Εμφανίζονται 1 - 20 Αποτελέσματα από 67 για την αναζήτηση '"Спрей-пиролиз"', χρόνος αναζήτησης: 0,73δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 10 (2024); 90-99 ; Альтернативная энергетика и экология (ISJAEE); № 10 (2024); 90-99 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2526/2050; Мейтин М. Фотовальтаика: материалы, технологии, перспективы // Электроника: наука, технология, бизнес, 2000, № 6, 40-46 с.; Arvind Shah. Thin-film silicon solar cells // EPFL Press, 2010, 430 p.; S. Zainabidinov, S. I. Rembeza, E. S. Rembeza and Sh. Kh. Yulchiev. Prospects for the Use of Metal-Oxide Semiconductors in Energy Converters // Applied Solar Energy, vol. 55, no. 1, pp. 5-7, 2019.; Кушнир В. В. Оптимизация конструкции пленочного солнечного элемента // Известия ЮФУ. Технические науки. Тематический выпуск. – 2011, № 4(117), с. 225-228.; L. Luo, Y. Zhang, S. S. Mao, L. Lin. ZnO nanowires, based UV photodiodes, in: Proceedings of 18th IEEE MEMS Conference, Miami, 2005, pp. 427-430.; R. I Badran [et al]. Fabrication of Heterojunction Diode Based on n-ZnO Nanowires/p-Si Substrate: Temperature Dependent Transport Characteristics // Journal Nanosci Nanotechnol. – 2017 Jan; 17(1):581-87.; Periasamy C. Large-area and nanoscale n-ZnO/ p-Si heterojunction photodetectors / C. Periasamy and P. Chakrabarti // Journal of Vaccum Science and Technology. B. – 2011, vol. 29(5), pp. 051206.; Sahu V. K. Studies on the electrical characteristics of n-ZnO/p-Si grown by pulsed laser deposition for UV photo detecting applications / V. K. Sahu [et al] // Physics Express. – 2013, vol. 3, 10 p.; Sharma P. Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering, P. Sharma [et al] // Journal of Applied Physics. – 2003, vol. 93(7), pp. 3963-3970.; Chang Y. M. Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition / Y. M. Chang [et al] // Nanotechology, 2010, vol. 21(38), pp. 385705.; Yakuphanoglu F. ZnO/p-Si heterojunction photodiode by sol-gel deposition of nanostructure n-ZnO film on p-Si substrate / F. Yakuphanoglu [et al] // Material Science in Semiconductor Processing, 2010, vol. 13(3), pp. 137-140.; Wang. P. Quality improvement of ZnO thin layers overgrown on Si (100) substrates at room temperature by nitridation pretreatment / P. Wang [et al] // AIP Advances. – 2012, vol. 2(2), pp. 022139.; В. Е. Полковников, Д. С. Пермяков, М. А. Белых, Ш. Х. Йулчиев, С. И. Рембеза. Использование пиролитических металлооксидных пленок для изготовления фотоэлектрических преобразователей энергии // Вестник Воронежского государственного технического университета. – Воронеж. – 2019. – Т. 15. – № 5, с. 72-77; Зайнабидинов С. З., Йулчиев Ш. Х., Бобоев А. Й. Структурные и фотоэлектрические свойства тонкопленочного гетероперехода n-ZnO/p-Si, полученного золь-гель методом // Альтернативная энергетика и экология (ISJAEE). – 2020. – № 25-27, с. 347-349.; Абдуев А. Х., Ахмедов А. К., Асваров А. Ш., Муслимов А. Э., Каневский В. М. Влияние условий зарождения на структуру слоев оксида цинка // Кристаллография. – 2020. – T. 65. – № 3, с. 489-490.; Викулин И. М., Стафеев В. И. Физика полупроводниковых приборов. – М.: Радио и связь, 1990, с. 264.; Волковский Ю. А., Жернова В. А., Фоломешкин М. С., Просеков П. А. и др. Сравнительная рентгеновская дифрактометрия дефектной структуры эпитаксиальных пленок ZnO, выращенных методом магнетронного осаждения на подложках Al2O3 ориентации (0001) в неоднородном электрическом поле // Кристаллография. – 2023. – T. 68, № 2, с. 180-188.; Саидов А. С., Лейдерман А. Ю., Усмонов Ш. Н., Амонов К. А. Эффект инжекционного обеднения в p-Si−n-(Si2)1−x(ZnSe)x (0 ≤ x ≤ 0.01) гетероструктуре // Физика и техника полупроводников. – 2018, том 52, вып. 9, с. 1066-1070.; Никитин С. Е., Николаев Ю. А., Полушина И. К., Рудь В. Ю., Теруков Е. И. Фотоэлектрические явления в гетероструктурах ZnO:Al-p-Si // Физика и техника полупроводников, 2003, том 37, вып. 11.; Зайнабидинов С. З., Бобоев А. Й., Лейдерман А. Ю. Исследование механизма переноса тока в n-GaAs-р-(GaAs)1-x-y(Ge2)x(ZnSe)y гетероструктуры // Узбекский физический журнал. – Ташкент, 2019. – № 1, c. 14-21.; Адирович Э. И., Карагеоргий-Алкалаев П. М., Лейдерман А. Ю. Токи двойной инжекции в полупроводниках. – М., Советское радио, 1978.; Зеббар A. Н., Хейреддин A. Y., Мокеддем A. K., Хафдалла B. A., Кечуане M., Аида M. С. «Структурные, оптические и электрические свойства гетероперехода n-ZnO/p-Si, подготовленного ультразвуковым распылением» // Научные материалы в полупроводниковой обработке. – Том 14. – 2011. – Выпуски 3-4. – С. 229-234.; Зайнабидинов С. З., Далиев Х. С., Йулчиев Ш. Х., Бобоев А. Й., Юнусалиев Н. Ю. Структурные особенности металлооксидных пленок ZnO на основе кремния. Доклады Академии Наук Республики Узбекистан. – Ташкент, 2020, № 3, c. 21-24.; Шаренкова Н. В., Каминский В. В., Петров С. Н. Размеры областей когерентного рассеяния рентгеновского излучения в тонких пленках SmS и их визуализация // Журнал технической физики. – 2011. – Т. 81, № 9, с. 144-146.; Ахмедов А. К., Абдуев А. Х., Асваров А. Ш., Муслимов А. Э., Каневский В. М. Нанокристаллические пленки на основе оксида цинка, полученные в едином вакуумном цикле // Российские нанотехнологии. – 2020. – T. 15, № 6, с. 775-780.; Алексанян А. Ю. Получение диодных гетероструктур p-Si/n-ZnO и исследование их вольт-амперных характеристик // Альтернативная энергетика и экология (ISJAEE). – 2013, № 6, c. 23-27.; Тарасов А. П. Люминесценция микроструктур оксида цинка и влияние на нее поверхностного плазменного резонанса и магнитного поля. Дисс. канд.физ.-мат.наук. – Москва: МФТИ, 2019, 125 с.; https://www.isjaee.com/jour/article/view/2526

  2. 2
    Academic Journal

    Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 10 (2024); 43-49 ; Новые огнеупоры; № 10 (2024); 43-49 ; 1683-4518 ; 10.17073/1683-4518-2024-10

    Περιγραφή αρχείου: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2207/1797; Kundu, M. LiSb3O8 as a prospective anode material for lithium-ion battery / M. Kundu, S. Mahanty, R. N. Basu // International Journal of Applied Ceramic Technology. ― 2012. ― Vol. 9, № 4. ― P. 876‒880. DOI:10.1016/j.matlet.2011.01.013.; Liang, J. Sea urchin-like NiCoO2@C nanocomposites for Li-ion batteries and supercapacitors / J. Liang, K. Xi, G. Tan [et al.] // Nano Energy. ― 2016. ― Vol. 27. ― P. 457‒465. https://doi.org/10.1016/j.nanoen.2016.06.032.; Yudin, A. Synthesis of hollow nanostructured nickel oxide microspheres by ultrasonic spray atomization / A. Yudin, N. Shatrova, B. Khaydarov [et al.] // J. Aerosol Sci. ― 2016. ― Vol. 98. ― P. 30‒40. https://doi.org/10.1016/j.jaerosci.2016.05.003.; Shatrova, N. Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction / N. Shatrova, A. Yudin, V. Levina [et al.] // Mater. Res. Bull. ― 2017. ― Vol. 86. ― P. 80‒87. https://doi.org/10.1016/j.materresbull.2016.10.010.; Khaidarov, B. B. Preparation of hollow spherical particles of strontium ferrite SrFe12O19 by spray-pyrolysis / B. B. Khaidarov, A. G. Yudin, D. S. Suvorov [et al.] // Refract. Ind. Ceram. ― 2021. ― Vol. 62. ― P. 483‒486. DOI:10.1007/s11148-021-00629-x. Хайдаров, Б. Б. Получение полых сферических частиц феррита стронция SrFe12O19 методом спрейпиролиза / Б. Б. Хайдаров, А. Г. Юдин, Д. С. Суворов [и др.] // Новые огнеупоры. ― 2021. ― № 8. ― С. 62‒65.; Karunakaran, G. Synthesis of five metal based nanocomposite via ultrasonic high temperature spray pyrolysis with excellent antioxidant and antibacterial activity / G. Karunakaran, A. Yudin, M. Jagatmandal [et al.] // RSC Advances. ― 2016. ― Vol. 6, № 44. ― P. 37628‒37632. https://doi.org/10.1039/C6RA05795K.; Lysov, D. Preparation of nickel oxide nanostructured powders under the action of ultrasound / D. Lysov, D. Kuznetsov, A. Yudin [et al.] // Nanotechnologies in Russia. ― 2010. ― Vol. 5, № 7/8. ― P. 493‒497.; Stolina, A. Grain-size analysis of silicon powder / A. Stolina, N. Pimenova // Inorg. Mater. ― 2010. ― Vol. 46, № 14. ― P. 1536‒1540. DOI:10.1134/S1995078010070098.; Fediuk, R. Modern technologies of nondestructive testing of construction materials / R. Fediuk, A. Yushin // Conference Series: Materials Science and Engineering. ― 2016. ― Vol. 132, №. 1. ― Article 012001. DOI:10.1088/1757-899X/132/1/012001.; Epstein, P. The quantum theory of the Fraunhofer diffraction / P. Epstein, P. Ehrenfest // Proceedings of the National Academy of Sciences of the United States of America. ― 1924. ― Vol. 10, № 4. ― Article 133. DOI:10.1073/pnas.10.4.133.; Liu, L. Self-assembled novel dandelion-like NiCo2O4 microspheres nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries / L. Liu, Z. Zhang, J. Yang [et al.] // J. Mater. Chem. A. ― 2015. ― Vol. 3, № 44. ― P. 22393‒22403. https://doi.org/10.1039/C5TA07110K.; Su, B. Structural evolution of Na-rich spinel oxides involving anionic redox reaction for Na-ion batteries / B. Su, H. Liang, X. Zhao [et al.] // Electrochimю Acta. ― 2023. ― Vol. 440. ― Article 141746. https://doi. org/10.1016/j.electacta.2022.141746.; Liu, Z. MoOx nanoclusters decorated on spinel-type transition metal oxide porous nanosheets for aerobic oxidative desulfurization of fuels / Z. Liu, Y. Zhang, J. Bai [et al.] // Fuel. ― 2023. ― Vol. 334. ― Article 126753. https://doi.org/10.1016/j.fuel.2022.126753.; Alizadeh, A. Recent developments of perovskites oxides and spinel materials as platinum-free counter electrodes for dye-sensitized solar cells: a comprehensive review / A. Alizadeh, M. Roudgar-Amoli, Z. Shariatinia [et al.] // Renewable and Sustainable Energy Reviews. ― 2023. ― Vol. 187. ― Article 113770. https://doi. org/10.1016/j.rser.2023.113770.; Feng, B. Facile synthesis of nanosized spinel high entropy oxide (FeCoNiCrMn)3O4 for efficient oxygen evolution reaction / B. Feng, J. Chen, Y. Yang [et al.] // Journal of Materiomics. ― 2024. ― Vol. 10. ― P. 919‒927. https://doi.org/10.1016/j.jmat.2024.02.003.; Eseva, E. Cobalt-manganese spinel structure catalysts for aerobic oxidative desulfurization / E. Eseva, A. Dunko, S. Latypova [et al.] // Fuel. ― 2024. ― Vol. 357. ― Article 129689. https://doi.org/10.1016/j.fuel.2023.129689.; Azimi-Fouladi, A. The photodegradation of antibiotics on nano cubic spinel ferrites photocatalytic systems: a review / A. Azimi-Fouladi, P. Falak, S. A. Hassanzadeh-Tabrizi // J. Alloys Compd. ― 2023. ― Vol. 961. ― Article 171075. https://doi.org/10.1016/j.jallcom.2023.171075.; Wu, Q. Preparation, characterisation, and growth mechanism of mesoporous petal-like MgAl2O4 spinel / Q. Wu, G. Feng, F. Jiang [et al.] // Ceram. Int. ― 2022. ― Vol. 48, № 3. ― P. 3351‒3361. https://doi.org/10.1016/j.ceramint.2021.10.110.; Choudhury P. CuMoO4 catalyzed Csp2−Se crosscoupling of aryl bromide and iodide with diaryldiselenides in water / P. Choudhury, A. K. Pradhan, S. Jena [et al.] // Eur. J. Org. Chem. ― 2022. ― Vol. 2022, № 48. ― Article e202201194. https://doi.org/10.1002/ejoc.202201194.; Kamarasu, L. Enhanced photocatalytic performance of pebble stone like CuMoO4 photocatalyst for the degradation of organic pollutant / I. Kamarasu, E. Sathiyamoorthi, S. S. Nannapaneni [et al.] // Physica B: Condensed Matter. ― 2023. ― Vol. 650. ― Article 414544. https://doi.org/10.1016/j.physb.2022.414544.; Yang, Y. Dense Ni(OH)2 nanoparticles loaded CuMoO4 nanocube heterostructure array: An efficient electrocatalyst for hydrogen evolution / Y. Yang, Y. Yu, Y. Wu [et al.] // Int. J. Hydrogen Energy. ― 2024. ― Vol. 63. ― P. 677‒684. https://doi.org/10.1016/j.ijhydene.2024.03.191.; Alabada, R. A new approach to the synthesis of CuMoO4 nanoparticles with mechanistic insight into the sunlight-assisted degradation of textile pollutants and antibacterial activity evaluation / R. Alabada, A. Ayub, Y. Ajaj [et al.] // J. Alloys Compd. ― 2024. ― Vol. 977. ― Article 173400. https://doi.org/10.1016/j.jallcom.2023.173400.; Chakchouk, N. An investigation of structural, thermal, and electrical conductivity properties for understanding transport mechanism of CuWO4 and α-CuWO4 compounds / N. Chakchouk, K. Karoui, N. Drissi [et al.] // RSC Advances. ― 2024. ― Vol. 14. ― P. 46‒58. https://doi.org/10.1039/d3ra07453f.; Shejini, R. Designing the redox activity of CuMoO4 electrodes on N-rich reduced graphene oxide nanocomposite for high performance supercapacitor / R. Shejini, K. Mohanraj, H. S. Min [et al.] // Solid State Science. ― 2024. ― Vol. 154. ― Article 107586. https:// doi.org/10.1016/j.solidstatesciences.2024.107586.; Kusumah, A. D. Fabrication of ZnO and ZnO/CuMoO4 for the improvement of photocatalytic performance / A. D. Kusumah, Y. Yulizar, D. O. B. Apriandanu, R. M. Surya // Vacuum. ― 2024. ― Vol. 222. ― Article 113034. https://doi.org/10.1016/j.vacuum.2024.113034.; Пахомов, Е. В. Текущее состояние строительной отрасли РФ / Е. В. Пахомов, М. С. Овчинникова // Молодой ученый. ― 2019. ― № 2. (240). ― С. 255‒260.; Лангнер, Е. А. Современные технологии ускорения набора прочности бетона / Е. А. Лангнер, А. А. Шиховцов, А. А. Царёв, В. В. Петросян // Вестник Евразийской науки. ― 2020. ― Т. 12, № 5. ― С. 36.; Suvorov, D. Nanomodification of refractories with finelydispersed additives with the use of a vortex electromagnetic homogenizer / D. Suvorov, B. Khaydarov, D. Lysov // IOP Conference Series: Mater. Sci. Eng. ― 2020. ― Vol. 718. ― Article 012018. DOI:10.1088/1757-899X/718/1/012018.; Suvorov, D. Effect of adding nanosize SiO2 on physicomechanical properties and durability of a refractory component industrial batch / D. Suvorov, B. Khaidarov, D. Lysov // Refract. Ind. Ceram. ― 2023. ― Vol. 63, № 5. ― P. 522‒526. https://doi.org/10.1007/ s11148-023-00760-x. Суворов, Д. С. Влияние добавки наноразмерного SiO2 на физико-механические характеристики и стойкость промышленной партии огнеупорных изделий / Д. С. Суворов, Б. Б. Хайдаров, Д. В. Лысов // Новые огнеупоры. ― 2022. ― № 9. ― С. 44‒48.; Khaidarov, B. Investigation of mineral hydraulic binders based on the slag-cement system obtained with the use of vortex electromagnetic homogenization / B. Khaidarov, D. Suvorov, D. Lysov [et al.] // Refract. Ind. Ceram. ― 2021. ― Vol. 62, № 1. ― P. 103‒107. DOI:10.1007/s11148-021-00567-8. Хайдаров, Б. Б. Исследование минеральных гидравлических вяжущих на основе системы шлак‒ цемент, полученных с применением вихревой электромагнитной гомогенизации / Б. Б. Хайдаров, Д. С. Суворов, Д. В. Лысов [и др.] // Новые огнеупоры. ― 2021. ― № 2. ― С. 45‒50.; Коротченко, И. А. История развития бетона и его будущее / И. А. Коротченко, А. Ю. Пахомова // Приволжский научный вестник. ― 2014. ― № 10 (38). ― С. 24‒30.; Сатыбалдиев, А. К. Влияние минеральных добавок на свойства портландцемента / А. К. Сатыбалдиев, Д. С. Ивчин // Молодой ученый. ― 2020. ― № 4 (294). ― С. 11‒14.; ГОСТ 6139‒2020. Песок для испытаний цемента. ― М. : Росстандарт, 2020.; ГОСТ 30744‒2001. Цементы. Методы испытания с использованием полифракционного песка. ― М. : Госстрой России, 2001.; Ильина, Л. В. Технологии бетона / Л. В. Ильина; 1-е изд. ― Новосибирск : Сибстрин, 2016. ― 156 с.; https://newogneup.elpub.ru/jour/article/view/2207

  3. 3
    Academic Journal

    Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 8 (2024); 50-54 ; Новые огнеупоры; № 8 (2024); 50-54 ; 1683-4518 ; 10.17073/1683-4518-2024-8

    Περιγραφή αρχείου: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2195/1785; Yudin, A. Synthesis of hollow nanostructured nickel oxide microspheres by ultrasonic spray atomization / A. Yudin, N. Shatrova, B. Khaydarov [et al.] // Journal of Aerosol Science. ― 2016. ― Vol. 98. ― P. 30‒40. https://doi.org/10.1016/j.jaerosci.2016.05.003.; Shatrova, N. Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction / N. Shatrova, A. Yudin, V. Levina [et al.] // Materials Research Bulletin. ― 2017. ― Vol. 86. ― P. 80‒87. https://doi.org/10.1016/j.materresbull.2016.10.010.; Хайдаров, Б. Б. Получение полых сферических частиц феррита стронция SrFe12O19 методом спрей-пиролиза / Б. Б. Хайдаров, А. Г. Юдин, Д. С. Суворов [и др.] // Новые огнеупоры. ― 2021. ― № 8. ― С. 62‒65. https://doi.org/10.17073/1683-4518-2021-8-62-65.; Wang, S. A review of process simulation sand the use of additive sin spray drying / S. Wang, T. Langrish // Food Research International. ― 2009. ― Vol. 42. ― P. 13‒25. DOI 10.1016/j.foodres.2008.09.006.; Nandiyanto, A. Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges / A. B. D. Nandiyanto, K. Okuyama // Advanced Powder Technology. ― 2011. ― Vol. 1. ― P. 1‒19. https://doi.org/10.1016/j.apt.2010.09.011.; Iskandar, F. Nanoparticle processing for optical applications ― a review / F. Iskandar // Advanced Powder Technology. ― 2009. ― Vol. 20, № 4. ― P. 283‒292. https://doi.org/10.1016/j.apt.2009.07.001.; Harzali, H. Investigating the adsorption of Malachite Green and Methyl Green onto synthesized Ni0.5Zn0.5Fe2O4 spinel ferrites / H. Harzali, M. Azizi // Journal of Environmental Chemical Engineering. ― 2024. ― In press https://doi.org/10.1016/j.jece.2024.113413.; Abouhaswa, A. S. Influence of the Mn/Fe ratio on structural, optical, electrical and magnetic characteristics of MnFeMgNiO spinel ferrites / A. S. Abouhaswa, M. H. Badr, G. M. Elkomy, H. M. Abomostafa // Inorganic Chemistry Communications. ― 2024. ― Vol. 166. ― Article 112647. https://doi.org/10.1016/j.inoche.2024.112647.; Asif, M. Advanced tuning of electric and dielectric properties in Ba0.5Ni0.5‒xCdxFe2O4 spinel ferrites for high-frequency devices with barium dopants / M. Asif, M. N. Akram, M. Mustaqeem [et al.] // Ceram. Int. ― 2024. ― Vol. 50, № 15. ― P. 27265‒27275. https://doi.org/10.1016/j.ceramint.2024.05.023.; Galeil, M. M. A. Synthesis of as-prepared and sintered spinel ferrites containing cadmium, copper, and chromium expecting magnetism and photoluminescence / M. M. A. Galeil, R. E. El Shater, A. W. Awad [et al.] // Materials Letters. ― 2024. ― Vol. 364. ― Article 136371 https://doi.org/10.1016/j.matlet.2024.136371.; Batool, Z. Fabrication of (Ag, Zn, Co) based spinel ferrites as electrode materials for high energy density hybrid supercapacitors / Z. Batool, A. Rehman, M. Ahmad [et al.] // Journal of Energy Storage. ― 2024. ― Vol. 79. ― Article 110092. https://doi.org/10.1016/j.est.2023.110092.; Akhtar, S. A comparative DFT study of MgFe2O4 and MnFe2O4 spinel ferrites at various pressures to investigate the structural, mechanical, electronic, magnetic and optical properties for multifunctional applications / S. Akhtar, A. Hussain, S. Noreen [et al.] // Computational and Theoretical Chemistry. ― 2024. ― Vol. 1235. ― Article 114546. https://doi.org/10.1016/j.comptc.2024.114546.; Kaur, M. Composites of Zn‒Co spinel ferrites and PANI: Structural, magnetic, microwave absorption characterization in 18–40 GHz / M. Kaur, S. K. Godara, S. Bahel // Journal of Magnetism and Magnetic Materials. ― 2024. ― Vol. 600. ― Article 172158. https://doi.org/10.1016/j.jmmm.2024.172158.; Keerthana, S. P. Magnetically separable rare earth metal incorporated CdFe2O4 photocatalyst for degradation of cationic and azo dyes / S. P. Keerthana, R. Yuvakkumar, G. Ravi [et al.] // Journal of Molecular Structure. ― 2024. ― Vol. 1302. ― Article 137479. https://doi.org/10.1016/j.molstruc.2024.137479.; Ch, V. One-pot synthesis of imines by direct coupling of alcohols and amines over magnetically recoverable CdFe2O4 nanocatalyst / V. Ch, R. Sandupatla, E. Lingareddy, D. Raju // Materials Letters. ― 2021. ― Vol. 302. ― Article 130417. https://doi.org/10.1016/j.matlet.2021.130417.; Yassine, R. Structural, optical and magnetic properties of (x)NiO/(1‒x)CdFe2O4 nanocomposites / R. Yassine, A. M. Abdallah, R. Awad, Z. Bitar // Physica B: Condensed Matter. ― 2022. ― Vol. 624. ― Article 413444. https://doi.org/10.1016/j.physb.2021.413444.; Gupta, M. Aqueous ammonia as ‘CPCA’in sol-gel combustion method for nanofabrication of CdFe2O4 / M. Gupta, M. Gupta, Anu [et al.] // Materials Today: Proceedings. ― 2016. ― Vol. 3, № 2. ― P. 319‒324. https://doi.org/10.1016/j.matpr.2016.01.076.; Naseri, M. Optical and magnetic properties of monophasic cadmium ferrite (CdFe2O4) nanostructure prepared by thermal treatment method / M. Naser // Journal of magnetism and magnetic materials. ― 2015. ― Vol. 392. ― P. 107‒113. https://doi.org/10.1016/j.jmmm.2015.05.026.; Miao, F. Fundamental properties of CdFe2O4 semiconductor thin film / F. Miao, Z. Deng, X. Lv [et al.] // Solid state communications. ― 2010. ― Vol. 150. ― № 41/42. ― P. 2036‒2039. https://doi.org/10.1016/j.ssc.2010.08.010.; Ghasemi, R. Effect of Cu substitution on the magnetic and magnetic induction heating response of CdFe2O4 spinel ferrite / R. Ghasemi, J. Echeverría, J. I. Pérez-Landazábal [et al.] // Journal of Magnetism and Magnetic Materials. ― 2020. ― Vol. 499. ― Article 166201. https://doi.org/10.1016/j.jmmm.2019.166201.; Enescu, M. L. The automatized systems for spray pyrolysis deposition / M. L. Enescu, I. F. Enescu // Annals of the Oradea University : fascicle of Management and Technological Engineering. ― 2008. ― Vol. 7. ― P. 1385‒1388.; https://newogneup.elpub.ru/jour/article/view/2195

  4. 4
    Academic Journal

    Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 12 (2023); 32-37 ; Новые огнеупоры; № 12 (2023); 32-37 ; 1683-4518 ; 10.17073/1683-4518-2023-12

    Περιγραφή αρχείου: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2108/1695; Marinca, T. F. Composite magnetic powder of Ni 3 Fe/Fe 3 O 4 type obtained from Fe/NiO/Fe 2 O 3 mixtures by mechanosynthesis and annealing / T. F. Marinca, H. F. Chicinas, B. V. Neamt [et al.] // Journal of Alloys and Compounds. ― 2017. ― Vol. 714. ― P. 484‒492. doi:10.1016/j.jallcom.2017.04.263.; Marinca, T. F. Structural, thermal and magnetic characteristics of Fe 3 O 4 /Ni 3 Fe composite powder obtained by mechanosynthesis-annealing route / T. F. Marinca, H. F. Chicinas, B. V. Neamt [et al.] // Journal of Alloys and Compounds. ― 2015. ― Vol. 652. ― P. 313‒321. doi:10.1016/j.jallcom.2015.08.249.; Fouad, D. M. Spectroscopic characterization of magnetic Fe 3 O 4 /Au core shell nanoparticles / D. M. Fouad, W. A. El-Said, M. B. Mohamed // Spectrochim. Acta. Part A. Mol. Biomol. Spectrosc. ― 2015. ― Vol. 140. ― P. 392‒397. doi:10.1016/j.saa.2014.12.097.; Zhukova, V. Effect of annealing on magnetic properties and structure of Fe‒Ni based magnetic microwires / V. Zhukova, O. A. Korchuganova, A. A. Aleev [et al.] // Journal of Magnetism and Magnetic Materials ― 2017. ― Vol. 433. ― P. 278‒284. doi:10.1016/j.jmmm.2017.03.028.; Vazquez, M. On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies / M. Vazquez, H. Chiriac, A. Zhukov [et al.] // Phys. Status Solidi A. ― 2011. ― Vol. 208. ― P. 493‒501. doi:10.1002/pssa.201026488.; Gemperle, R. Magnetization reversal in amorphous (Fe 1-x Nix) 80 P 10 B 10 microwires / R. Gemperle, L. Kraus, J. Schneider // Czezh J. Phys. B. ― 1978. ― Vol. 28. ― P. 1138‒1145. doi:10.1007/BF01602803.; Zhukov, A. Advances in giant magnetoimpedance of materials / A. Zhukov, M. Ipatov, V. Zhukova // In: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials. ― 2015. ― Vol. 24. ― P. 139‒236. doi:10.1016/bs.hmm.2015.09.001.; Chiriac, H. Magnetic behavior of rapidly quenched submicron amorphous wires / H. Chiriac, S. Corodeanu, M. Lostun [et al.] // J. Appl. Phys. ― 2010. ― Vol. 107, № 9. ― P. 09A301‒09A301-3. doi:10.1063/1.3334168.; Sun, X. Evolution of structure and magnetism from NixFe 3‒x O 4 (x = 0, 0,5, 1 and 1,5) to Ni‒Fe alloys and to Ni‒Fe‒N / X. Sun, X. Zhang, P. Wang [et al.] // Materials Research Bulletin. ― 2017. ― Vol. 95. ― P. 261‒266. doi:10.1016/j.materresbull.2017.07.030.; Ren, H. R. Evolution of microstructure, mechanical and magnetic properties of electrodeposite 50 % Ni‒Fe alloy foil after thermal treatment / H. R. Ren, J. T. Gao, Z. Wang [et al.] // Journal of Iron and Steel Research, International. ― 2017. ― Vol. 24, № 8. ― P. 844‒851. doi:10.1016/S1006-706X(17)30125-5.; Tamaekong, N. Flame-spray-made undoped zinc oxide films for gas sensing applications / N. Tamaekong, C. Liewhiran, A. Wisitsoraat [et al.] // Sensors. ― 2010. ― Vol. 10, № 8. ― P. 7863‒7873. doi:10.3390/s100807863.; Nunes, P. Performances presented by zinc oxide thin films deposited by spray pyrolysis / P. Nunes, B. Fernandes, E. Fortunato [et al.] // Thin Solid Films. ― 1999. ― Vol. 337, № 1/2. ― P. 176‒179. doi:10.1016/S0040-6090(98)01394-7.; Fauzia, V. High figure of merit transparent conducting Sb-doped SnO 2 thin films prepared via ultrasonic spray pyrolysis / V. Fauzia, M. N. Yusnidar, L. H. Lalasari [et al.] // Journal of Alloys and Compounds. ― 2017. ― Vol. 720. ― P. 79‒85. doi:10.1016/j.jallcom.2017.05.243.; Gupta, S. Microstructural, optical, and electrical investigations of Sb‒SnO 2 thin films deposited by spray pyrolysis / S. Gupta, B. C. Yadav, P. K. Dwivedi [et al.] // Mater. Res. Bull. ― 2013. ― Vol. 48, № 9. ― P. 3315‒3322. doi:10.1016/j.materresbull.2013.05.001.; Yao, P. Effects of Sb doping level on the properties of Ti/SnO 2 ‒Sb electrodes prepared using ultrasonic spray pyrolysis / Р. Yao // Desalination. ― 2011. ― Vol. 267, № 2/3. ― P. 170‒174. doi:10.1016/j.desal.2010.09.021.; Singh, R. Effects of Sb, Zn doping on structural, electrical, and optical properties of SnO 2 thin films / R. Singh, M. Kumar, S. Shankar [et al.] // Mater. Sci. Semicond. Process. ― 2015. ― Vol. 31. ― P. 310‒314. doi:10.1016/j.mssp.2014.12.010.; Babar, A. R. Effect of intermittent time on structural, optoelectronic, luminescence properties of sprayed antimony doped tin oxide thin films / A. R. Babar, K. Y. Rajpure // J. Anal. Appl. Pyrolysis. ― 2015. ― Vol. 112. ― P. 214‒220. doi:10.1016/j.jaap.2015.01.024.; Gürakar, S. Studies on optical properties of antimony doped SnO 2 films / S. Gürakar, T. Serin, N. Serin // Appl. Surf. Sci. ― 2015. ― Vol. 352. ― P. 16‒22. doi:10.1016/j.apsusc.2015.03.057.; Wongcharoen, N. Co-existence of F and Sb dopants in transparent conducting SnO 2 thin films prepared by ultrasonic spray pyrolysis method / N. Wongcharoen, T. Gaewdang // Proceedings of ISES World Congress 2007: Solar Energy and Human Settlement. ― 2009. ― Vol. 1. ― P. 1269‒1274. doi:10.1007/978-3-540-75997-3_256.; Ramírez, E. A. Cu2ZnSnS4 films grown in one-step process by spray pyrolysis with improved properties / E. A. Ramírez, A. Ramírez, G. Gordillo // Materials Science in Semiconductor Processing. ― 2017. ― Vol. 67. ― P. 110‒117. doi:10.1016/j.mssp.2017.05.024.; Katagiri, H. Enhanced сonversion efficiencies of Cu 2 ZnSnS 4 -based thin film solar cells by using preferential etching technique / H. Katagiri, K. Jimbo, S. Yamada [et al.] // Appl. Phys. Express. ― 2008. ― Vol. 1, 4. ― Article 041201. DOI:10.1143/APEX.1.041201.; Barkhouse, D. A. R. Device characteristics of a 10,1 % hydrazine-processed Cu 2 ZnSn(Se,S) 4 solar cell / D. A. R. Barkhouse, O. Gunawan, T. Gokmen [et al.] // Progress in Photovoltaics: Research and Applications. ― 2012. ― Vol. 20. ― P. 6‒11. doi:10.1002/pip.1160.; Todorov, T. K. Beyond 11 % efficiency: Characteristics of state-of-the-art Cu 2 ZnSn(S,Se) 4 solar cells / T. K. Todorov, J. Tang, S. Bag [et al.] // Advanced Energy Materials. ― 2013. ― Vol. 3, № 1. ― P. 34‒38. doi:10.1002/aenm.201200348.; Menaka, S. M. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis / S. M. Menaka, G. Umadevi, M. Manickam // Materials Chemistry and Physics. ― 2017. ― Vol. 191. ― P. 181‒187. doi:10.1016/j.matchemphys.2017.01.048.; Vehring, R. Pharmaceutical particle engineering via spray drying / R. Vehring // Pharmaceutical Research. ― 2008. ― Vol. 25, № 5. ― P. 999‒1022. DOI:10.1007/s11095-007-9475-1.; Widiyastuti, W. Simulation and experimental study of spray pyrolysis of polydispersed droplets / W. Widiyastuti, W. N. Wang, I. W. Lenggoro [et al.] // Journal of Materials Research. ― 2007. ― Vol. 22, № 7. ― P. 1888‒1898. doi:10.1557/jmr.2007.0235.; Okuyama, K. Preparation of functional nanostructured particles by spray drying / K. Okuyama, M. Abdullah, I. W. Lenggoro [et al.] // Advanced Powder Technology. ― 2006. ― Vol. 17, № 6. ― P. 587‒611. doi:10.1163/156855206778917733.; Chang, H. W. Optical properties of dense and porous spheroids consisting of primary silica nanoparticles / H. W. Chang, K. Okuyama // Journal of Aerosol Science. ― 2002. ― Vol. 33, № 12. ― P. 1701‒1720. doi:10.1016/S0021-8502(02)00116-7.; Pal, M. Scalable synthesis of mesoporous titania microspheres via spray-drying method / M. Pal, L. Wan, Y. Zhu [et al.] // Journal of Colloid and Interface Science. ― 2016. ― Vol. 479. ― P. 150‒159. doi:10.1016/j.jcis.2016.06.063.; Iskandar, F. Nanoparticle processing for optical applications ― a review / F. Iskandar // Advanced Powder Technology. ― 2009. ― Vol. 20, № 4. ― P. 283‒292. doi:10.1016/j.apt.2009.07.001.; Ogi, T. Synthesis of nanocrystalline GaN from Ga 2 O 3 nanoparticles derived from salt-assisted spray pyrolysis / T. Ogi, Y. Kaihatsu, F. Iskandar [et al.] // Adv. Powder Technol. ― 2009. ― Vol. 20, № 1. ― P. 29‒34. doi:10.1016/j.apt.2008.10.005.; Mikrajuddin. Stable photoluminescence of zinc oxide quantum dots in silica nanoparticles matrix prepared by the combined sol-gel and spray drying method / Mikrajuddin, F. Iskandar, K. Okuyama [et al.] // J. Appl. Phys. ― 2001. ― Vol. 89, № 11. ― P. 6431‒6434. doi:10.1063/1.1360706.; Iskandar, F. In situ production of spherical silica particles containing self-organized mesopores / F. Iskandar, Mikrajuddin, K. Okuyama // Nano Lett. ― 2001. ― Vol. 1, № 5. ― P. 231‒234. doi:10.1021/nl0155227.; Iskandar, F. Preparation of microencapsulated powders by an aerosol spray method and their optical properties / F. Iskandar, H. W. Chang, K. Okuyama // Advanced Powder Technology. ― 2003. ― Vol. 14, № 3. ― P. 349‒367. doi:10.1163/15685520360685983.; Freitas, S. Ultrasonic atomization into reduced pressure atmosphere‒envisaging aseptic spray-drying for micro-encapsulation / S. Freitas, H. P. Merkle, B. Gander // Journal of Controlled Release. ― 2004. ― Vol. 95, № 2. ― P. 185‒195. doi:10.1016/j.jconrel.2003.11.005.; Gong, J.-S. The experimental study on the flow characteristics for a swirling gas–liquid spray atomizer / J.-S. Gong, W.-B. Fu // Applied Thermal Engineering. ― 2007. ― Vol. 27. ― P. 2886‒2892. doi:10.1016/j.applthermaleng.2007.04.006.; Hede, P. D. Two-fluid spray atomization and pneumatic nozzles for fluid bed coating/agglomeration purposes : A review / P. D. Hede, P. Bach, A. D. Jensen // Chemical Engineering Science. ― 2008. ― Vol. 63, № 14. ― P. 3821‒3842. doi:10.1016/j.ces.2008.04.014.; Ksapabutr, B. Dense and uniform NiO thin films fabricated by one-step electrostatic spray deposition / B. Ksapabutr, P. Nimnuan, M. Panapoy // Materials Letters. ― 2015. ― Vol. 153. ― P. 24‒28. doi:10.1016/j.matlet.2015.03.151.; Xie, J.-b. AgNi15 composite particles prepared by ultrasonic arc spray atomization method / J.-b. Xie, C.-m. Wen, G.-y. Qin [et al.] // Transactions of Nonferrous Metals Society of China. ― 2014. ― Vol. 24, № 11. ― P. 3556‒3561. doi:10.1016/S1003-6326(14)63501-9.; Yuan, L. Ignition of hydraulic fluid sprays by open flames and hot surfaces / L. Yuan // Journal of Loss Prevention in the Process Industries. ― 2006. ― Vol. 19, № 4. ― P. 353‒361. doi:10.1016/j.jlp.2005.09.001.; Nandiyanto, A. B. D. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges / A. B. D. Nandiyanto, K. Okuyama // Advanced Powder Technology. ― 2011. ― Vol. 22, № 1. ― P. 1‒19. doi:10.1016/j.apt.2010.09.011.; Yudin, A. Synthesis of hollow nanostructured nickel oxide microspheres by ultrasonic spray atomization / A. Yudin, N. Shatrova, B. Khaydarov [et al.] // Journal of Aerosol Science. ― 2016. ― Vol. 98. ― P. 30‒40. doi:10.1016/j.jaerosci.2016.05.003.; Shatrova, N. Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction / N. Shatrova, A. Yudin, V. Levina [et al.] // Materials Research Bulletin. ― 2017. ― Vol. 86. ― P. 80‒87. doi:10.1016/j.materresbull.2016.10.010.; https://newogneup.elpub.ru/jour/article/view/2108

  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 9 (2021); 35-40 ; Новые огнеупоры; № 9 (2021); 35-40 ; 1683-4518 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1577/1308; Long, B. Thermodynamic evaluation and properties of refractory materials for steel ladle purging plugs in the system Al2O3‒MgO‒CaO / B. Long, B. Andreas, G. Xu // Ceram. Int. ― 2016. ― Vol. 42. ― P. 11930‒11940. https://doi.org/10.1016/j.ceramint.2016.04.118.; Davis, M. Ordered porous materials for emerging applications / M. Davis // Nature. ― 2002. ― Vol. 417, № 6891. ― P. 813‒821. https://doi.org/10.1038/nature00785.; Tran, Q. Hydrodeoxygenation of a bio-oil model compound derived from woody biomass using spraypyrolysis-derived spherical γ-Al2O3‒SiO2 catalysts / Q. Tran // J. Ind. Eng. Chem. ― 2020. ― Vol. 92. ― P. 243‒251. https://doi.org/10.1016/j.jiec.2020.09.012.; Raimundo, R. Effect of high energy milling on microstructure and mechanical properties of Al2O3‒10 wt. % Co composites consolidated by spark plasma sintering (SPS) / R. Raimundo // Ceram. Int. ― 2021. ― Vol. 47, № 1. ― P. 677‒685. https://doi.org/10.1016/j.ceramint.2020.08.176.; Shon, I. Rapid consolidation of nanostructured Mo‒Al2O3 composite from mechanically synthesized powders / I. Shon // Ceram. Int. ― 2018. ― Vol. 44. ― P. 2587‒2592. https://doi.org/10.1016/j.ceramint.2017.10.120.; Konopka, K. Microstructure and the fracture toughness of the Al2O3‒Fe composites / K. Konopka, A. Oziȩbło // Mater. Char. ― 2001. ― Vol. 46. ― P. 125‒129. https://doi.org/10.1016/S1044-5803(01)00113-9.; Taha, M. Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3‒Ni nanocomposites prepared by mechanical alloying / M. Taha, A. Nassar, M. Zawrah // Ceram. Int. ― 2017. ― Vol. 43. ― P. 3576‒3582. https://doi.org/10.1016/j.ceramint.2016.11.194.; Aslibeiki, B. Structural and magnetic properties of Co/Al2O3 cermet synthesized by mechanical ball milling / B. Aslibeiki, P. Kameli // Ceram. Int. ― 2020. https://doi.org/10.1016/j.ceramint.2020.05.086.; Zawrah, M. Preparation by mechanical alloying, characterization and sintering of Cu ‒ 20 wt. % Al2O3 nanocomposites / M. Zawrah, H. Zayed, R. Essawy // Mater. Des. ― 2013. ― Vol. 46. ― P. 485‒490. https://doi.org/10.1016/j.msea.2007.08.059.; Karimzadeh, F. Synthesis and characterization of Zn/Al2O3 nanocomposite by mechanical alloying / F. Karimzadeh, M. Enayati, M. Tavoosi // Mater. Sci. Eng. ― 2008. ― Vol. 486. ― P. 45‒48. https://doi.org/10.1016/j.msea.2007.08.059.; Goudarzi, M. Using pomegranate peel powders as a new capping agent for synthesis of CuO/ZnO/Al2O3 nanostructures; enhancement of visible light photocatalytic activity / M. Goudarzi, M. SalavatiNiasari // Int. J. Hydrogen Energy. ― 2018. ― Vol. 43, № 31. ― P. 14406‒14416. https://doi.org/10.1016/j.ijhydene.2018.06.034.; Shon, I. Mechanochemical synthesis and consolidation of a nanostructured B‒Al2O3 hard composite by high-frequency induction-heated sintering / I. Shon // Ceram. Int. ― 2017. ― Vol. 43, № 1. ― P. 1612‒1616. https://doi.org/10.1016/j.ceramint.2016.10.089.; Shon, I. Mechanical synthesis and rapid consolidation of nanostructured FeAl‒Al2O3 composites by highfrequency induction heated sintering / I. Shon // Ceram. Int. ― 2012. ― Vol. 38, № 7. ― P. 6035‒6039. https://doi.org/10.1016/j.ceramint.2012.03.073.; Samotaev, N. Al2O3 nanostructured gas sensitive material for silicon based low power thermocatalytic sensor / N. Samotaev // Materials Today : Proceedings. ― 2020. https://doi.org/10.1016/j.matpr.2019.12.393.; Zhang, J. Microstructure and properties of Al2O3‒13 % TiO2 coatings sprayed using nanostructured powders / J. Zhang // Rare Metals. ― 2007. ― Vol. 26, № 4. ― P. 391‒397. https://doi.org/10.1016/S1001-0521(07)60234-4.; Romcevic, N. Structural and optical properties of ZnO‒Al2O3 nanopowders prepared by chemical methods / N. Romcevic // Journal of Luminescence. ― 2020. ― P. 117‒273. https://doi.org/10.1016/j.jlumin.2020.117273.; Kostyukov, A. Photoluminescence of oxygen vacancies in nanostructured Al2O3 / A. Kostyukov // Optical Materials. ― 2018. ― Vol. 75. ― P. 757‒763. https://doi.org/10.1016/j.optmat.2017.11.040.; Suvorov, D. Nanomodification of refractories with finely-dispersed additives with the use of a vortex electromagnetic homogenizer / D. Suvorov, B. Khaydarov, D. Lysov // IOP Conference Series: Mater. Sci. Eng. ― 2020. ― Vol. 718. https://doi:10.1088/1757-899X/718/1/012018.; https://newogneup.elpub.ru/jour/article/view/1577

  9. 9
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке Российского научного фонда, грант 19-73-00346.

    Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 8 (2021); 62-65 ; Новые огнеупоры; № 8 (2021); 62-65 ; 1683-4518 ; 10.17073/1683-4518-2021-8

    Περιγραφή αρχείου: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1586/1316; Herrault, F. Synthesis and binder-free assembly of SrFe12O19 nano-platelets for wafer-scale patterning of magnetic components / F. Herrault, S. Cui, X. N. Guan, A. F. Gross // Microelectronic Engineering. ― 2021. ― Vol. 236. ― Article № 111467. https://doi.org/10.1016/j.mee.2020.111467.; Alipour, A. Magnetic properties improvement through exchange-coupling in hard/soft SrFe12O19/Co nanocomposite / A. Alipour, Sh. Torkian, A. Ghasemi [et al.] // Ceram. Int. ― 2021. ― Vol. 47, № 2. ― P. 2463‒2470. https://doi.org/10.1016/j.ceramint.2020.09.089.; Shamsutov, I. V. SrFe12O19 as an impurity in perovskitetype ferrites / I. V. Shamsutov, O. V. Merkulov, M. V. Patrakeev // Mater. Lett. ― 2021. ― Vol. 283. ― Article № 128753. https://doi.org/10.1016/j.matlet.2020.128753.; Wang, H. Eco-friendly synthesis of a novel magnetic Bi4O5Br2/SrFe12O19 nanocomposite with excellent photocatalytic activity and recyclable performance / H. Wang, L. Xu, M. Zhang // Ceram. Int. ― 2021. ― Vol. 47. ― № 6. ― P. 8300‒8307. https://doi.org/10.1016/j.ceramint.2020.11.191.; Das, A. Enhanced magnetoelectric coupling in dysprosium-doped BiFeO3 on the formation of nanocomposite with SrFe12O19 / A. Das, N. Khamaru, S. Bandyopadhyay [et al.] // J. Alloys Compds. ― 2021. ― Vol. 859. ― Article № 157821. https://doi.org/10.1016/j.jallcom.2020.157821.; Ariaee, S. Spectroscopy of peaks at microwave range for nanostructure SrFe12O19 and NiFe2O4 ferrite particles / S. Ariaee, M. Mehdipour, M. Moradnia // Journal of Magnetism and Magnetic Materials. ― 2017. ― Vol. 429. ― P. 348‒352. https://doi.org/10.1016/j.jmmm.2017.01.030.; Dong, S. One-pot synthesis and microwave absorbing properties of ultrathin SrFe12O19 nanosheets / S. Dong, C. Lin, X. Meng // J. Alloys Compds. ― 2019. ― Vol. 783. ― P. 779‒784. https://doi.org/10.1016/j.jallcom.2018.12.265.; Grindi, B. Microwave-assisted synthesis and magnetic properties of M-SrFe12O19 nanoparticles / B. Grindi, Z. Beji, G. Viau, A. B. Ali // Journal of Magnetism and Magnetic Materials. ― 2018. ― Vol. 449. ― P. 119‒126. https://doi.org/10.1016/j.jmmm.2017.10.002.; Palomino, R. L. Sonochemical assisted synthesis of SrFe12O19 nanoparticles / R. L. Palomino, A. M. B. Miró, F. N. Tenorio [et al.]//Ultrasonics Sonochemistry. ― 2016. ― Vol. 29. ― P. 47-0-475. https://doi.org/10.1016/j.ultsonch.2015.10.023.; Yudin, A. Synthesis of hollow nanostructured nickel oxide microspheres by ultrasonic spray atomization / A. Yudin, N. Shatrova, B. Khaydarov [et al.] // Journal of Aerosol Science. ― 2016. ― Vol. 98. ― P. 30‒40. https://doi.org/10.1016/j.jaerosci.2016.05.003.; Shatrova, N. Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction / N. Shatrova, A. Yudin, V. Levina [et al.] // Materials Research Bulletin. ― 2017. ― Vol. 86. ― P. 80‒87. https://doi.org/10.1016/j.materresbull.2016.10.010.; Shatrova, N. Characteristics of Co3O4 and cobalt nanostructured microspheres: Morphology, structure, reduction process, and magnetic properties / N. Shatrova, A. Yudin, V. Levina [et al.] // Materials Research Bulletin. ― 2018. ― Vol. 99. ― P. 189‒195. https://doi.org/10.1016/j.materresbull.2017.11.017.; https://newogneup.elpub.ru/jour/article/view/1586

  10. 10
    Academic Journal

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 25-27 (2020); 131-137 ; Альтернативная энергетика и экология (ISJAEE); № 25-27 (2020); 131-137 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2015/1692; Jandow, N.N. Comparative study of the properties of ZnO thin films deposited on poly propylene carbonate (PPC) and glass substrates / N.N. Jandow [et al.] // Journal of Materials Science. – 2012. − Vol. 47, − P.1972– 1976.; Ludwig Ostlund. 4H- and 6H-SiC UV photodetectors / Ludwig Ostlund [et al] // Physica Status Solidi C, – 2012. – Vol. 9(7), – P. 1680–1682.; Soci, C. ZnO Nanowire UV Photodetectors with High Internal Gain / C. Soci [et al] // Nano Letters. – 2007. – Vol. 7(4), – P. 1003-1009.; Ali, G.M. ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors / G. M. Ali, and P. Chakrabarti // Journal of Physics D: Applied Physics. – 2010. – Vol. 43(41), –P. 415103.; Luo, L. Fabrication and characterization of ZnO nanowires based UV photodiodes / L. Luo [et al]” Sensors and Actuators A. – 2006. – Vol. 127(1), – P. 201-206.; Shao, D. Heterojunction photodiode fabricated from hydrogen treated ZnO nanowires grown on p-silicon substrate / D. Shao [et al] // Applied Physics Letters. – 2012. – Vol. 101(21), – P. 211103.; Periasamy, C. Large-area and nanoscale n-ZnO/p-Si heterojunction photodetectors / C. Periasamy and P. Chakrabarti // Journal of Vaccum Science and Technology B. – 2011. – Vol. 29(5), pp. 051206.; Yakuphanoglu, F. ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate / F. Yakuphanoglu [et al] // Material Science in Semiconductor Processing. – 2010. – Vol. 13(3), – P. 137-140.; Sahu, V.K. Studies on the electrical characteristics of n-ZnO/p-Si grown by pulsed laser deposition for UV photo detecting applications / V. K. Sahu [et al] // Physics Express. – 2013. – Vol. 3, – P. 10.; Sharma, P. Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering / P. Sharma [et al] // Journal of Applied Physics. – 2003. – Vol. 93(7), – P. 3963-3970.; Chang, Y.M. Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition / Y.M. Chang [et al] // Nanotechology. – 2010. – Vol. 21(38), – P.385705.; Wang, P. Quality improvement of ZnO thin layers overgrown on Si(100) substrates at room temperature by nitridation pretreatment / P. Wang [et al] // AIP Advances. – 2012. – Vol. 2(2), – P. 022139.; Юлчиев, Ш.Х. Использование пиролитических металлооксидных пленок для изготовления фотоэлектрических преобразователей энергии / Ш.Х. Юлчиев [и др.]. Вестник Воронежского государственного технического университета. – 2019. – Т. 15(5). – С. 72-77.; Zainabidinov, S.Z. Synthesis, Structure and Electro-Physical Properties n-GaAs-p-(GaAs)1 – x – y(Ge2)x(ZnSe)y Heterostructures / S.Z. Zainabidinov [et al] // Applied Solar Energy. – 2019, – Vol. 55,(5), – Р. 291.; Кислород в монокристаллах кремния // В.М. Бабич [и др.]; – Киев, Interpres LTD: – 1997. – 240 С.; Шульпина И.Л. Методы рентгеновской дифракионной диагностики сильнолегированных монокристаллов полупроводников / И.Л. Шульпина [и др.] // ЖТФ. – 2010, – Т. 80(4), – С. 105-114.; Теория формирования эпитаксиальных наноструктур // В.Г. Дубровский, – Москва: Физматлит, 2009. – С. 486.; Алексанян, А.Ю. Получение диодных гетероструктур p-Si/n-ZnO и исследование их вольтамперных характеристик / Алексанян, А.Ю. // Альтернативная энергетика и экология. – 2013. – № 6. – С. 23–27.; https://www.isjaee.com/jour/article/view/2015

  11. 11
  12. 12
    Academic Journal

    Πηγή: Surface and Interface Analysis. 47:601-606

    Περιγραφή αρχείου: application/pdf

    Συνδεδεμένο Πλήρες Κείμενο
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20