Showing 1 - 20 results of 59 for search '"СТОИМОСТЬ ЭЛЕКТРОЭНЕРГИИ"', query time: 0.66s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: Статья подготовлена при поддержке Фонда содействия инновациям, договор № №648ГРНТИС5/63411 от 10.12.2020 г. Авторы благодарны Анашкину С.В. и Девяткину М.В. за участие в разработке программного обеспечения (ПО).

    Source: Alternative Energy and Ecology (ISJAEE); № 6 (2022); 20-32 ; Альтернативная энергетика и экология (ISJAEE); № 6 (2022); 20-32 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2569/2086; Рабинович М.А. Цифровая обработка информации для задач оперативного управления в электроэнергетике. М.: «Издательство НЦ ЭНАС», 2001.; Орнов В.Г., Рабинович М.А. Задачи оперативного и автоматического управления энергосистемами М., Энергоатомиздат",1988.; Рабинович. М.А. Отображение оперативной информации. Комплекс «КАСКАД–НТ 2.0». М., Издво НЦ ЭНАС., 2004 г.; Каковский С.К. Потапенко С.П., Рабинович М.А. Вопросы импортозамещения программного обеспечения в задачах электроэнергетики. Энергия единой сети. Август – Сентябрь 2015, Москва.; Книга «Теоретические основы, методы и модели управления большими электроэнергетическими системами». Москва, 2015, ПАО «ФСК ЕЭС», ISBN 978-5-9. 904113-2-6, 188. Моржин Ю.И., Рабинович М.А. и др. Под редакцией член-корр. РАН Воропай Н.И.; Воротницкий В.Э., Моржин Ю.И «Цифровая трансформация энергетики России- системная задача четвертой промышленной революции» // Энергия единой сети. 2019г. №6 (42).; https://www.isjaee.com/jour/article/view/2569

  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: Vestnik Universiteta; № 10 (2024); 150-160 ; Вестник университета; № 10 (2024); 150-160 ; 2686-8415 ; 1816-4277

    File Description: application/pdf

    Relation: https://vestnik.guu.ru/jour/article/view/5619/3148; Черняховская Ю.В. Эволюция методологических подходов к оценке стоимости электроэнергии. Анализ зарубежного опыта. Вестник Ивановского государственного энергетического университета. 2016;4:56–68. http://doi.org/10.17588/2072-2672.2016.4.056-068; Трегубова Е.А., Трегубов А.И. Интенсивность использования мощности нетрадиционных возобновляемых источников энергии в электроэнергетике: анализ зарубежного и отечественного опыта. E-Management. 2022;3(5):15–25. https://doi.org/10.26425/2658-3445-2022-5-3-15-25; Илюшин П.В. Интеграция электростанций на основе возобновляемых источников энергии в Единую энергетическую систему России: обзор проблемных вопросов и подходов к их решению. Вестник Московского энергетического института. 2022;4:98–107. https://doi.org/10.24160/1993-6982-2022-4-98-107; Веселов Ф.В., Ерохина И.В., Никулина Е.А. Моделирование ценовых последствий на конкурентном рынке электроэнергии в России при интенсивном развитии неуглеродных электростанций. В кн.: Управление развитием крупномасштабных систем MLSD – 2020: материалы XIII Международной конференции, Москва, 28–30 сентября 2020 г. М.: Институт проблем управления имени В.А. Трапезникова Российской академии наук; 2020. С. 156–164. https://doi.org/10.25728/mlsd.2020.0156; Мясоедов Ю.В., Музыченко Г.Е., Намаконова Н.А. Увеличение пропускной способности воздушных линий электропередач. В кн.: Энергетика: управление, качество и эффективность использования энергоресурсов: материалы IX Международной научно-технической конференции, Благовещенск, 11–12 марта 2019 г. Благовещенск: Амурский государственный университет; 2019. С. 294–298.; Ланьшина Т. Прогноз развития ВИЭ в России до 2035 года. Научный вестник ИЭП имени Гайдара. 2019;9:40–47.; Мельников В.Д., Нестеренко Г.Б., Лебедев Д.Е., Мокроусова Ю.В., Удовиченко А.В. Проблемы, перспективы применения и методика расчета нормированной стоимости накопления электрической энергии. Вестник Казанского государственного энергетического университета. 2019;4(11):30–36.; Булатов Р.В., Насыров Р.Р., Бурмейстер М.В. Применение систем накопления электроэнергии для повышения коэффициента использования установленной мощности электростанций на базе возобновляемых источников энергии в составе электрических систем. Электроэнергия. Передача и распределение. 2021;6(69):74–80.; Фрид С.Е., Лисицкая Н.В. Анализ возможности увеличения коэффициента использования установленной мощности сетевых фотоэлектрических станций. Теплоэнергетика. 2022;7:74–84. https://doi.org/10.1134/S0040363622060030; https://vestnik.guu.ru/jour/article/view/5619

  6. 6
    Academic Journal

    Source: Strategic decisions and risk management; Том 15, № 2 (2024); 100-117 ; تصمیمات راهبردی و مدیریت ریسک ها; Том 15, № 2 (2024); 100-117 ; Стратегические решения и риск-менеджмент; Том 15, № 2 (2024); 100-117 ; 战略决策和风险管理; Том 15, № 2 (2024); 100-117 ; 2618-9984 ; 2618-947X ; 10.17747/2618-947X-2024-2

    File Description: application/pdf

    Relation: https://www.jsdrm.ru/jour/article/view/1098/1062; https://www.jsdrm.ru/jour/article/view/1098/1091; Abdulkareem S.A., Haghifam M.R., Ghanizadeh Bolandi T. (2021). A novel approach for distributed generation expansion planning considering its added value compared with centralized generation expansion. Sustainable Energy, Grids and Networks, 25: 100417. DOI:10.1016/j.segan.2020.100417.; Abramovich B.N., Sychev Yu.A. (2016). Methods and means of ensuring the energy safety of industrial enterprises with a continuous technological cycle. Industrial Energy, 9: 18-22. (In Russ.); Anuradha K.B.J., Jayatunga U., Ranjit Perera H.Y. (2021). Loss-voltage sensitivity analysis based battery energy storage systems allocation and distributed generation capacity upgrade. Journal of Energy Storage, 36: 102357. DOI:10.1016/j.est.2021.102357.; Baev I., Dzyuba A., Solovyeva I., Kuzmina N. (2018). Improving the efficiency of using small-distributed generation systems through mechanisms of demand management for electricity and gas. International Journal of Energy Production and Management, 3(4): 277-291. DOI:10.2495/EQ-V3-N4-277-291.; Baghbanzadeh D., Salehi J., Samadi Gazijahani F., Shafie-khah M., Catalão J.P.S. (2021). Resilience improvement of multi-microgrid distribution networks using distributed generation. Sustainable Energy, Grids and Networks, 27: 100503. DOI:10.1016/j.segan.2021.100503.; Belmahdi B., El Bouardi A. (2020). Simulation and optimization of microgrid distributed generation: A case study of University Abdelmalek Essaâdi in Morocco. Procedia Manufacturing, 46: 746-753. DOI:10.1016/j.promfg.2020.03.105.; Beltrán J.C., Aristizábal A.J., López A., Castaneda M., Zapata S., Ivanova Y. (2020). Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems. Energy Reports, 6(sup. 3): 88-104. DOI:10.1016/j.egyr.2019.10.025.; Chulyukova M.V. (2019). Features of modelling of processes of selection isolated work of power supply systems with distributed generation in emergency conditions. In: Energy: management, quality and efficiency of the use of energy resources. Proceedings of the IX International Scientific and Technical Conference, 212-216. (In Russ.); Craig M.T., Jaramillo P., Hodge B.-M., Williams N.J., Severnini E. (2018). A retrospective analysis of the market price response to distributed photovoltaic generation in California. Energy Policy, 121: 394-403. DOI:10.1016/j.enpol.2018.05.061.; Dormidonov P.V. (2019). Distributed energy using cogeneration technology. In: Youth Scientific Forum. Collected papers of XXXIV Student International Scientific and Practical Conference, 24-26. (In Russ.); Dzyuba A.P. (2020). Theory and methodology of energy demand management in industry: Monograph. Chelyabinsk, SUSU Publishing. (In Russ.); Dzyuba A.P., Semikolenov A.V. (2021a). Management of energy costs of industrial enterprises connected to electric grid of electric power producers. Bulletin of Kemerovo State University. Series: Political, Sociological, and Economic Sciences, 2(20). DOI:10.21603/2500-3372-2021-6-2-198-207. (In Russ.); Dzyuba A.P., Semikolenov A.V. (2021b). The relevance of the use of active energy complexes in the Russian industry. Problems of Economics and Management of Oil and Gas Complex, 9(201): 31-40. DOI:10.33285/1999-6942-2021-9(201)-31-40. (In Russ.); Dzyuba A., Solovyeva I. (2020a). Demand-side management in territorial entities based on their volatility trends. International Journal of Energy Economics and Policy, 10(1): 302-315. DOI:10.32479/ijeep.8682.; Dzyuba A., Solovyeva I. (2020b). Price-based demand-side management model for industrial and large electricity consumers. International Journal of Energy Economics and Policy, 10(4): 135-149. DOI:10.32479/ijeep.8982.; Dzyuba A.P., Solovyeva I.A. (2021a). Energy demand management in the global economic space. Chelyabinsk, SUSU Publishing. (In Russ.); Dzyuba A.P., Solovyeva I.A. (2021b). Prospects for energy demand management in Russian regions. Economy of Region, 2(17): 502-519. DOI:10.17059/ekon.reg.2021-2-11. (In Russ.); Dzyuba A.P., Solovyeva I.A., Semikolenov A.V. (2022). Prospects of introducing microgrids in Russian industry. Journal of New Economy, 23(2): 80-101. DOI:10.29141/2658-5081-2022-23-2-5.; Eljrushi G.S., Alrtami R.S., Ben-Gheshir O.M., Elhaddad O.I. (2019). Distributed power generation for scattered population. Alternative Energy and Ecology, 19-21(303-305): 12-16. (In Russ.); Garlet B.T., Duarte Ribeiro J.L., Souza Savian F., Siluk J.C.M. (2019). Paths and barriers to the dffusion of distributed generation of photovoltaic energy in Southern Brazil. Renewable and Sustainable Energy Reviews, 111: 157-169. DOI:10.1016/j.rser.2019.05.013.; Howlader H.O.R., Matayoshi H., Senjyu T. (2015). Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error. Energy Conversion and Management, 96: 303-314. DOI:10.1016/j.enconman.2015.02.087.; Howlader H.O.R., Matayoshi H., Senjyu T. (2016). Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid. Renewable Energy, 99: 107-117. DOI:10.1016/j.renene.2016.06.050.; Ilyushin P.V., Berezovsky P.K., Filippov S.P. (2019). Formation of technical requirements for generating settings of distributed generation to participate in voltage regulation. In: Voropai N.I. (ed). Methodological issues of studying the reliability of large energy systems. Irkutsk, L.A. Melentyev Energy Systems Institute of the Siberian Branch of RAS, 64-73. (In Russ.); Kakran S., Chanana S. (2018). Smart operations of smart grids integrated with distributed generation: A review. Renewable and Sustainable Energy Reviews, 81, part 1: 524-535. DOI:10.1016/j.rser.2017.07.045.; Khudyakov K.I., Chirov D.A., Smirnov A.Yu., Yakovlev S.O. (2020). Problems of integration of distributed generation and centralised power supply system. In: Priority directions of the innovation activity in the industry. Collection of scientific articles upon the results of the Third International Scientific Conference, 162-164. (In Russ.); Kuchin P.G., Ragutkin A.V., Shigaev I.A. (2010). Distributed generation as a way of effective power supply to consumers. In: Energy and resource conservation - XXI century. A collection of materials of the VIII International Scientific and Practical Internet Conference, 68-69. (In Russ.); Kumar M., Kumar A., Sandhu K.S. (2018). Impact of distributed generation on nodal prices in hybrid electricity market. International Conference on Processing of Materials, Minerals and Energy, 5(1), part 1: 830-840. DOI:10.1016/j.matpr.2017.11.154.; Lachkov G.G., Fedyaev A.V. (2015). Improving the energy supply of the region by using distributed cogeneration. Bulletin of the Irkutsk State Technical University, 11(106): 165-171. (In Russ.); Li Z., Chen G. (2022). Fixed-time consensus based distributed economic generation control in a smart grid. International Journal of Electrical Power & Energy Systems, 134: 107437. DOI:10.1016/j.ijepes.2021.107437.; Lin Q., Liu Li-J., Yuan M., Ge L.-J., Wang Y.-H., Zhang M. (2021). Choice of the distributed photovoltaic power generation operating mode for a manufacturing enterprise: Surrounding users vs a power grid. Journal of Cleaner Production, 293: 126199. DOI:10.1016/j.jclepro.2021.126199.; Liu S., Bie Z., Liu F., Li Z., Li G., Wang X. (2019). Policy implication on distributed generation PV trading in China. Energy Procedia, 159: 436-441. DOI:10.1016/j.egypro.2018.12.043.; Lukyanov M.R. (2020). The operating modes of intellectual energy systems, with a high share of distributed generation. In: Innovative scientific research: Theory, methodology, practice. Collection of articles of the XXI International Scientific and Practical Conference, 34-36. (In Russ.); Makarova A.S., Pankeshina T.G., Khorshev A.A. (2018). Approaches to assessing the competitiveness of distributed cogeneration sources in comparison with large thermal power plants. In: Management of large-scale system development. Proceedings of 2018 11th International Conference ‘Under the general editorship’, 468-469. (In Russ.); Martínez S.D.F., Campos A., Villar J., Rivier M. (2021). Joint energy and capacity equilibrium model for centralized and behind-the-meter distributed generation. International Journal of Electrical Power & Energy Systems, 131: 107055. DOI:10.1016/j.ijepes.2021.107055.; Matos S.P.S., Vargas M.C., Fracalossi L.G.V., Encarnação L.F., Batista O.E. (2021). Protection philosophy for distribution grids with high penetration of distributed generation. Electric Power Systems Research, 196: 107203. DOI:10.1016/j.epsr.2021.10720.; Menke J.-H., Bornhorst N., Braun M. (2019). Distribution system monitoring for smart power grids with distributed generation using artificial neural networks. International Journal of Electrical Power & Energy Systems, 113: 472-480. DOI:10.1016/j.ijepes.2019.05.057.; Myshkina L.S. (2019). Modeling the regional electric network and increasing reliability due to new technologies. Chief Power Engineer, 9: 17-24. (In Russ.); Nakada T., Shin K., Managi S. (2016). The effect of demand response on purchase intention of distributed generation: Evidence from Japan. Energy Policy, 94: 307-316. DOI:10.1016/j.enpol.2016.04.026.; Nalbandian G.G., Zholnerchik S.S. (2018). Key factors of effective application of distributed generation technologies in industry. Strategic Decisions and Risk Management, 1(104): 80-87. (In Russ.); Nejad H.C., Tavakoli S., Ghadimi N., Korjani S., Nojavan S., Pashaei-Didani H. (2019). Reliability based optimal allocation of distributed generations in transmission systems under demand response program. Electric Power Systems Research, 176: 105952. DOI:10.1016/j.epsr.2019.105952.; Nepomnyashchiy V.A., Ilyushin P.V. (2013). New approaches to ensure the reliability of power supply to consumers of electric energy. Safety and Reliability of Power Industry, 4(23): 14-25. (In Russ.); Nurmukhametov A.F. (2020). Distributed generation. Operating modes of autonomous power supply systems. In: Problems and prospects for the development of the electric power industry and electrical engineering. Materials of the II All-Russian Scientific and Practical Conference, 355-358. (In Russ.); Pivnyuk V.A. (2008). Innovative energy technologies for transforming energy and distributed cogeneration - The basis of the energy of the future. Integral, 3: 42-43. (In Russ.); Pogodin A.A. (2019). Distributed generation in power supply schemes for industrial production. In: Current trends in the development of engineering and technology in Russia and abroad: Realities, opportunities, prospects. Nizhny Novgorod, State Engineering and Economic Institute (Knyaginino), 2: 230-232. (In Russ.); Poudineh R., Jamasb T. (2014). Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement. Energy Policy, 67: 222-231. DOI:10.1016/j.enpol.2013.11.073.; Ragutkin A.V. (2013). Distributed generation as a way of effective and reliable power supply to consumers. Electrical Equipment: Operation and Repair, 7: 17-19. (In Russ.); Rahiminejad A., Vahidi B., Hejazi M.A., Shahrooyan S. (2016). Optimal scheduling of dispatchable distributed generation in smart environment with the aim of energy loss minimization. Energy, 116, part 1: 190-201. DOI:10.1016/j.energy.2016.09.111.; Rytsova A.V. (2018). Influence of distributed generation on the mode of operation of the power system. Bulletin of Modern Research, 12.5(27): 247-249. (In Russ.); Safonov A.I., Lipikhin E.G., Shevelev D.V. (2016). Overview of the market for low-power cogeneration plants. Actual Problems of the Humanities and Natural Sciences, 1(11): 94-99. (In Russ.); Samper M., Coria G., Facchini M. (2021). Grid parity analysis of distributed PV generation considering tariff policies in Argentina. Energy Policy, 157: 112519. DOI:10.1016/j.enpol.2021.112519.; Sandhya K., Chatterjee K. (2021). A review on the state of the art of proliferating abilities of distributed generation deployment for achieving resilient distribution system. Journal of Cleaner Production, 287: 125023. DOI:10.1016/j.jclepro.2020.125023.; Sichevsky A.S., Dolgopol T.L. (2020). Renewable energy as distributed generation of remote settlements. In: Problems and prospects for the development of the electric power industry and electrical engineering. Materials of the II All-Russian Scientific and Practical Conference, 391-394. (In Russ.); Tepchikov R.B., Stashko V.I. (2019). Distributed generation in electric power systems. In: Science and Youth. Materials of XVI All-Russian Scientific and Technical Conference of Students, Post-graduates and Young Scientists, 1109-1111. (In Russ.); Valencia A., Hincapie R.A., Gallego R.A. (2021). Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium-low voltage distribution networks. Journal of Energy Storage, 34: 102158. DOI:10.1016/j.est.2020.102158.; Wang Y., Huang Y., Wang Y., Zeng M., Li F., Wang Y., Zhang Y. (2018). Energy management of smart micro-grid with response loads and distribute generation considering demand response. Journal of Cleaner Productin, 197, part 1: 1069-1083. DOI:10.1016/j.jclepro.2018.06.271.; Yanine F., Sanchez-Squella A., Parejos A., Barrueto A., Rother H., Kumar Sahoo S. (2019). Grid-tied distributed generation with energy storage to advance renewables in the residential sector: Tariff analysis with energy sharing innovations, part I. Procedia Computer Science, 162: 111-118. DOI:10.1016/j.procs.2019.11.265.; Yu H., Hong B., Luan W., Huang B., Semero Y.K., Tesfaye Eseye A. (2018). Study on business models of distributed generation in China. Global Energy Interconnection, 1(2): 162-171. DOI:10.14171/j.2096-5117.gei.2018.02.008.; Zhang L., Chen C., Wang Q., Zhou D. (2021). The impact of feed-in tariff reduction and renewable portfolio standard on the development of distributed photovoltaic generation in China. Energy, 232: 120933. DOI:10.1016/j.energy.2021.120933.; https://www.jsdrm.ru/jour/article/view/1098

  7. 7
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 9 (2024); 111-130 ; Альтернативная энергетика и экология (ISJAEE); № 9 (2024); 111-130 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2488/2022; Key challenges for the development of the hydrogen industry in the Russian Federation / S. Bazhenov, Yu. A. Dobrovolsky, A. Maximov, O. Zhdaneev // Sustainable Energy Technologies and Assessments. – 2022. – Vol. 54. – P. 102867. – DOI 10.1016/j.seta.2022.102867. – EDN VOYTLD.; Zhdaneev O. V. Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition / O. V. Zhdaneev, K. N. Frolov // International Journal of Hydrogen Energy. – 2024. – Vol. 58. – P. 1418-1428. – DOI 10.1016/j.ijhydene.2024.01.285. – EDN PLLMKU.; Andy Baker, Sea Water Heat Pump Project – Alaska SeaLife Center, Seward, AK, JCOS Forum – Juneau Library – April 11, 2013.; Jinfu Zheng, Zhigang Zhou, Jianing Zhao, Songtao Hu, Jinda Wang, Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation. Applied Energy. – Volume 287. – 2021, 116536. – ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2021.116536.; Hailong Li, Pietro Elia Campana, Yuting Tan, Jinyue Yan, Feasibility study about using a standalone wind power driven heat pump for space heating. Applied Energy. – Volume 228. – 2018. – Pages 14861498. – ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2018.06.146.; Rabeb Toujani, Ridha Ben Iffa, Nahla Bouaziz, An improved cycle for heat pump application in hybrid-lift absorption/compression system integrated a wind energy and using organic fluid mixtures. Energy Procedia. – Volume 157, 2019. – Pages 1278-1284. – ISSN 18766102. https://doi.org/10.1016/j.egypro.2018.11.293.; Wen-Long Cheng, Bing-Chuan Han, YongLe Nian, Bing-Bing Han. Theoretical analysis of a wind heating conversion and long distance transmission system, Energy Conversion and Management. – Volume 137, 2017. – Pages 21-33. – ISSN 0196-8904. https://doi.org/10.1016/j.enconman.2017.01.021.; X. Y. Sun, X. H. Zhong, C. Z. Wang, T. Zhou. Simulation research on distributed energy system based on coupling of PV/T unit and wind-to-heat unit // Solar Energy. – Volume 230, 2021. – Pages 843-858. – ISSN 0038092X. https://doi.org/10.1016/j.solener.2021.11.011.; Gyeongmin Kim, Jin Hur. Probabilistic modeling of wind energy potential for power grid expansion planning // Energy. – Volume 230, 2021, 120831. – ISSN 0360-5442. https://doi.org/10.1016/j.energy.2021.120831.; Xiaokang Peng, Zicheng Liu, Dong Jiang. A review of multiphase energy conversion in wind power generation // Renewable and Sustainable Energy Reviews. – Volume 147, 2021, 111172. – ISSN 1364-0321. https://doi.org/10.1016/j.rser.2021.111172.; P. H. A. Barra, W. C. de Carvalho, T. S. Menezes, R. A. S. Fernandes, D. V. Coury. A review on wind power smoothing using high-power energy storage systems // Renewable and Sustainable Energy Reviews. – Volume 137, 2021, 110455. – ISSN 1364-0321. https://doi.org/10.1016/j.rser.2020.110455.; Feng Song, Zichao Yu, Weiting Zhuang, Ao Lu. The institutional logic of wind energy integration: What can China learn from the United States to reduce wind curtailment? // Renewable and Sustainable Energy Reviews. – Volume 137, 2021, 110440. – ISSN 13640321. https://doi.org/10.1016/j.rser.2020.110440.; OKB Mikron News. Available online: https://okbmikron.ru/news/v-ozhidanii-rezultata/ (accessed on 21st of May 2024); Sorabh Aggarwal, Raj Kumar, Daeho Lee, Sushil Kumar, Tej Singh. A comprehensive review of techniques for increasing the efficiency of evacuated tube solar collectors // Heliyon. – Volume 9. – Issue 4,2023, e15185. – ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2023.e15185.; Niccolò Aste, Claudio Del Pero, Fabrizio Leonforte, Thermal-electrical Optimization of the Configuration a Liquid PVT Collector // Energy Procedia. – Volume 30. – 2012. – Pages 1-7. – ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2012.11.002.; M. Farshchimonfared, J. I. Bilbao, A. B. Sproul. Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings // Renewable Energy. – Volume 76. – 2015. – Pages 27-35. – ISSN 09601481. https://doi.org/10.1016/j.renene.2014.10.044.; Poorya Ooshaksaraei, Kamaruzzaman Sopian, Saleem H. Zaidi, Rozli Zulkifli. Performance of four airbased photovoltaic thermal collectors configurations with bifacial solar cells // Renewable Energy. – Volume 102. – Part B. – 2017. – Pages 279-293. – ISSN 0960-1481. https://doi.org/10.1016/j.renene.2016.10.043.; M. Farshchimonfared, J. I. Bilbao, A. B. Sproul. Full optimisation and sensitivity analysis of a photovoltaic-thermal (PV/T) air system linked to a typical residential building // Solar Energy. – Volume 136. – 2016. – Pages 15-22. – ISSN 0038-092X. https://doi.org/10.1016/j.solener.2016.06.048.; Tania Urmee, Elaine Walker, Parisa A. Bahri, Garry Baverstock, Sina Rezvani, Wasim Saman. Solar water heaters uptake in Australia – Issues and barriers, Sustainable Energy Technologies and Assessments. – Volume 30. – 2018. – Pages 11-23. – ISSN 2213-1388. https://doi.org/10.1016/j.seta.2018.08.006.; Ding Y., Riffat S. B. Thermochemical energy storage technologies for building applications: A state-ofthe-art review. Int. J. Low-Carbon Technol. 2013; 8:106116. doi:10.1093/ijlct/cts004.; Li G. Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sustain. Energy Rev. 2016; 53:897-923. doi:10.1016/j.rser.2015.09.006.; Tao Y. B., He Y. L. A review of phase change material and performance enhancement method for latent heat storage system. Renew. Sustain. Energy Rev. 2018; 93:245-259. doi:10.1016/j.rser.2018.05.028.; Kousksou T., Bruel P., Jamil A., El Rhafiki T., Zeraouli Y. Energy storage: Applications and challenges. Sol. Energy Mater. Sol. Cells. 2014; 120:59-80. doi:10.1016/j.solmat.2013.08.015.; Kurpaska S., Latała H., Konopacki P. Storage of Heat Excess from a Plastic Tunnel in a Rock-Bed Accumulator: Tomato Yield and Energy Effects. Springer; Cham, Switzerland: 2018, pp. 549-560.; Nahhas T., Py X., Sadiki N. Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants. Renew. Sustain. Energy Rev. 2019; 110:226-235. doi:10.1016/j.rser.2019.04.060.; Gourdo L., Fatnassi H., Tiskatine R., Wifaya A., Demrati H., Aharoune A., Bouirden L. Solar energy storing rock-bed to heat an agricultural greenhouse. Energy. 2019; 169:206-212. doi:10.1016/j.energy.2018.12.036.; Pielichowska K., Pielichowski K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014; 65:67-123. doi:10.1016/j.pmatsci.2014.03.005.; Grey B. Thermal Energy Storage Companies. Available online: https://www.greyb.com/blog/thermal-energy-storage-companies/ (accessed on 21st of May 2024); New Atlas. Giant ‘sand battery’ holds a week’s heat for a whole town. Available online: https://newatlas.com/energy/sand-battery-finland/ (accessed on 21st of May 2024); Ministry of science and higher education of the Russian Federation. Thermal batteries for Arctic region. Available online: https://www.minobrnauki.gov.ru/press-center/news/nauka/27957/ (accessed on 21st of May 2024); Nordic and Baltic Sea Winter Power Balance 2022–2023, Available online: https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Nordic/2022/Nordic_and_Baltic_Sea_Winter_Power_Balance_2022-2023_report.pdf (accessed on 21st of May 2024); A. B. Kanase-Patil, R. P. Saini, M. P. Sharma. Integrated renewable energy systems for off grid rural electrification of remote area // Renewable Energy, 35(6), 1342-1349 (2010); Iver Frimannslund, Thomas Thiis, Arne Aalberg, Bjørn Thorud. Polar solar power plants – Investigating the potential and the design challenges // Solar Energy. – Volume 224. – 2021. – Pages 35-42. – ISSN 0038092X. https://doi.org/10.1016/j.solener.2021.05.069.; VDMA, ITRPV2020. «International technology roadmap for photovoltaic». Mechanical Engineering Industry Association, Frankfurt/Germany (2020).; Mesude Bayrakci, Yosoon Choi, Jeffrey R. S. Brownson. Temperature Dependent Power Modeling of Photovoltaics // Energy Procedia. – Volume 57. – 2014. – Pages 745-754. – ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2014.10.282.; X. Sun, M. Khan, C. Deline, M. Alam. Optimization and performance of bifacial solar modules: a global perspective // Appl. Energy. – 212 (2017), 10.1016/j.apenergy.2017.12.041.; Wittmer B., Mermoud A., 2018. Yield Simulations for Horizontal Axis Trackers with Bifacial PV Modules in PVsyst. 35th European Photovoltaic Solar Energy Conference and Exhibition.; R. Guerrero-Lemus, R. Vega, T. Kim, A. Kimm, L. E. Shephard. Bifacial solar photovoltaics – A technology review // Renew. Sustain. Energy Rev., 60 (2016), pp. 1533-1549, 10.1016/j.rser.2016.03.041; Schmid, A., Reise C., 2015. Realistic Yield Expectations for Bifacial PV Systems – An Assessment of Announced, Predicted and Observed Benefits. 31st European Photovoltaic Solar Energy Conference and Exhibition.; R. Guerrero-Lemus, R. Vega, Taehyeon Kim, Amy Kimm, L. E. Shephard. Bifacial solar photovoltaics – A technology review // Renewable and Sustainable Energy Reviews. – Volume 60. – 2016. – Pages 1533-1549. – ISSN 1364-0321. https://doi.org/10.1016/j.rser.2016.03.041.; NASA POWER %7C Prediction оf Worldwide Energy Resources. Available online: https://power.larc.nasa.gov/ (accessed on 21st of May 2024); Korzhavin, K. Frolov, O. Zhdaneev // Journal of Petroleum Exploration and Production Technology. – 2021. – DOI 10.1007/s13202-021-01248-5. – EDN KOQJEC.; Aprea J. L. Two years experience in hydrogen production and use in Hope bay, Antarctica // International Journal of Hydrogen Energy. – 2012, 37. – Р. 14773-14780.; Galitskaya E. Development of electrolysis technologies for hydrogen production: A case study of green steel manufacturing in the Russian Federation / E. Galitskaya, O. Zhdaneev // Environmental Technology and Innovation. – 2022. – Vol. 27. – P. 102517. – DOI 10.1016/j.eti.2022.102517. – EDN EYZKTG.; Hatanga’s energy supply company. Electricity rates. Available online: https://xn --- 8sbaaldjz6bg1a2a1b7g9a.xn--p1ai/page/34692 (accessed on 21st of May 2024); Alyssa Pantaleo, Mary R. Albert, Hunter T. Snyder, Stephen Doig, Toku Oshima, Niels Erik Hagelqvist. Modeling a sustainable energy transition in northern Greenland: Qaanaaq case study // Sustainable Energy Technologies and Assessments. – Volume 54. – 2022, 102774. – ISSN 2213-1388. https://doi.org/10.1016/j.seta.2022.102774.; E. Galitskaya, R. Khakimov, A. Moskvin, O. Zhdaneev. Towards a new perspective on the efficiency of water electrolysis with anion-conducting matrix // International Journal of Hydrogen Energy. – Volume 49. – Part A. – 2024. – Pages 1577-1583. – ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2023.10.339.; R. Khakimov, A. Moskvin, O. Zhdaneev. Hydrogen as a key technology for long-term & seasonal energy storage applications // International Journal of Hydrogen Energy. – Volume 68, 28 May 2024. – Pages 374-381. https://doi.org/10.1016/j.ijhydene.2024.04.066.; Yan Cun & Hu Rui. (2013). Study on Common Fault of Wind Turbine. Applied Mechanics and Materials. 397-400. 1133-1136. 10.4028/www.scientific.net/AMM.397-400.1133.; https://www.isjaee.com/jour/article/view/2488

  8. 8
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 3 (2024); 91-109 ; Альтернативная энергетика и экология (ISJAEE); № 3 (2024); 91-109 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2395/1942; Galitskaya E., Khakimov R., Moskvin A., Zhdaneev O. Towards a new perspective on the efficiency of water electrolysis with anion-conducting matrix; Buchana, P.; Ustun, T.S. The role of microgrids & renewable energy in addressing Sub-Saharan Africa’s current and future energy needs. In Proceedings of the IREC2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, 24-26 March 2015; pp. 1-6.; Niyigena, D.; Habineza, C.; Ustun, T.S. Computer-based smart energy management system for rural health centers. In Proceedings of the 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10-13 December 2015; pp. 1-5.; International Renewable Energy Agency. From Baseload to Peak: Renewables Provide a Reliable Solution. 2015. Available online: https://www.irena.org/publications/2015/Jun/From-Baseload-to-PeakRenewables-provide-a-reliable-solution (accessed on 9 October 2023).; Barik, A. K.; Das, D.; Latif, A.; Hussain, S.; Ustun, T. Optimal Voltage-Frequency Regulation in Distributed Sustainable Energy Based Hybrid Microgrids with Integrated Resource Planning. Energies 2021, 14, 2735.; International Renewable Energy Agency. Electricity Storage and Renewables: Costs and Markets to 2030. 2017. Available online: https://www.irena.org/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Sto age_Costs_20 17_Summary.pdf; Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strat. Rev. 2020, 31, 100539.; Ustun, T. S.; Hussain, S. M. S. Standardized communication model for home energy management system. IEEE Access 2020, 8, 180067-180075.; Huff, G., Currier, A. B., Kaun, B. C., Rastler, D. M., Chen, S. B., Bradshaw, D. T. & Gauntlett, W. D. (2013). DOE/EPRI 2013 electricity storage handbook in collaboration with NRECA. Rep. Sand, 340.; Fitzgerald, G., Mandel, J., Morris, J., & Touati, H. (2015). The Economics of Battery Energy Storage: How multi-use, customer-sited batteries deliver the most services and value to customers and the grid. Rocky Mountain Institute, 6.; Everoze Partners Limited. (2016) Cracking the Code: A Guide to Energy Storage Revenue Strewams and How to Derisk Them. https://energyindemand.files.wordpress.com/2016/ 07/cracking-the-code.pdf.; Rastler, D. M. (2010). Electricity energy storage technology options: a white paper primer on applications, costs and benefits. Electric Power Research Institute.; Hesse HC, Schimpe M, Kucevic D, Jossen A. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies. 2017; 10(12):2107. https://doi.org/10.3390/en10122107; Ralon, P., Taylor, M., Ilas, A., Diaz-Bone, H., & Kairies, K. (2017). Electricity storage and renewables: Costs and markets to 2030. International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 164.; Amiryar Mustafa E, Pullen Keith R. A review of flywheel energy storage system technologies and their applications. Appl Sci 2017; 7:286. https://doi.org/10.3390/app7030286; Wicki Samuel, Hansen Erik G. Clean energy storage technology in the making: an innovation systems perspective on flywheel energy storage. J Cleaner Prod 2017;162:1118-34. https://doi.org/10.1016/j.jclepro.2017.05.132. ISSN 0959- 6526.; Read MG, Smith RA, Pullen KR. Optimisation of flywheel energy storage systems with geared transmission for hybrid vehicles. MAMT 2015; 87:191-209. https://doi.org/10.1016/j.mechmachtheory.2014.11.001.; Rupp A, Baier H, Mertiny P, Secanell M. Analysis of a flywheel energy storage system for light rail transit. Energy 2016; 107:625-38. https://doi.org/10.1016/j. energy.2016.04.051.; Sebastián R, Peña Alzola R. Flywheel energy storage systems Review and simulation for an isolated wind power system. Renew Sust Energ Rev 2012; 16+:6803-13. https://doi.org/10.1016/j.rser.2012.08.008.; Abid Soomro, Mustafa E. Amiryar, Keith R. Pullen, Daniel Nankoo, Comparison of performance and controlling schemes of synchronous and induction machines used in flywheel energy storage systems, Energy Procedia. In: 3rd annual conference in energy storage and its applications, 3rd CDT-ESA-AC, 11-12 September 2018, Sheffield, UK.; Sebastián R, Peña Alzola R. Flywheel energy storage systems Review and simulation for an isolated wind power system. Renew Sust Energ Rev 2012; 16+:6803–13. https://doi.org/10.1016/j.rser.2012.08.008.; International Hydropower Association. 2022 Status report. Available online: https://www.hydropower.org/publications/2022-hydropower-status-report (accessed on 2nd of October 2023); Ruiz, R. A.; de Vilder, L.; Prasasti, E.; Aouad, M.; De Luca, A.; Geisseler, B.; Terheiden, K.; Scanu, S.; Miccoli, A.; Roeber, V. et al. Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater. Renew. Sustain. Energy Rev. 2022, 160, 112281.; Chaudhary Priyanka, Rizwan M. Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system. Renew Energ 2018; 118:928-46. https://doi.org/10.1016/j. renene.2017.10.113.; Ma Tao, Yang Hongxing, Lu Lin, Peng Jinqing. Pumped storage-based standalone photovoltaic power generation system: modeling and techno-economic optimization. Appl Energ 2015; 137:649-59. https://doi.org/10.1016/j.apenergy.2014.06. 005.; Alami Abdul Hai, Aokal Kamilia, Abed Jehad, Alhemyari Mohammad. Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications. Renew Energ 2017; 106: 201-11. https://doi.org/10.1016/j. renene.2017.01.002.; Jin He, Liu Pei, Li Zheng. Dynamic modeling and design of a hybrid compressed air energy storage and wind turbine system for wind power fluctuation reduction. Comput Chem Eng March 2019; 122(4):59-65. https://doi.org/10.1016/j. compchemeng.2018.05.023.; Omar Ramadan, Siddig Omer, Yate Ding, Hasila Jarimi, Xiangjie Chen, Saffa Riffat. Economic Evaluation of installation of standalone wind farm and Wind+CAES system for the new regulating tariffs for renewables in Egypt. Thermal Sci Eng Progress. Doi:10.1016/j.tsep.2018.06.005.; Keshan, H.; Thornburg, J.; Ustun, T. S. Comparison of lead-acid and lithium-ion batteries for stationary storage in off-grid energy systems. In Proceedings of the 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, 14-15 November 2016.; Rodrigues, E.; Osório, G.; Godina, R.; Bizuayehu, A.; Lujano-Rojas, J.; Matias, J.; Catalão, J. Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island. Energy 2015, 90, 1606-1617.; Dustmann, C. -H. Advances in ZEBRA batteries. Journal of Power Sources. J. Power Sources 2004, 127, 85-92.; Ravikumar, M. K.; Rathod, S.; Jaiswal, N.; Patil, S.; Shukla, A. The renaissance in redox flow batteries. J. Solid State Electrochem. 2016, 21, 2467-2488.; Cavanagh, K.; Ward, J. K.; Behrens, S.; Bhatt, A. I.; Ratnam, E. L.; Oliver, E.; Hayward, J. Electrical Energy Storage: Technology Overview and Applications; CSIRO: Canberra, Australia, 2015; EP154168; Energy Storage Monitor: Latest trends in energy storage 2019. World Energy Council. Available online: ESM_Final_Report_05-Nov-2019.pdf (worldenergy.org) (accessed on 21st of November 2023).; LAZARD’S LEVELIZED COST OF STORAGE ANALYSIS – VERSION 7.0. Available online: Levelized Cost Of Energy, Levelized Cost Of Storage, and Levelized Cost Of Hydrogen 2021 %7C Lazard (accessed on 21st of November 2023); Cost Projections for Utility-Scale Battery Storage: 2023 Update. Available online: Cost Projections for Utility-Scale Battery Storage: 2023 Update (nrel.gov) (accessed on 21st of November 2023); Grid Energy Storage Technology Cost and Performance Assessment. U.S. Department of Energy Technical Report December 2020. Available online: https://www.pnnl.gov/sites/default/files/media/file/Hydrogen_Methodology.pdf (accessed on 21st of November 2023).; Manufacturing Cost Analysis of 100- and 250-kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications / DOE Contract No. DE-EE0005250; Elena Galitskaya, Oleg Zhdaneev. Development of electrolysis technologies for hydrogen production in the Russian Federation, 19 January 2022, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-1134198/v1; Steward D., Saur G., Penev M., Ramsden T. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage. Technical Report NREL/TP-560-46719. 2009.; S. Bazhenov, Yu. Dobrovolsky, A. Maximov, O. V. Zhdaneev, Key challenges for the development of the hydrogen industry in the Russian Federation, Sustainable Energy Technologies and Assessments, Volume 54, 2022, 102867, ISSN 2213-1388, https://doi.org/10.1016/j.seta.2022.102867; https://www.isjaee.com/jour/article/view/2395

  9. 9
    Academic Journal

    Source: Экономика региона, Vol 16, Iss 3, Pp 884-895 (2020)
    Econ. Reg.
    Economy of Region

    File Description: application/pdf

  10. 10
  11. 11
    Academic Journal

    Contributors: 338.984, 338.001.36

    Source: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 66, № 2 (2023); 186-200 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 66, № 2 (2023); 186-200 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2023-66-2

    File Description: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2257/1868; Велихов, Е. П. Энергетика в экономике мира ХХI века / Е. П. Велихов // Труды Московского физико-технического института. 2011. Т. 3, № 4. С. 6–15.; World Energy Outlook (WEO-2018) [Electronic Resource]. Mode of access: https://www.iea.org/reports/world-energy-outlook-2018. Date of access: 12.09.2020.; Окороков, В. Р. Интеллектуальные энергетические системы: технические возможности и эффективность / В. Р. Окороков, И. О. Волкова, Р. В. Окороков // Академия энергетики. 2010. № 3. С. 74–82.; Грунтович, Н. В. Влияние структуры потребления топливно-энергетических ресурсов предприятия при внедрении мероприятий по энергосбережению / Н. В. Грунтович, Е. П. Шенец // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2014. № 2. С. 58–66.; Шeнец, Е. Л. Оценка энергоэффективности промышленных печей на основе моделирования режимов потребления топлива / Е. Л. Шeнец // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2022. Т. 65, № 2. С. 169–180. https://doi.org/10.21122/1029-7448-2022-65-2-169-180.; Maza, A. The World per Capita Electricity Consumption Distribution: Signs of Convergence? / A. Maza, J. Villaverde // Energy Policy. 2008. Vol. 36, Iss. 11. P. 4255–4261. https://doi.org/10.1016/j.enpol.2008.07.036.; Потребление электроэнергии по субъектам Российской Федерации [Электронный ресурс]. Режим доступа: https://rosstat.gov.ru/storage/mediabank/el-potr.xls.; Численность населения Российской Федерации по муниципальным образованиям [Электронный ресурс]. Режим доступа: https://rosstat.gov.ru/compendium/document/13282.; Доля автопрома в экономике Калужской области за 13 лет выросла с 1 % до 35 % [Электронный ресурс]. Режим доступа: https://tass.ru/ekonomika/7038823. Дата доступа: 12.05.2021.; Некрасов, С. А. Возобновляемая энергетика: перспективы корректировки развития энергоснабжения в России / С. А. Некрасов, И. Д. Грачев // Проблемы прогнозирования. 2020. № 1. С. 99–109.; Energy Efficiency and Beyond. Toronto’s Sustainable Energy Plan. 2007 [Electronic Resource]. Mode of access: http://www.toronto.ca/legdocs/mmis/2007/pe/bgrd/backgroundfile-4989.pdf. Date of access: 12.05.2021.; Рентабельность проданных товаров, работ, услуг [Электронный ресурс]. Режим доступа: https://fedstat.ru/indicator/51643.; Кудрин, Б. И. Классика технических ценозов: Общая и прикладная ценология / Б. И. Кудрин. Томск: ТГУ – Центр системных исследований, 2006. 220 с. (Ценологические исследования; вып. 31).; Гнатюк, В. И. Закон оптимального построения техноценозов / В. И. Гнатюк. М.: ТГУ – Центр системных исследований, 2005. 384 с. (Ценологические исследования; вып. 29).; Симонов, Н. С. Начало электроэнергетики Российской империи и СССР как проблема техноценоза / Н. С. Симонов. М.: Инфра-Инженерия, 2017. 640 с.; Кудрин, Б. И. Энергоэффективность: рейтинг российских регионов по электропотреблению за 1990–2010 гг. / Б. И. Кудрин // Электрика. 2010. № 8. С. 3–15.; Кузьминов, А. Н. Управление устойчивостью региона: ценологическая модель / А. Н. Кузьминов // Экономика региона. 2009. Т. 7, № 2. С. 142–152.; Кузьминов, А. Н. Ценологические особенности моделирования регионального рынка как механизма распределения ресурсов / А. Н. Кузьминов // Экономический вестник Ростовского государственного университетa. 2007. Т. 5, № 4, ч. 2. С. 127–131.; Фуфаев, В. В. Экономические ценозы организаций / В. В. Фуфаев. Абакан: Центр системных исследований, 2006. 86 c.; Богданов, А. А. Тектология: Всеобщая организационная наука: в 2 кн. / А. А. Богданов. М.: Экономика, 1989. Т. 2. 352 с.; Черкасова, Н. И. Основы управления техногенными рисками и эффективностью функционирования систем электроснабжения сельскохозяйственных потребителей: дис. … д-ра техн. наук. Барнаул: АГТУ им. И. И. Ползунова, 2017. 365 с.; «10+10»: Энергетика РФ в ожидании новой реформы для выхода из инвестиционной паузы [Электронный ресурс] // АКРА. Режим доступа: https://www.acra-ratings.ru/research/691. Дата доступа: 18.04.2021.; Energy Company Obligation 2018–2022. Policy Guidance for Obligated Suppliers, Manufacturers and Installers on Applying for Demonstration Actions, Innovation Score Uplifts and Insitu Performance. [Electronic Resource]. 2019. Mode of access: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/920296/energy-company-obligation-guidance-2018-2022.pdf.; Кутовой, Г. П. 80 лет: формула успеха / Г. П. Кутовой // Региональная энергетика и энергосбережение. 2017. № 5–6. С. 23–26.; Гвоздецкий, В. Л. План ГОЭЛРО – стратегическая программа социально-экономического и научно-технического развития Советского государства / В. Л. Гвоздецкий // Слово: образовательный портал. Режим доступа: http://www.portal-slovo.ru/impressio nism/36313.php. Дата доступа: 18.04.2021.; https://energy.bntu.by/jour/article/view/2257

  12. 12
    Academic Journal

    Authors: Anakhov, Pavlo

    Source: Энергосбережение. Энергетика. Энергоаудит.; № 2(150) (2019): Энергосбережение. Энергетика. Энергоаудит.; 45-50
    Енергозбереження. Енергетика. Енергоаудит.; № 2(150) (2019): Енергозбереження. Енергетика. Енергоаудит.; 45-50
    Energy saving. Power engineering. Energy audit.; № 2(150) (2019): Energy saving. Power engineering. Energy audit; 45-50

    File Description: application/pdf

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20