the authenticity of fruit spirits by gas chromatography and stable isotope ratio Czech Journal of Food Sciences, 26(5), 368–375. https://doi.org/10.17221/1610-CJFS; Śliwińska, M., Wisniewska, P., Dymerski, T., Wardencki, W., Namiesnik, J. (2015) The flavour of fruit spirits and fruit liqueurs: A review. Flavour and Fragrance Journal, 30(3), 197–207. https://doi.org/10.1002/ffj.3237; Coldea, T. E., Mudura, E., Socaciu, C. (2017). Advances in distilled beverages authenticity and quality testing. Chapter in a book: Ideas and Applications Toward Sample Preparation for Food and Beverage Analysis. IntechOpen, United Kingdom, 2017. http://doi.org/10.5772/intechopen.72041; Zhang, X., Wang, C., Wang, L., Chen, S., Xu, Y. (2020). Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). Journal of Chromatography A, 1610, Article 460584. https://doi.org/10.1016/j.chroma.2019.460584; Wiśniewska, P., Śliwińska, M., Dymerski, T., Wardencki, W., Namieśnik, J. (2016). The analysis of raw spirits — A review of methodology. Journal of the Institute of Brewing, 122(1), 5–10. https://doi.org/10.1002/jib.288; Egea, M. B., Bertolo, M. R. V., Filho, J. G. O., Lemes, A. C. (2021). A narrative review of the current knowledge on fruit active aroma using gas chromatography — olfactometry (GC-O) analysis. Molecules, 26(17), Article 5181. https://doi.org/10.3390/molecules26175181; Guillot, S., Peytavi, L., Bureau, S., Boulanger, R., Lepoutre, J.-P., Crouzet, J. et al. (2006). Aroma characterization of various apricot varieties using head-space–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chemistry, 96(1), 147–155. https://doi.org/10.1016/j.foodchem.2005.04.016; Wang, H., Ma, Y., Li, M., Shi, L., Zhang, S., Wang, W. et al. (2018). Volatiles of ripe fruit Prunus salicina L. cv. Friar as determined by gas chromatography-mass spectrophotometry as developed during cold storage. International Journal of Food Properties, 21(1), 2622–2631. https://doi.org/10.1080/10942912.2018.1536149; Дубинина, Е. В., Крикунова, Л. Н., Песчанская, В. А., Тришканева, М. В. (2021). Научные аспекты разработки идентификационных критериев дистиллятов из фруктового сырья. Техника и технология пищевых производств, 51(3), 480–491. https://doi.org/10.21603/2074–9414–2021–3–480–491; Charapica, S., Sytova, S., Kavalenko,A., Sobolenko, L., Shauchenka, Y.,Kostyk, N. et al. (2021). The method for direct gas chromatographic determination of acetaldehyde, methanol, and other volatiles using ethanol as a reference substance: Application for a wide range of alcoholic beverages. Food Analytical Methods, 14(10), 2088–2100. https://doi.org/10.1007/s12161–021–02047–8; Черепица, С. В., Сытова, С. Н., Корбан, А. Л., Соболенко, Л. Н., Егоров, В. В., Лещев, С. М. и др. (2020). Метод определения содержания летучих компонентов в алкогольной продукции с использованием этанола в качестве внутреннего стандарта: результаты межлабораторных испытаний. Журнал Белорусского государственного университета. Химия, 1, 74–87. https://doi.org/10.33581/2520–257X-2020–1–74–87; Charapitsa, S. V., Sytova, S. N., Korban, A. L., Sobolenko, L. N. (2019) Single-laboratory validation of a gas chromatographic method of direct determination of volatile compounds in spirit drinks: need for an improved interlaboratory study. Journal of AOAC International, 102(2), 669–672. https://doi.org/10.5740/jaoacint.18–0258; Charapitsa, S., Sytova, S., Korban, A., Sobolenko, L., Egorov, V., Leschev, S. et al. (October 23, 2019). Interlaboratory study of ethanol usage as an internal standard in direct determination of volatile compounds in alcoholic products. Web of Conferences, 15, Article 02030. https://doi.org/10.1051/bioconf/20191502030; Черепица, С. В., Сытова, С. Н., Егорова, В. В., Лещев, С. М., Корбан, А. Л., Собаленко, Л. Н. и др. (2019). Валидация метода прямого определения количественного содержания летучих компонентов в спиртосодержащей продукции. Пиво и напитки, 4, 41–45. https://doi.org/10.24411/2072–9650–2019–10005; Charapitsa, S., Sytova, S., Kavalenka, A., Sobolenko, L., Kostyuk, N., Egorov, V.et al. The study of the matrix effect on the method of direct determination of volatile compounds in a wide range of alcoholic beverages. Food Control, 120, Article 107528. https://doi.org/10.1016/j.foodcont.2020.107528; Charapitsa, S., Sytova, S., Kavalenka, A., Sobolenko, L., Shauchenka, Ya., Kostyuk, N. et al. (2021). Development of a quality control material for the analysis of volatile compounds in alcoholic beverages. Journal of Chemical Metrology, 15(2), 113–123. http://doi.org/10.25135/jcm.66.2111.2259; Черепица, С. В., Сытова, С. Н., Коваленко, А. Н. (2021, 24–25 июня) Референтный метод определения количественного содержания летучих компонентов в алкогольной продукции. Наука, питание и здоровье: Сборник научных трудов в 2 частях. Минск: Издательский дом «Беларуская навука», 2021.; Tomková, M., Sádecká, J., Hrobonová, K. (2015). Synchronous fluorescence spectroscopy for rapid classification of fruit spirits. Food Analytical Methods, 8(5), 1258–1267. https://doi.org/10.1007/s12161–014–0010–9; Feng, J.-R., Xi, W.-P., Li, W.-H., Liu, H.-N., Liu, X.-F., Lu, X.-Y. (2015). Volatile characterization of major apricot cultivars of southern Xinjiang region of China. Journal of the American Society for Horticultural Science, 140(5), 466–471. https://doi.org/10.21273/JASHS.140.5.466; Fratianni, F., Cozzolino, R., d’Acierno, A., Ombra, M. N., Spigno, P., Riccardi, R. et al. (2022). Biochemical characterization of some varieties of apricot present in the Vesuvius area, Southern Italy. Frontiers in Nutrition, 9, Article 854868. https://doi.org/10.3389/fnut.2022.854868; Coldea, T. E., Socaciu, C., Moldovan, Z., Mudura E. (2014). Minor volatile compounds in traditional homemade fruit brandies from Transylvania-Romania, as determined by GC–MS analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 530–537. https://doi.org/10.15835/nbha4229607; Tesevic, V., Nikicevic, N., Milosavljevic, S., Bajic, D., Vajs, V., Vuckovic, I. et al. (2009). Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of cornelian cherry. Journal of the Serbian Chemical Society, 74(2), 117–128. https://doi.org/10.2298/JSC0902117T; Vyviurska, O., Matura, F., Furdíková, K., Špánik, I. (2017). Volatile fingerprinting of the plum brandies produced from different fruit varieties. Journal of Food Science and Technology, 54(13), 4284–4301. https://doi.org/10.1007/s13197–017–2900–5; Puškaš, V., Miljić, U., Vučurović, V., Muzalevski, A. (2017). Aromatic compounds of brandies produced from three apricot varieties cultured in Serbia. Journal on Processing and Energy in Agriculture, 21(2), 101–103. https://doi.org/10.5937/jpea1702101p; Uwineza, P. A., Waśkiewicz, A. (2020). Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials.Molecules, 25(17), Article 25173847. https://doi.org/10.3390/molecules25173847; Hererro, M., Mendiola, J. A., Cifuentes, A., Ibanez, E. (2010) Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 1217(16), 2495–2511. https://doi.org/10.1016/j.chroma.2009.12.019; Dziekońska-Kubczak, U., Pielech-Przybylska, K., Patelski, P., Balcerek, M. (2020). Development of the method for determination of volatile sulfur compounds (VSCs) in fruit brandy with the use of HS–SPME/ GC–MS. Molecules, 25(5), Article 1232. https://doi.org/10.3390/molecules25051232; Vyviurska, O., Zvrškovcová, H., I. Špánik, I. (2017). Distribution of enantiomers of volatile organic compounds in selected fruit distillates. Chirality, 29(1), 14–18. https://doi.org/10.1002/chir.22669; Stuff, J., Whitecavage, J. A., Linthicum, S. J., Pawliszyn, J. (2018). Analysis of beverage samples using Thin Film Solid Phase Microextraction (TF-SPME) and Thermal Desorption GC/MS. GERSTEL Application Note, 200, 1–9.; Muñoz-Redondo, J. M., Valcárcel-Muñoz, M. J., Rodríguez Solana, R., Puertas, B., Cantos-Villar, E., Moreno-Rojas, J. M. (2022). Development of a methodology based on headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry for the analysis of esters in brandies. Journal of Food Composition and Analysis, 108, Article 104458. https://doi.org/10.1016/j.jfca.2022.104458; Bajer, T., Bajerová, P., Surmová, S., Kremr, D., Ventura, K., Eisner, A. (2017). Chemical profiling of volatile compounds of various home-made fruit spirits using headspace solid-phase microextraction. Journal of the Institute of Brewing, 123(1), 105–112. https://doi.org/10.1002/jib.386; Cvetković, D., Stajilcovic, P., Zvezdanovich, J.B., Stanojevic, J., Stanojevic, L., Karabegovic-Stanisavljevic, I. T. (2020). The identification of volatile aroma compounds from local fruit based spirits using a head-space solid-phase microextraction technique coupled with the gas chromatography-mass spectrometry. Advanced Technologies, 9(2), 19–28. https://doi.org/10.5937/savteh2002019C; Pour Nikfardjam, M., Schäfer, L., Schips, C., Farr, T., Endres, A., Hirn, S. et al. (2022). Ethyl carbamate and aroma compounds in distilled spirits from different stone fruits. Mitteilungen Klosterneuburg, 72(1), 37–50.; Pati, S., Tufariello, M., Crupi, P., Coletta, A., Grieco, F., Losito, I. (2021). Quantification of volatile compounds in wines by HS-SPME-GC/MS: critical issues and use of multivariate statistics in method optimization. Processes, 9(4), Article 662. https://doi.org/10.3390/pr9040662; Niimi, J., Guixer, B., Splivallo, R. (2020) Odour active compounds determined in the headspace of yellow and black plum wines (Prunus domestica L.). LWT, 130, Article 109702. https://doi.org/10.1016/j.lwt.2020.109702; Pino, J. A., Quijano, C. E. (2012). Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Ciencia e Tecnologia de Alimentos, 32(1), 76–83. http://doi.org/10.1590/S0101–20612012005000006; Заяц, М. Ф., Юрченко, Р. А., Лещев, С. М., Винирский, В.А., Зубкевич, А.Л. (2012). Об основных принципах пробоподготовки водочной продукции при определении ее подлинности путем газохроматографического анализа равновесной паровой фазы. Вестник БГУ. Серия 2: Химия. Биология. География, 1, 23–28.; Liu, S., Huang, Y., Qian, C., Xiang, Z., Ouyang, G. (2020). Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. TrAC — Trends in Analytical Chemistry, 128, Article 115916. https://doi.org/10.1016/j.trac.2020.115916; Zhakupbekova, A., Baimatova, N., Kenessov, B. (2019). A critical review of vacuumassisted headspace solid-phase microextraction for environmental analysis. Trends in Environmental Analytical Chemistry, 22, Article e00065. https://doi.org/10.1016/j.teac.2019.e00065; Sajid, M., Płotka-Wasylka, J. (2018). Combined extraction and microextraction techniques: recent trends and future perspectives. TrAC — Trends in Analytical Chemistry, 103, 74–86. https://doi.org/10.1016/j.trac.2018.03.013; Wang, H., Ding, J., Ren, N. (2016). Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. TrAC — Trends in Analytical Chemistry, 75, 197–208. https://doi.org/10.1016/j.trac.2015.05.005; Fernández-Amado, M., Prieto-Blanco, M. C., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D. (2016). Strengths and weaknesses of in-tube solidphase microextraction: A scoping review. Analytica Chimica Acta, 906, 41–57. https://doi.org/10.1016/j.aca.2015.12.007; Mei, M., Huang, X., Luo, Q., Yuan, D. (2016). Magnetism-enhanced monolith-based in-tube solid phase microextraction. Analytical Chemistry, 88(3), 1900–1907. https://doi.org/10.1021/acs.analchem.5b04328; Zhou, Q., Qian, Y., Qian, M. C. (2015). Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1390, 22–27. https://doi.org/10.1016/j.chroma.2015.02.064; Barba, C., Thomas-Danguin, T., Guichard, E. (2017). Comparison of stir bar sorptive extraction in the liquid and vapour phases, solvent-assisted flavour evaporation and headspace solid-phase microextraction for the (non)-targeted analysis of volatiles in fruit juice. LWT, 85, 334–344. http://doi.org/10.1016/j.lwt.2016.09.015; https://www.fsjour.com/jour/article/view/203

  4. 4
    Report

    Συγγραφείς: Тань, Минь

    Συνεισφορές: Гавриленко, Михаил Алексеевич

    Περιγραφή αρχείου: application/pdf

    Relation: Тань М. Исследование экстракции родамина в объеме полиметилметакрилатной матрицы : магистерская диссертация / М. Тань; Национальный исследовательский Томский политехнический университет (ТПУ), Инженерная школа природных ресурсов (ИШПР), Отделение химической инженерии (ОХИ); науч. рук. М. А. Гавриленко. — Томск, 2023.; http://earchive.tpu.ru/handle/11683/75420

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/75420

  5. 5
  6. 6
    Conference

    Συνεισφορές: Gavrilenko, Mikhail Alekseevich

    Relation: Проблемы геологии и освоения недр : труды XXIII Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 120-летию со дня рождения академика К. И. Сатпаева, 120-летию со дня рождения профессора К. В. Радугина, Томск, 8-12 апреля 2019 г. Т. 2. — Томск, 2019.; http://earchive.tpu.ru/handle/11683/56414

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/56414

  7. 7
  8. 8
    Conference

    Συνεισφορές: Гавриленко, Н. А.

    Relation: Химия и химическая технология в XXI веке : материалы XIX Международной научно-практической конференции студентов и молодых ученых имени профессора Л. П. Кулёва, 21-24 мая 2018 г., г. Томск. — Томск, 2018.; http://earchive.tpu.ru/handle/11683/49902

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/49902

  9. 9
  10. 10
    Academic Journal

    Πηγή: Drug development & registration; Том 8, № 3 (2019); 86-90 ; Разработка и регистрация лекарственных средств; Том 8, № 3 (2019); 86-90 ; 2658-5049 ; 2305-2066

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/719/683; Штин С. Учебно-методический комплекс дисциплины «Особенности пробоотбора и пробоподготовки объектов окружающей среды». Екатеринбург: Урал. гос. ун-т им. А. М. Горького. 2008: 47.; Бок Р. Методы разложения в аналитической химии. М. 1984: 432.; Пупышев А. Пламенный и электротермический атомно-абсорбционный анализ. Екатеринбург: Урал. гос. техн. ун-т. 2008: 101.; Субботина Н. С., Дмитрук С. Е., Бабешина Л. Г., Келус Н. В., Никифоров Л. А., Носкова Г. Н., Тартынова М. И. Исследование исходного сырья и экстрактов на содержание тяжелых металлов. Вестник Новосибирского государственного университета. Серия: Биология, клиническая медицина. 2010; 8 (3): 92–97.; Кингстон Г. М., Джесси Л. В. Пробоподготовка в микроволновых печах. М. 1991: 326.; Орлова В. А. Автоклавная пробоподготовка в химическом анализе. Дис. . докт. хим. наук. М. 2001: 313.; Kelus N., Novikova Y., Chuchalin V., Blokhina E., Novikov D. Investigation of metal ions sorption of brown peat moss powder. AIP Conference Proceedings. 2017; 1899(1): 050002. https://doi.org/10.1063/1.5009865.; Келус Н. В. Технология сорбента на основе сфагнового мха. Дис. . канд. фарм. наук. – Спб. 2013: 147.; Lezhava S. P., Pershina A. G., Kokova D. A. Opistorchisfelineus Infection and Harmful Metals Bio-Concentration. A Pilot Study in Hamster Model. 2015; 1085: 370–376.; Tulipani S., Llorach R., Urpi-Sarda M. Comparative Analysis of Sample Preparation Methods. Anal. Chem. 2012: 341–348.; Segstro E., Goltz D., Hall T. Eaching Sample Preparation in the Undergraduate Laboratory. J. Chem. Educ. 2000: 1486.; Steehler J. K. Sample preparation techniques in analytical chemistry. J. Chem. Educ. 2004: 162–199.; https://www.pharmjournal.ru/jour/article/view/719

  11. 11
    Academic Journal

    Πηγή: Pharmacy & Pharmacology; Том 7, № 2 (2019); 70-83 ; Фармация и фармакология; Том 7, № 2 (2019); 70-83 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2019-7-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/362/526; https://www.pharmpharm.ru/jour/article/view/362/527; Головко, А.И. Краткий обзор синтетических каннабиноидов, появившихся в незаконном обороте в 2014–2015 гг. / А.И. Головко, М.Б. Иванов, Е.Ю. Бонитенко, В.А. Баринов, В.А. Башарин // Наркология. – 2016. – Т. 15, №2(170). – С. 59–73.; Грибкова, С.Е. Исследование нового синтетического наркотика – метилового эфира алкилиндазола (MDMB(N)-073), поиск и идентификация его метаболитов методом ВЭЖХ-МС/МС / С.Е. Грибкова, В.А. Калашников, Е.В. Никитин // Наркология. – 2015. – Т. 14, № 10(166). – С. 87–97.; О внесении изменений в некоторые акты Правительства Российской Федерации в связи с совершенствованием контроля за оборотом наркотических средств [Электронный ресурс]: постановление Правительства Рос. Федерации от 12.10.2015 № 1097. – Режим доступа: http://www.consultant.ru/document/cons_doc_LAW_187423/.; Катаев, С.С. Идентификация метаболитов канна-бимиметика 5F-AB-PINACA в моче методом ГХ-МС / С.С. Катаев, О.Н. Дворская, М.А. Гофенберг, А.Б. Мелентьев // Бутлеровские сообщения. – 2014. – Т. 39, №8. – С. 150–160.; Дворская О.Н., Катаев С.С., Мелентьев А.Б. Идентификация маркеров некоторых синтетических каннабиноидов в биологических объектах: информационное письмо. – Ижевск: Принт, 2017. – 34 с.; https://www.pharmpharm.ru/jour/article/view/362

  12. 12
    Academic Journal

    Πηγή: Food systems; Vol 1, No 4 (2018); 19-26 ; Пищевые системы; Vol 1, No 4 (2018); 19-26 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2018-1-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/22/61; https://www.fsjour.com/jour/article/view/22/62; Rashidinejad, A., Bremer, P., Birch, J., Oey, I. (2017). Nutrients in Cheese and Their Effect on Health and Disease. Book Chapter. Nutrients in Dairy and their Implications on Health and Disease. 177–192 р.; Боровская, А.В. (2009). Исследование и р азработка технологии полутвердого сычужного сыра. Автореф. канд. техн. наук. Кемерово, КемТИПП. — 24 с.; Лисин, П.А. (2009). Исследование физико-химических процессов производства сыра с целью интенсификации технологии и повышения качества продукции. Автореф. канд. техн. наук. Кемерово, КемТИПП. — 48 с.; Давыдова, Е. А., Заболоцкая, Т. А. (2017). Влияние молочного сырья на формирование пороков в сырах, вырабатываемых с применением пропионовокислых бактерий. Переработка и хранения сельскохозяйственной продукции, 45–47. [Электронный ресурс: http://rep.bsatu.by/bitstream/doc/513/5/Davydova-E-A-Vliyanie-molochnogo-syrya-naformirovanie-porokov-v-syrah-vyrabatyvaemyh-s-primeneniem-propionovokislyh-bakterij.pdf. Дата обращения 15.11.2018]; Zabaleta, L., Gourrat, K., Barron, L.J.R., Albisu, M., Guichard, E. (2016). Identification of odour-active compounds in ewes’ raw milk commercial cheeses with sensory defects. International Dairy Journal, 58, 23–30.; Fox, P. F., Guinee, Timothy P., Cogan, Timothy M., McSweeney, Paul L. H. (2017). Fundamentals of cheese science. New York: Springer. — С. 388. ISBN 9781489976796; Diezhandino, I., Fernández, D., González, L., McSweeney, P.L.H., Fresno, J.M. (2015). Microbiological, physico-chemical and proteolytic changes in a Spanish blue cheese during ripening (Valdeón cheese). Food chemistry, 168, 134–141.; Ozturkoglu Budak, S., Figge, M.J., Houbraken, J., de Vries, R.P. (2016). The diversity and evolution of microbiota in traditional Turkish Divle Cave cheese during ripening. International Dairy Journal, 58, 50–53.; Arenas, R., González, L., Sacristán, N., Tornadijo, M.E., Fresno, J.M. (2015). Compositional and biochemical changes in Genestoso cheese, a Spanish raw cow’s in a hard cheese model. Food Science and Technology International, 24(1), 67–77.; Sieuwerts, S., Bron, P.A., Smid, E.J. (2018). Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT — Food Science and Technology, 90, 201–206.; Edalatian, M. R., Habibi Najafi, M. B., Koocheki, A. (2015). Evaluation of chemical and microbial properties of Iranian white cheese using kefir, yogurt and commercial cheese culture as a starter. Journal of Food and Bioprocess Engineering, 1(1), 27–37.; Bertuzzi, A.S., McSweeney, P.L.H., Rea, M.C., Kilcawley, K.N. (2018). Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese. Comprehensive Reviews in Food Science and Food Safety,17(2), 371–390.; Ávila, M., Gómez-Torres, N., Delgado, D., Gaya, P., Garde, S. (2017). Effect of high-pressure treatments on proteolysis, volatile compounds, texture, colour, and sensory characteristics of semi-hard raw ewe milk cheese. Food Research International, 100, 595–602.; Niimi, J., Eddy, A.I., Overington, A.R., Silcock, P., Bremer, P.J., Delahunty, C.M. (2015). Sensory interactions between cheese aroma and taste. Journal of sensory studies, 30(3), 247–257.; Cuffia, F., Bergamini, C.V., Wolf, I.V., Hynes, E.R., Perotti, M.C. (2018). Characterization of volatile compounds produced by Lactobacillus helveticus strains in a hard cheese model. Food Science and Technology International, 24(1), 67–77.; Holland, R., Liu, S.-Q., Crow, V.L., Delabre, M.-L., Lubbers, M., Bennett, M., Norris, G. (2005). Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. International Dairy Journal, 15(6–9), 711–718.; Fröhlich-Wyder, M.-T., Bisig, W., Guggisberg, D., (.), Turgay, M., Wechsler, D. (2017). Cheeses with propionic acid fermentation (Book Chapter). Cheese: Chemistry, Physics and Microbiology: Fourth Edition, 889–910.; Andiç S., Tunçtürk Y., Boran G. (2014). Chapter 28. Changes in Volatile Compounds of Cheese. –pp. 231–239. In book: Preedy, V. Processing and Impact on Active Components in Food. Academic Press. — 724 p.; https://www.fsjour.com/jour/article/view/22

  13. 13
    Academic Journal

    Πηγή: Pharmacy & Pharmacology; Том 5, № 6 (2017); 543-555 ; Фармация и фармакология; Том 5, № 6 (2017); 543-555 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2017-5-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/278/437; Chen X.H., Franke J.P., Wijsbeek J., de Zeeuw R.A. Isolation of acidic, neutral, and basic drugs from whole blood using a single mixed-mode solid-phase extraction column // J Anal Toxicol. 1992. Vol. 16. Is. 6. P. 351–355. DOI:10.1093/jat/16.6.351; Chen X.H., Franke J.P., Wijsbeek J., de Zeeuw R.A. Study of lot-to-lot reproducibilities of Bond Elut Certify and Clean Screen DAU mixed-mode solid-phase extraction columns in the extraction of drugs from whole blood // J Chromatogr. 1993. Vol. 617. No. 1. P. 147–151. DOI:10.1016/0378-4347(93)80434-6; Lai C.K., Lee T., Au K.M., Chan A.Y. Uniform solid-phase extraction procedure for toxicological drug screening in serum and urine by HPLC with photodiode-array detection // Clin Chem. 1997. Vol. 43. No. 2. P. 312–325.; Rittner M., Pragst F., Bork W.R., Neumann J. Screening method for seventy psychoactive drugs or drug metabolites in serum based on high-performance liquid chromatography–electrospray ionization mass spectrometry // J Anal Toxicol. 2001. Vol. 25. No. 2. P. 115–124. DOI:10.1093/jat/25.2.115; Takeda A., Tanaka H., Shinohara T., Ohtake I. Systematic analysis of acid, neutral and basic drugs in horse plasma by combination of solid-phase extraction, non-aqueous partitioning and gas chromatography-mass spectrometry // J Chromatogr B Biomed Sci Appl. 2001. Vol. 758. Is. 2. P. 235–248. DOI:10.1016/s0378-4347(01)00189-x; Катаев С.С., Дворская О.Н. Применение твердофазной экстракции в исследовании крови на наркотические и лекарственные вещества // Судебно-медицинская экспертиза. 2012. Т. 55. №4. С. 38–42.; Дворская О.Н., Крохин И.П., Катаев С.С. Опыт применения твердофазной экстракции в скрининге лекарственных и наркотических веществ в крови методом газовой хроматографии с масс-спектрометрическим детектированием // Химико-фармацевтический журнал. 2017. Т. 51. № 3. С. 36–40. DOI:10.1007/s11094-017-1585-4; Катаев С.С., Дворская О.Н., Крохин И.П. Оптимизация процедуры твердофазной экстракции для скрининга лекарственных и наркотических веществ в крови методом газовой хроматографии с масс-спектрометрическим детектированием // Судебно-медицинская экспертиза. 2017. Т. 60. №1. С. 29–35. DOI:10.1017116/sudmed201760129-35; Bogusz M.J., Maier R.D., Schiwy-Bochat K.H, Kohls U. Applicability of various brands of mixed-phase extraction columns for opiate extraction from blood and serum // J Chromatogr B Biomed Sci Appl. 1996. Vol. 683. Is. 2. P. 177–188. DOI:10.1016/0378-4347(96)00120-X; Casale J.F., Piñero E.L. Quantitation of Cocaine by Gas Chromatography-Flame Ionization Detection Utilizing Isopropylcocaine as a Structurally Related Internal Standard // Microgram Journal. 2006. Vol. 4. No. 1–4. P. 47–53.; https://www.pharmpharm.ru/jour/article/view/278

  14. 14
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Аналитика и контроль. 2023. Том 27. № 1; https://journals.urfu.ru/index.php/analitika/article/view/6835; http://elar.urfu.ru/handle/10995/127800; 85173184834

  15. 15
  16. 16
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 12, No 2 (2017); 81-99 ; Тонкие химические технологии; Vol 12, No 2 (2017); 81-99 ; 2686-7575 ; 2410-6593 ; 10.32362/2410-6593-2017-12-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/85/86; Mareck U., Geyer H., Opfermann G., Thevis M., Schänzer W. Factors influencing the steroid profile in doping control analysis // J. Mass Spectrom. 2008. V. 43. № 7. P. 877-891.; Handelsman D.J. The rationale for banning human chorionic gonadotropin and estrogen blockers in sport // J. Clin. Endocrinol. Metab. 2006. V. 91. № 5. P. 1646-1653.; Stenman U.H., Hotakainen K., Alfthan H. Gonadotropins in doping: pharmacological basis and detection of illicit use // Br. J. Pharmacol. 2008. V. 154. № 3. P. 569-583.; Gore A.C. Gonadotropin-releasing hormone (GnRH) neurons: gene expression and neuroanatomical studies // Prog. Brain Res. 2002. V. 141. P. 193-208.; Esposito S., Deventer K., Geldof L., Van Eenoo P. In vitro models for metabolic studies of small peptide hormones in sport drug testing // J. Pept. Sci. 2015. V. 21. № 1. P. 1-9.; Richards S.L., Cawley A.T., Cavicchioli R., Suann C.J., Pickford R., Raftery M.J. Aptamer based peptide enrichment for quantitative analysis of gonadotropin-releasing hormone by LC-MS/MS // Talanta. 2016. V. 150. P. 671-680.; Thomas A., Walpurgis K., Krug O., Schänzer W., Thevis M. Determination of prohibited, small peptides in urine for sports drug testing by means of nano-liquid chromatography/benchtop quadrupole orbitrap tandem-mass spectrometry // J. Chromatogr. A 2012. V. 1259. P. 251-257.; Thomas A., Geyer H., Kamber M., Schänzer W., Thevis M. Mass spectrometric determination of gonadotrophin-releasing hormone (GnRH) in human urine for doping control purposes by means of LC-ESI-MS/MS // J. Mass Spectrom. 2008. V. 43. № 7. P. 908-915.; Handelsman D.J., Swerdloff R.S. Pharmacokinetics of gonadotropin-releasing hormone and its analogs // Endocr. Rev. 1986. V. 7. № 1. P. 95-105.; Yoshida T. Peptide separation by Hydrophilic-Interaction Chromatography: a review // J. Biochem. Biophys. Methods. 2004. V. 60. № 3. P. 265-280.; Sample preparation and chromatografic columns of company Waters // Analiticheskiy kontrol'. Farmatcevticheskaya otrasl' (Analytical Control. Pharmaceutical Industry). 2010. V. 23. № 6. P. 88-89 (in Russ.).; Garcia M.C. The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatographyelectrospray mass spectrometry // J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2005. V. 825. № 2. P. 111-123.; Roepstorff P., Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides // Biomed. Mass Spectrom. 1984. V. 11. № 11. P. 601.; Johnson R.S., Martin S.A., Biemann K., Stults J.T., Throck Watson J. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine // Anal. Chem. 1987. V. 59. № 21. P. 2621-2625.; Bakhtiar R., Guan Z. Electron capture dissociation mass spectrometry in characterization of peptides and proteins // Biotechnol. Lett. 2006. V. 28. № 14. P. 1047-1059.; Sofianos Z.D., Katsila T., Kostomitsopoulos N., Balafas V., Matsoukas J., Tselios T., Tamvakopoulos C. In vivo evaluation and in vitro metabolism of leuprolide in mice - mass spectrometry-based biomarker measurement for efficacy and toxicity // J. Mass Spectrom. 2008. V. 43. № 10. P. 1381-1392.; Michalet S., Favreau P., Stocklin R. Profiling and in vivo quantification of proteins by high resolution mass spectrometry: the example of goserelin, an analogue of luteinizing hormone-releasing hormone // Clin. Chem. Lab. Med. 2003. V. 41. № 12. P. 1589-1598.; Kim H.K. Lee T.H., Suh J.H., Eom H.Y., Min J.W., Yeom H., Kim U., Jung H.J., Cha K.H., Choi Y.S., Youm J.R., Han S.B. Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of goserelin in rabbit plasma // J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2010. V. 878. № 24. P. 2235-2242.; Bioanalysis of biotherapeutics summary [electronic resource] // Waters : [site] : - URL: http://www.waters.com/webassets/cms/library/docs/local_seminar_presentations/DA_Waters_Biotherapeutic_Bioanalysis_summary.pdf.Date of access: 15.08.2016.

  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 10, No 4 (2015); 64-69 ; Тонкие химические технологии; Vol 10, No 4 (2015); 64-69 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/249/302; Жданова Н.В., Халиф А.Л. Осушка углеводородных газов. М.: Химия, 1984. 200 с.; Вяхирев Р.И., Гриценко А.И., Тер-Саркисов Р.М. Разработка и эксплуатация газовых месторождений. М.: ООО «Недра-Бизнесцентр», 2002. 800 с.; Рогалев М.С. // Известия вузов. Нефть и газ. 2012. Т. 96. № 6. С. 99-104.; Федорец А.А., Иванов А.В., Бакин П.Ю., Даутов Т.Р. // Известия вузов. Нефть и газ. 2012. Т. 96. № 6. С. 81-84.; Астахов А. // Аналитика. 2013. Т. 10. № 3. С. 48-52.; Сониясси Р., Сандра П., Шлетт К. Анализ воды: органические микропримеси. СПб.:Теза, 2000. 249 с.; Садек П. Растворители для ВЭЖХ. М.: Бином. Лаборатория знаний, 2010. 704 с.; Лебедев А.Т. Масс-спектрометрия в органической химии. М.: Бином. Лаборатория знаний, 2003. 345 с.; Колодяжный А.В., Ковальчук Т.Н., Коровин Ю.В., Антонович В.П. // Нефтехимия. 2006. Т. 1 № 2. С. 90-104.