Showing 1 - 20 results of 49 for search '"ТБК-АКТИВНЫЕ ПРОДУКТЫ"', query time: 0.69s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Pharmacokinetics and Pharmacodynamics; № 2 (2022); 11-16 ; Фармакокинетика и Фармакодинамика; № 2 (2022); 11-16 ; 2686-8830 ; 2587-7836

    File Description: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/313/299; Aguiar СС, Almeida АВ, Araújo PV, de Abreu RN, et al. Oxidative stress and epilepsy: literature review. Oxid Med Cellr Longev. 2012;2012:795259. DOI:10.1155/2012/795259.; Ferriero DM. Protecting neurons. Epilepsia. 2005;46(7):45–51. DOI:10.1111/j.1528-1167.2005.00302.x.; Beltrán-Sarmiento E, Arregoitia-Sarabia CK, Floriano-Sánchez E, et al. Effects of valproate monotherapy on the oxidant-antioxidant status in mexican epileptic children: a longitudinal study. Oxid Med Cellr Longev. 2018;2018:7954371. DOI:10.1155/2018/7954371.; Yuksel A, Cengiz, M, Seven M, et al. Erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children with valproate and carbamazepine monotherapy. J Basic Clin Physiol Pharmacol. 2000;11(1):73–81. DOI:10.1515/jbcpp.2000.11.1.73.; Verrotti, A, Basciani F, Trotta D, et al. Serum copper, zinc, selenium, glutathione peroxidase and superoxide dismutase levels in epileptic children before and after 1 year of sodium valproate and carbamazepine therapy. Epilepsy Res. 2002;48(1-2):71–75. DOI:10.1016/s0920-1211(01)00322-9.; Liu CS, Wu HM, Kao SH, et al. Serum trace elements, glutathione, copper/zinc superoxide dismutase, and lipid peroxidation in epileptic patients with phenytoin or carbamazepine monotherapy. Clin Neuropharmacol. 1998;21(1):62–64.; Aycicek A., Iscan A. The effects of carbamazepine, valproic acid and phenobarbital on the oxidative and antioxidative balance in epileptic children. Eur Neurol. 2007;57(2):65–69. DOI:10.1159/000098053.; Higuchi S, Yano A, Takai S, et al. Metabolic activation and inflammation reactions involved in carbamazepine-induced liver injury. Toxicol Sci. 2012;130(1):4–16. DOI:10.1093/toxsci/kfs222.; Lu W, Uetrecht JP. Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab Dispos. 2008;36(8):1624–1636. DOI:10.1124/dmd.107.019554.; Brault S, Martinez-Bermudez AK, Marrache AM, et al. Selective Neuromicrovascular Endothelial Cell Death by 8-Iso-Prostaglandin F2: Possible Role in Ischemic Brain Injury. Stroke. 2003;34(3):776–782. DOI:10.1161/01.STR.0000055763.76479.E6.; Cam Ha TT, Antis GG, G. Campbell T, et al. Seizures elevate gliovascular unit Ca 2+ and cause sustained vasoconstriction. JCI Insight. 2020;5(19):e136469. DOI:10.1172/jci.insight.136469.; Van Den Pol AN, Obrietan K., Belousov A. Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture. Neuroscience. 1996;74(3):653–674. DOI:10.1016/0306-4522(96)00153-4.; Francisco JC, Hayley AM, Waldo C. Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plast. 2016;(2016):2701526. DOI:10.1155/2016/2701526.; Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59(5):1609–1623. DOI:10.1111/j.1471-4159.1992.tb10990.x.; Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 3rd ed. Oxford: Oxford Univ. Press; 1999; Chen H, Song YS, Chan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab. 2009;29(7):1262–1272. DOI:10.1038/jcbfm.2009.47.; Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993;215(2):213–219. DOI:10.1111/j.1432-1033.1993.tb18025.x.; Kabuto H, Yokoi I, Ogawa N. Melatonin inhibits iron-induced epileptic discharges in rats by suppressing peroxidation. Epilepsia. 1998;39(3):237–243. DOI:10.1111/j.1528-1157.1998.tb01367.x.; Abe K, Nakanishi K, Saito H. The anticonvulsive effect of glutathione in mice. Biol Pharm Bull. 1999;22(11):1177–1179. DOI:10.1248/bpb.22.1177.; Rola R, Swiader M, Czuczwar SJ. Electroconvulsions elevate the levels of lipid peroxidation products in mice. Pol J Pharmacol. 2002;54(5): 521–524.; Barichello T, Bonatto F, Agostinho FR, et al. Structure-related oxidative damage in rat brain after acute and chronic electroshock. Neurochem Res. 2004;29(9):1749–1753. DOI:10.1023/b:nere.0000035811.06277.b3.; Nieoczym D, Albera E, Kankofer M, et al. Maximal electroshock induces changes in some markers of oxidative stress in mice. J Neural Transm (Vienna). 2008;115(1):19–25. DOI:10.1007/s00702-007-0805-6.; Niketiс V, Ristiс S, Saicic ZS, et al. Activities of antioxidant enzymes and formation of the glutathione adduct of hemoglobin (Hb ASSG) in epileptic patients with long-term antiepileptic therapy. Farmaco. 1995;50(11):811–813.; El-Shenawy NS, Hamza RZ. Nephrotoxicity of sodium valproate and protective role of L-cysteine in rats at biochemical and histological levels. J Basic Clin Physiol Pharmacol. 2016;27(5):497–504. DOI:10.1515/jbcpp-2015-0106.; Arora T, Mehta AK, Sharma KK, et al. Effect of Carbamazepine and Lamotrigine on Cognitive Function and Oxidative Stress in Brain during Chemical Epileptogenesis in Rats. Basic Clin Pharmacol Toxicol. 2009;106(5):372–377. DOI:10.1111/j.1742-7843.2009.00499.x.; https://www.pharmacokinetica.ru/jour/article/view/313

  3. 3
    Academic Journal

    Contributors: This study did not receive any financial support from outside organizations., Данное исследование не имело финансовой поддержки от сторонних организаций.

    Source: Pharmacy & Pharmacology; Том 10, № 1 (2022); 82-92 ; Фармация и фармакология; Том 10, № 1 (2022); 82-92 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2022-10-1

    File Description: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/1028/821; https://www.pharmpharm.ru/jour/article/view/1028/822; Falzon C.C. Balabanova A. Phytotherapy: An Introduction to Herbal Medicine // Prim Care. – 2017. – Vol. 44, No.2. – P. 217–227. DOI:10.1016/j.pop.2017.02.001.; Hemler E.C., Hu F.B. Plant-Based Diets for Personal, Population, and Planetary Health //Adv. Nutr. – 2019. – Vol. 10. – P. 275–283. DOI:10.1093/advances/nmy117.; Fresan U., Sabate J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health // Adv. Nutr. – 2019. – Vol. 10. – P. 380–388. DOI:10.1093/advances/nmz019.; Farzaei M.H., Bayrami Z., Farzaei F., Aneva I., Das S.K., Patra J.K., Das G., Abdollahi M. Poisoning by Medical Plants // Arch. Iran. Med. – 2020. – Vol. 23, No.2. – P. 117–127.; Nunn A.V.W., Guy G.W., Botchway S.W., Bell J.D. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds // Phytother. Res. – 2020. – Vol. 34, No.8. – P. 1868–1888. DOI:10.1002/ptr.6654.; Cosmos bipinnatus Cav. in GBIF Secretariat (2017). GBIF Backbone Taxonomy. – [Электронный ресурс]. – Режим доступа: https://www.gbif.org/ru/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c. DOI.org/10.15468/39omei.; Botsaris A. S. Plants used traditionally to treat malaria in Brazil: the archives of Flora Medicinal // J. Ethnobiol. Ethnomed. – 2007. – Vol. 3, No.1. – P. 18. DOI:10.1186/1746-4269-3-18.; Olajuyigbe О., Ashafa A. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa // Iran. J. Pharm. Res. – 2014. – Vol. 13, No.4. – P. 1417–1423.; Cui H.X., Duan F.F., Jia S.S., Cheng F.R., Yuan K. Antioxidant and Tyrosinase Inhibitory Activities of Seed Oils from Torreya grandis Fort. ex Lindl // Biomed. Res. Int. – 2018. – Vol. 2018. – Art. No.5314320. DOI:10.1155/2018/5314320.; Diaz-Medina L.K., Colin-Navarro V., Arriaga-Jordan C.M. In vitro nutritional quality and antioxidant activity of three weed species as feed additives for sheep in the Central Highlands of Mexico // Trop. Anim. Health Prod. – 2021. – Vol. 53, No.3. – Art. No.394. DOI:10.1007/s11250-021-02819-8.; Buschhaus C., Hager D., Jetter R. Wax Layers on Cosmos bipinnatus Petals Contribute Unequally to Total Petal Water Resistance // Plant Physiol. – 2015. – Vol. 167. – P. 80–88. DOI:10.1104/pp.114.249235.; Saito K. Quantitative variation of flavonoids and related compounds in Cosmos bipinnatus // Acta Societatis Botanicorum Poloniae. – 1979. – Vol. 48, No.2. – P. 317–325. DOI:10.5586/asbp.1979.026.; Bate-Smith E.C. Astringent tannins of Cosmos bipinnatus // Phytochemistry. – 1980. – Vol. 9. – P. 982.; Konarev A.V., Anisimova I.N., Gavrilova V.A., Vachrusheva T.E., Konechnaya G.Y., Lewis M., Shewry P.R. Serine proteinase inhibitors in the Compositae: distribution, polymorphism and properties // Phytochemistry. – 2002. – Vol. 59. – P. 279–291. DOI:10.1016/s0031-9422(01)00463-0.; Akihisa T., Yasukawa K., Oinuma H., Kasahara Y., Yamanouchi S., Takido M., Kumaki K., Tamura T. Triterpene alcohols from the flowers of Compositae and their anti-inflammatory effects // Phytochemistry. – 1996. – Vol. 43, No.6. – P. 1255–1260. DOI:10.1016/s0031-9422(96)00343-3.; Тихомирова Т.И., Андреева О.А., Червонная Н.М., Аджиахметова С.Л., Лигай Л.В. Антиоксиданты листьев ирги круглолистной // Международный научно-исследовательский журнал. – 2021. – № 12–1(114). – С. 193–199. DOI:10.23670/IRJ.2021.114.12.033.; Аджиахметова С.Л., Червонная Н.М., Поздняков Д.И., Оганесян Э.Т. Изучение суммарного содержания антиоксидантов, полисахаридов, элементного состава и аминокислот растительного сырья смородины черной // Химия растительного сырья. – 2021. – № 3. – С. 265–274. DOI:10.14258/jcprm.2021037774.; Kamlesh A.R., Sampada J.S., Rishikes A.V. Synthesis and Biological Evaluation of Amino acid Derivatives of Salicylic Acid As Analgesic and Anti- inflammatory Agents // Am. J. Pharm. Technol. Res. – 2013. – Vol. 3. – P. 613–620.; Kumar K.M., Mandal B.K., Sinha M., Krishnakumar V. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles, Spectrochimica Acta Part A // Mol. Biomol. Spectro. – 2012. – Vol. 86. – P. 490–494. DOI:10.1016/j.saa.2011.11.001.; Кодониди И.П., Сочнев В.С., Терехов А.Ю., Сергеева Е.О., Рябухин И.Ю. Синтез и изучение противовоспалительной активности 2-виниленпроизводных 4-(2,6-диметил-4-оксо-5-фенил-4H-пиримидин-1-ил)-бензсульфамида // Современные проблемы науки и образования. – 2021. – № 4. – С. 91. DOI:10.17513/spno.31053.; Atas M., Eruygur N., Ucar E. The Effects of different nitrogen doses on antioxidant and antimicrobial activity of Stevia (Stevia rebaudiana Bert.) // Cell Mol. Biol. (Noisy-le-grand). – 2018. – Vol. 64, No.2. – P. 39–45. DOI:10.14715/cmb/2018.64.2.8.; Thomas G.J., Herranz P., Cruz S.B., Parodi A. Treatment of actinic keratosis through inhibition of cyclooxygenase-2: Potential mechanism of action of diclofenac sodium 3% in hyaluronic acid 2.5. // Dermatol. Ther. – 2019. – Vol. 32, No.3. – e12800. DOI:10.1111/dth.12800.; Nyayiru Kannaian U.P., Edwin J.B., Rajagopal V., Nannu Shankar S., Srinivasan B. Phytochemical composition and antioxidant activity of coconut cotyledon // Heliyon. – 2020. – Vol. 6, No.2. – e03411. DOI:10.1016/j.heliyon.2020.e03411.; Vallier M.J., Bourvellec C.L., Dangles O. Iron-induced peroxidation of trilinolein nano-emulsions under model gastric conditions and its inhibition by dietary phenolic antioxidants // Food Funct. – 2020. – Vol. 11, No.10. – P. 9144–9156. DOI:10.1039/d0fo01767a.; Ruiz Á.J., Vargas-Uricoechea H., Urina-Triana M., Román-González A., Isaza D., Etayo E., Quintero A., Molina D.I., Toro J.M., Parra G., Merchán A., Cadena A., Yupanqui Lozano H., Cárdenas J.M., Quintero Á.M., Botero R., Jaramillo M., Arteaga J.M., Vesga-Angarita B., Valenzuela-Plata E., Betancur-Valencia M. Dyslipidaemias and their treatment in high complexity centres in Colombia // Clin. Investig. Arterioscler. – 2020. – Vol. 32, No.3. – P. 101–110. DOI:10.1016/j.arteri.2019.11.005.; Sharif H., Akash M.S.H., Irshad K. Pathophysiology of atherosclerosis: Association of risk factors and treatment strategies using plant-based bioactive compounds // J. Food Biochem. – 2020. – Vol. 44, No.11. – Art. No.e13449. DOI:10.1111/jfbc.13449.; https://www.pharmpharm.ru/jour/article/view/1028

  4. 4
    Academic Journal

    Contributors: The study was performed under the state assignment of Moscow State University, project numbers №121032300071-8 and № 121032500076-1, as well as by the Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology»., Работа выполнена в рамках научных проектов государственного задания МГУ №121032300071-8 и № 121032500076-1, а также при поддержке Междисциплинарной научно-образовательной школы Московского университета «Молекулярные технологии живых систем и синтетическая биология».

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 2 (2022); 104–111 ; Вестник Московского университета. Серия 16. Биология; Том 77, № 2 (2022); 104–111 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1132/587; Kingdom J.C.P., Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia // Placenta. 1997. Vol. 18. N 8. P. 613–621.; Moshiro R., Mdoe P., Perlman J.M. A Global view of neonatal asphyxia and resuscitation // Front. Pediatr. 2019. Vol. 7: 489.; Fisher J.J., Bartho L.A., Perkins A.V., Holland O.J. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy // Clin. Exp. Pharmacol. Physiol. 2020. Vol. 47. N 1. P 176–184.; Meyer K., Zhang L. Fetal programming of cardiac function and dsease // Reprod. Sci. 2007. Vol. 14. N 3. P. 209–216.; Giussani D.A., Davidge S.T. Developmental programming of cardiovascular disease by prenatal hypoxia // J. Dev. Orig. Health Dis. 2013. Vol. 4. N 5. P. 328–337.; Giussani D.A. The fetal brain sparing response to hypoxia: physiological mechanisms // J. Physiol. 2016. Vol. 594. N 5. P. 1215–1230.; Chan L.Y., Chiu P.Y., Siu S.S.N., Lau T.K. A study of diclofenac-induced teratogenicity during organogenesis using a whole rat embryo culture model // Hum. Reprod. 2001 Vol. 16. N 11. P. 2390–2393.; Ross E.J., Graham D.L., Money K.M., Stanwood G.D. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn // Neuropsychopharmacology. 2015. Vol. 40. N 1. P. 61–87.; Graf A.V., Maslova M.V., Artiukhov A.V., Ksenofontov A.L., Aleshin V.A., Bunik V.I. Acute prenatal hypoxia in rats affects physiology and brain metabolism in the offspring, dependent on sex and gestational age // Int. J. Mol. Sci. 2022. Vol. 23. N 5: 2579.; Huang L., Chen X., Dasgupta C., Chen W., Song R., Wang C., Zhanget L. Foetal hypoxia impacts methylome and transcriptome in developmental programming of heart disease // Cardiovasc. Res. 2019. Vol. 115. N 8. P. 1306–1319.; Graf A., Trofimova L., Ksenofontov A., Baratova L., Bunik V. Hypoxic adaptation of mitochondrial metabolism in rat cerebellum decreases in pregnancy // Cells. 2020. Vol. 9. N 1: 139.; Zhidkova T.V., Proskurnina E.V., Parfenov E.A., Vladimirov Y.A. Determination of superoxide dismutase and SOD-mimetic activities by a chemical system: Co2/H2O2/lucigenin // Anal. Bioanal. Chem. 2011. Vol. 401. N 1. P. 381–386.; Pankratova M.S., Baizhumanov A.A., Yusipovich A.I., Faassen M., Shiryaeva T.Yu., Peterkova V.A., Kovalenko S.S., Kazakova T.A., Maksimov G.V. Imbalance in the blood antioxidant system in growth hormone-deficient children before and after 1 year of recombinant growth hormone therapy // PeerJ. 2015. Vol. 3: e1055.; Матюлько И.С., Байжуманов А.А., Хиразова Е.Э., Маслова М.В. Влияние различных режимов питьевой депривации на систему антиоксидантной защиты крови и поведенческую активность крыс // Журн. мед.-биол. исслед. 2018. Т. 6. № 3. P. 254–261.; Haase V.H. Regulation of erythropoiesis by hypoxiainducible factors // Blood Rev. 2013. Vol. 27. N 1. P. 41–53.; Halliwell B., Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? // Br. J. Pharmacol. 2004. Vol. 142. N 2. P. 231–255.; Graf A.V., Baizhumanov A.A., Maslova M.V., Krushinskaya Ya.V., Maklakova A.S., Sokolova N.A., Kamensky A.A. The antioxidant system activity during normal pregnancy and pregnancy followed by hypoxic stress // Moscow Univ. Biol. Sci. Bull. 2021. Vol. 76. N 3. P. 104–110.; Von Essen C., Rydenhag B., Mozzi R., van Gelder N., Hamberger A. High levels of glycine and serine as a cause of the seizure symptoms of cavernous angiomas? // J. Neurochem. 2002. Vol. 67. N 1. P. 260–264.; Bayer S.A., Altman J., Russo R.J., Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat // Neurotoxicology. 1993. Vol. 14. N 1. P. 83–144.; Laforgia N., Di Mauro A., Favia Guarnieri G., Varvara D., De Cosmo L., Panza R., Capozza M., Baldassarre M.E., Resta N. The role of oxidative stress in the pathomechanism of congenital malformations // Oxid. Med. Cell. Longev. 2018. Vol. 2018: 7404082.; Wu F., Tian F.-J., Lin Y. Oxidative stress in placenta: health and diseases // Biomed. Res. Int. 2015. Vol. 2015: 293271.; Silvestro S., Calcaterra V., Pelizzo G., Bramanti P., Mazzon E. Prenatal hypoxia and placental oxidative stress: insights from animal models to clinical evidences // Antioxidants (Basel). 2020. Vol. 9. N 5: 414.; Chiera M., Cerritelli F., Casini A., Barsotti N., Boschiero D., Cavigioli F., Corti C.G., Manzotti A. Heart rate variability in the perinatal period: a critical and conceptual review // Front. Neurosci. 2020. Vol. 14: 561186.; Ghulmiyyah L.M., Costantine M.M., Yin H., Tamayo E., Clark S.M., Hankins G.D.V., Saade G.R, Longo M. The role of oxidative stress in the developmental origin of adult hypertension // Am. J. Obstet. Gynecol. 2011. Vol. 205. N 2. P. 155.e7–155.e11.; Bureau I., Gueux E., Mazur A., Rock E., Roussel A.-M., Rayssiguier Y. Female rats are protected against oxidative stress during copper deficiency // J. Am. Coll. Nutr. 2003. Vol. 22. N 3. P. 239–246.; Katalinic V., Modun D., Music I., Boban M. Gender differences in antioxidant capacity of rat tissues determined by 2,2′-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays // Comp. Biochem. Physiol. Part. C. Toxicol. Pharmacol. 2005. Vol. 40. N 1. P. 47–52.; Kander M.C., Cui Y., Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases // J. Cell. Mol. Med. 2017. Vol. 21. N 5. P. 1024–1032.; Barp J., Araújo A.S.R., Fernandes T.R.G., Rigatto K.V., Llesuy S., Belló-Klein A., Singal A. Myocardial antioxidant and oxidative stress changes due to sex hormones // Braz. J. Med. Biol. Res. 2002. Vol. 35. N 9. P. 1075–1081.; Ide T., Tsutsui H., Ohashi N., Hayashidani S., Suematsu N., Tsuchihashi M., Tamai H., Takeshita A. Greater oxidative stress in healthy young men compared with premenopausal women // Arterioscler. Thromb. Vasc. Biol. 2002. Vol. 22. N 3. P. 438–442.; Vassalle C., Sciarrino R., Bianchi S., Battaglia D., Mercuri A., Maffei S. Sex-related differences in association of oxidative stress status with coronary artery disease // Fertil. Steril. 2012. Vol. 97. N 2. P. 414–419.; Dadu R.T., Dodge R., Nambi V., Virani S.S., Hoogeveen R.C., Smith N.L., Chen F., Pankow J.S., Guild C., Tang W.H.W., Boerwinkle E., Hazen S.L., Ballantyne C.M. Ceruloplasmin and heart failure in the atherosclerosis risk in communities study // Circ. Heart Fail. 2013. Vol. 6. N 5. P. 936–943.

  5. 5
    Academic Journal

    Authors: Lototska, O. V.

    Source: Medical and Clinical Chemistry; No. 1 (2018); 130-135 ; Медицинская и клиническая химия; № 1 (2018); 130-135 ; Медична та клінічна хімія; № 1 (2018); 130-135 ; 2414-9934 ; 2410-681X ; 10.11603/mcch.2410-681X.2018.v0.i1

    File Description: application/pdf

  6. 6
    Academic Journal

    Authors: Garian, S. V.

    Source: Medical and Clinical Chemistry; No. 1 (2020); 42-48 ; Медицинская и клиническая химия; № 1 (2020); 42-48 ; Медична та клінічна хімія; № 1 (2020); 42-48 ; 2414-9934 ; 2410-681X ; 10.11603/mcch.2410-681X.2020.v.i1

    File Description: application/pdf

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    File Description: text/html

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    File Description: application/pdf

    Relation: Петрушанко Т. О. Особливості стану тканин пародонта, імунологічних та біохімічних змін ротової рідини ВІЛ–інфікованих / Т. О. Петрушанко, Н. В. Іленко // Актуальні проблеми сучасної. – 2013. – Т. 13, Вип. 2 (42). – С. 46–49.; УДК 616.314.17 + [616.98:578.823 ВІЛ]; https://repository.pdmu.edu.ua/handle/123456789/4264

  19. 19
  20. 20