Showing 1 - 2 results of 2 for search '"Сердечно-сосудистая регуляция"', query time: 0.48s Refine Results
  1. 1
    Academic Journal

    Source: Complex Issues of Cardiovascular Diseases; Том 11, № 4 (2022); 130-138 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 4 (2022); 130-138 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1248/721; Gutkowska J., Jankowski M., Antunes-Rodrigues J. The role of oxytocin in cardiovascular regulation. Braz J Med Biol Res. 2014; 47(3): 206-214.; Houshmand F., Faghihi M., Zahediasl S. Role of atrial natriuretic Peptide in oxytocin induced cardioprotection. Heart Lung Circ. 2015; 24(1): 86-93. doi:10.1016/j.hlc.2014.05.023.; Klenerova V., Chottova-Dvorakova M., Skopek P., Sida P., Mistrova E., Slavikova J., et al. Expression of heart oxytocin receptor and its mRNA in two rat strains with different activity of HPA axis. Neuro Endocrinol Lett. 2011; 32(6): 805-810.; Jankowski M., Wang D., Danalache B., Gangal M., Gutkowska J. Cardiac oxytocin receptor blockade stimulates adverse cardiac remodeling in ovariectomized spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2010; 299(2): 265-274. doi:10.1152/ajpheart.00487.2009.; Lipari A., Farina E., Gerbino A., Lipari L. Atrial natriuretic peptide (ANP) and oxytocin-expression in the adult rat and mouse cerebellum. Cerebellum Ataxias. 2015; 2: 12. doi:10.1186/s40673-015-0031-1.; Wang P., Wang S.C., Yang H., Lv C., Jia S., Liu X., Wang X., Meng D., Qin D., Zhu H., Wang Y.F. Therapeutic Potential of Oxytocin in Atherosclerotic Cardiovascular Disease: Mechanisms and Signaling Pathways. Front Neurosci. 2019; 13: 454. doi:10.3389/fnins.2019.00454.; Cattaneo M.G., Lucci G., Vicentini L.M. Oxytocin stimulates in vitro angiogenesis via a Pyk-2/Src-dependent mechanism. Exp Cell Res. 2009; 315(18): 3210-9. doi:10.1016/j.yexcr.2009.06.022.; Japundžić-Žigon N., Lozić M., Šarenac O., Murphy D. Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Curr Neuropharmacol. 2020; 18(1): 14-33. doi:10.2174/1570159X17666190717150501.; Szczepanska-Sadowska E., Wsol A., Cudnoch-Jedrzejewska A., Żera T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int J Mol Sci. 2021; 22 (21): 11465. doi:10.3390/ijms222111465.; Jankowski M., Danalache B.A., Plante E., Menaouar A., Florian M., Tan J.J., Grygorczyk R., Broderick T.L., Gutkowska J. Dissociation of natriuresis and diuresis by oxytocin molecular forms in rats. PLoS One. 2019; 14(7): e0219205. doi:10.1371/journal.pone.0219205.; Takayanagi Y., Kasahara Y., Onaka T., Takahashi N., Kawada T., Nishimori K. Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport. 2008; 19(9): 951955. doi:10.1097/WNR.0b013e3283021ca9.; Rubattu S., Calvieri C., Pagliaro B., Volpe M. Atrial natriuretic peptide and regulation of vascular function in hypertension and heart failure: implications for novel therapeutic strategies. J Hypertens. 2013; 31(6): 1061-1072. doi:10.1097/HJH.0b013e32835ed5eb.; Buemann B., Uvnäs-Moberg K. Oxytocin may have a therapeutical potential against cardiovascular disease. Possible pharmaceutical and behavioral approaches. Med Hypotheses. 2020; 138: 1095-1097. doi:10.1016/j.mehy.2020.109597.; Szczepanska-Sadowska E., Cudnoch-Jedrzejewska A., Wsol A. The role of oxytocin and vasopressin in the pathophysiology of heart failure in pregnancy and in fetal and neonatal life. Am J Physiol Heart Circ Physiol. 2020; 318(3): 639-651. doi:10.1152/ajpheart.00484.2019.; Gutkowska J., Jankowski M. Oxytocin revisited: its role in cardiovascular regulation. J Neuroendocrinol. 2012; 24(4): 599-608. doi:10.1111/j.1365-2826.2011.02235.x.; Pyner S. The heart is lost without the hypothalamus. Handb Clin Neurol. 2021;182:355-67. doi:10.1016/B978-012-819973-2.00024-1. PubMed PMID: 34266605.; Danalache B.A., Yu C., Gutkowska J., Jankowski M. Oxytocin-Gly-Lys-Arg stimulates cardiomyogenesis by targeting cardiac side population cells. J Endocrinol. 2014; 220(3): 277-89. doi:10.1530/JOE-13-0305.; Bollini S., Smart N., Riley P.R. Resident cardiac progenitor cells: at the heart of regeneration. J Mol Cell Cardiol. 2011; 50(2): 296-303. doi:10.1016/j.yjmcc.2010.07.006.; Noiseux N., Borie M., Desnoyers A., Menaouar A., Stevens L.M., Mansour S., Danalache B.A., Roy D.C., Jankowski M., Gutkowska J. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology. 2012; 153(11): 5361-5372. doi:10.1210/en.2012-1402.; Zhu H., Zhang Z., Liu Y., Chen Y., Tan Y. Molecular mechanism of cardiac differentiation in P19 embryonal carcinoma cells regulated by Foxa2. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013; 38(4): 356-364. doi:10.3969/j.issn.1672-7347.2013.04.004.; Jankowski M., Broderick T.L., Gutkowska J. The Role of Oxytocin in Cardiovascular Protection. Front Psychol. 2020; 11: 21-39. doi:10.3389/fpsyg.2020.02139.; Ye J., Boyle A., Shih H., Sievers R.E., Zhang Y., Prasad M., Su H., Zhou Y., Grossman W., Bernstein H.S., Yeghiazarians Y. Sca-1+ cardiosphere-derived cells are enriched for Isl1expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS One. 2012; 7(1): e30329. doi:10.1371/journal.pone.0030329.; Danalache B.A., Gutkowska J., Slusarz M.J., Berezowska I., Jankowski M. Oxytocin-Gly-Lys-Arg: a novel cardiomyogenic peptide. PLoS One. 2010; 5(10): e13643. doi:10.1371/journal.pone.0013643.; Branco A.F., Pereira S.P., Gonzalez S., Gusev O., Rizvanov A.A., Oliveira P.J. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype. PLoS One. 2015; 10(6): e0129303. doi:10.1371/journal.pone.0129303.; Bøtker H.E., Hausenloy D., Andreadou I., Antonucci S., Boengler K., Davidson S.M., Deshwal S., Devaux Y., Di Lisa F., Di Sante M., Efentakis P., Femminò S., GarcíaDorado D., Giricz Z., Ibanez B., Iliodromitis E., Kaludercic N., Kleinbongard P., Neuhäuser M., Ovize M., Pagliaro P., Rahbek-Schmidt M., Ruiz-Meana M., Schlüter K.D., Schulz R., Skyschally A., Wilder C., Yellon D.M., Ferdinandy P., Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol. 2018; 113(5): 39. doi:10.1007/s00395-018-0696-8.; Gonzalez-Reyes A., Menaouar A., Yip D., Danalache B., Plante E., Noiseux N., Gutkowska J., Jankowski M. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia-reperfusion. Mol Cell Endocrinol. 2015; 412: 170-181. doi:10.1016/j.mce.2015.04.028.; Gravina F.S., Jobling P., Kerr K.P., de Oliveira R.B., Parkington H.C., van Helden D.F. Oxytocin depolarizes mitochondria in isolated myometrial cells. Exp Physiol. 2011; 96(9): 949-956. doi:10.1113/expphysiol.2011.058388.; Quan H.X., Jin J.Y., Wen J.F., Cho K.W. Beta1adrenergic receptor activation decreases ANP release via cAMP-Ca2+ signaling in perfused beating rabbit atria. Life Sci. 2010; 87(7-8): 246-253. doi:10.1016/j.lfs.2010.06.022.; Kobayashi H., Yasuda S., Bao N., Iwasa M., Kawamura I., Yamada Y., Yamaki T., Sumi S., Ushikoshi H., Nishigaki K., Takemura G., Fujiwara T., Fujiwara H., Minatoguchi S. Postinfarct treatment with oxytocin improves cardiac function and remodeling via activating cell-survival signals and angiogenesis. J Cardiovasc Pharmacol. 2009; 54(6): 510-519. doi:10.1097/FJC.0b013e3181bfac02.; Moraes M.S., Costa P.E., Batista W.L., Paschoalin T., Curcio M.F., Borges R.E., Taha M.O., Fonseca F.V., Stern A., Monteiro H.P. Endothelium-derived nitric oxide (NO) activates the NO-epidermal growth factor receptor-mediated signaling pathway in bradykinin-stimulated angiogenesis. Arch Biochem Biophys. 2014; 558: 14-27. doi:10.1016/j.abb.2014.06.011.; Gélinas R., Mailleux F., Dontaine J., Bultot L., Demeulder B., Ginion A., Daskalopoulos E.P., Esfahani H., Dubois-Deruy E., Lauzier B., Gauthier C., Olson A.K., Bouchard B., Des Rosiers C., Viollet B., Sakamoto K., Balligand J.-L., Vanoverschelde J.-L., Beauloye C., Horman S., Bertrand L. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun. 2018; 9(1): 374. doi:10.1038/s41467-017-02795-4.; Negro A., Dodge-Kafka K., Kapiloff M.S. Signalosomes as Therapeutic Targets. Prog Pediatr Cardiol. 2008; 25(1): 5156. doi:10.1016/j.ppedcard.2007.11.012.; Pagliaro P., Femminò S., Popara J., Penna C. Mitochondria in Cardiac Postconditioning. Front Physiol. 2018; 9: 287. doi:10.3389/fphys.2018.00287.; Quinlan C.L., Costa A.D., Costa C.L., Pierre S.V., Dos Santos P., Garlid K.D. Conditioning the heart induces formation of signalosomes that interact with mitochondria to open mitoKATP channels. Am J Physiol Heart Circ Physiol. 2008; 295(3): 953-961. doi:10.1152/ajpheart.00520.2008.; Rimoldi V., Reversi A., Taverna E., Rosa P., Francolini M., Cassoni P., Parenti M., Chini B. Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene. 2003; 22(38): 6054-6060. doi:10.1038/sj.onc.1206612.; Sanon V.P., Sawaki D., Mjaatvedt C.H., Jourdan-Le Saux C. Myocardial tissue caveolae. Compr Physiol. 2015; 5(2): 871-886. doi:10.1002/cphy.c140050.; Svanström M.C., Biber B., Hanes M., Johansson G., Näslund U., Bålfors E.M. Signs of myocardial ischaemia after injection of oxytocin: a randomized double-blind comparison of oxytocin and methylergometrine during Caesarean section. Br J Anaesth. 2008; 100(5): 683-689. doi:10.1093/bja/aen071.; Gutkowska J., Granger J.P., Lamarca B.B., Danalache B.A., Wang D., Jankowski M. Changes in cardiac structure in hypertension produced by placental ischemia in pregnant rats: effect of tumor necrosis factor blockade. J Hypertens. 2011; 29(6): 1203-1212. doi:10.1097/HJH.0b013e3283468392.; Song Z., Albers H.E. Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Front Neuroendocrinol. 2018; 51: 14-24. doi:10.1016/j.yfrne.2017.10.004.; Natochin Y.V., Shakhmatova E.I., Bogolepova A.E. Mechanism of Natriuretic Effect of Oxytocin. Bull Exp Biol Med. 2020; 168(5): 634-636. doi:10.1007/s10517-020-04768-y.; Natochin Y.V., Golosova D.V. Vasopressin receptor subtypes and renal sodium transport. Vitam Horm. 2020; 113: 239-258. doi:10.1016/bs.vh.2019.08.013.; Iovino M., Messana T., Tortora A., Giusti C., Lisco G., Giagulli V.A., Guastamacchia E., De Pergola G., Triggiani V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr Metab Immune Disord Drug Targets. 2021; 21(1): 91-110. doi:10.2174/1871530320666200520093730.; Ondrejcakova M., Ravingerova T., Bakos J., Pancza D., Jezova D. Oxytocin exerts protective effects on in vitro myocardial injury induced by ischemia and reperfusion. Can J Physiol Pharmacol. 2009; 87(2): 137-142. doi:10.1139/Y08-108.; Jovanovic P., Spasojevic N., Puskas N., Stefanovic B., Dronjak S. Oxytocin modulates the expression of norepinephrine transporter, β. Peptides. 2019; 111:132-141. doi:10.1016/j. peptides.2018.06.008.; Penna C., Granata R., Tocchetti C.G., Gallo M.P., Alloatti G., Pagliaro P. Endogenous Cardioprotective Agents: Role in Pre and Postconditioning. Curr Drug Targets. 2015; 16(8): 843-867. doi:10.2174/1389450116666150309115536.; Ruiz-Meana M., Boengler K., Garcia-Dorado D., Hausenloy D.J., Kaambre T., Kararigas G., Perrino C., Schulz R., Ytrehus K. Ageing, sex, and cardioprotection. Br J Pharmacol. 2020; 177(23): 5270-5286. doi:10.1111/bph.14951.; Kleinbongard P., Bøtker H.E., Ovize M., Hausenloy D.J., Heusch G. Co-morbidities and co-medications as confounders of cardioprotection-Does it matter in the clinical setting? Br J Pharmacol. 2020; 177(23): 5252-5269. doi:10.1111/bph.14839.; Femminò S., Pagliaro P., Penna C. Obesity and Cardioprotection. Curr Med Chem. 2020; 27(2): 230-239. doi:10.2174/0929867326666190325094453.; Penna C., Andreadou I., Aragno M., Beauloye C., Bertrand L., Lazou A., Falcão-Pires I., Bell R., Zuurbier C.J., Pagliaro P., Hausenloy D.J. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J; Pharmacol. 2020; 177(23): 5312-5335. doi:10.1111/bph.14993.; Davidson S.M., Ferdinandy P., Andreadou I., Bøtker H.E., Heusch G., Ibáñez B., Ovize M., Schulz R., Yellon D.M., Hausenloy D.J., Garcia-Dorado D.; CARDIOPROTECTION COST Action (CA16225). Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury: JACC Review Topic of the Week. J Am Coll Cardiol. 2019; 73(1): 89-99. doi:10.1016/j.jacc.2018.09.086.

  2. 2
    Academic Journal

    Relation: Чечулин, А. А. Нарушения сердечно-сосудистой регуляции у пациентов с нетравматическими церебральными кровоизлияниями [Электронный ресурс] / А. А. Чечулин // Проблемы и перспективы развития современной медицины : сб. науч. ст. XI Респ. науч.-практ. конф. с междунар. участием студентов и молодых ученых, г. Гомель, 2–3 мая 2019 г. : в 8 т. / Гомел. гос. мед. ун-т; редкол. : А. Н. Лызиков [и др.]. – Гомель : ГомГМУ, 2019. – Т. 7. – С. 214–216. – 1 электрон. опт. диск (CD-ROM).; http://elib.gsmu.by/handle/GomSMU/6452