Showing 1 - 20 results of 36 for search '"СРАВНИТЕЛЬНАЯ ГЕНОМНАЯ ГИБРИДИЗАЦИЯ"', query time: 0.59s Refine Results
  1. 1
    Academic Journal

    Contributors: The work was supported by the theme of the state assignment (# 122112800024-7)., Работа выполнена при финансовой поддержке темы государственного задания (номер государственного учета НИОКТР 122112800024-7).

    Source: Medical Genetics; Том 23, № 2 (2024); 55-58 ; Медицинская генетика; Том 23, № 2 (2024); 55-58 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2422/1774; Giglio S., Broman K.W., Matsumoto N. et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet A. 2001; 68: 874–83. DOI:10.1086/319506; Sugawara H., Harada N., Ida T. et al. Complex low-copy repeats associated with a common polymorphic inversion at human chromosome 8p23. Genomics 2003; 82: 238–244. DOI:10.1016/s0888-7543(03)00108-3; García-Santiago F.A., Martínez-Glez V., Santos F. et al. Analysis of invdupdel(8p) rearrangement: Clinical, cytogenetic and molecular characterization. Am J Med Genet A. 2015;167:1018–1025. DOI:10.1002/ajmg.a.36879; Жигалина Д.И., Скрябин Н.А., Васильева О.Ю. и др. FISH-диагностика хромосомной транслокации с использованием технологии синтеза локус-специфичных ДНК-зондов на основе ПЦР длинных фрагментов. Генетика. 2020;56(6):704-713. DOI:10.31857/S0016675820060156; Shimokawa O., Kurosawa K., Ida T. et al. Molecular characterization of inv dup del(8p): analysis of five cases. Am J Med Genet A. 2004;128A(2):133-7. DOI:10.1002/ajmg.a.30063; Юрченко Д.А., Дадали Е.Л., Шилова Н.В. Механизмы формирования инвертированной дупликации со смежной терминальной делецией короткого плеча хромосомы 8. Медицинская генетика . 2020;19(1):6-12. https://doi.org/10.25557/2073-7998.2020.01.6-12

  2. 2
    Academic Journal

    Source: Medical Genetics; Том 21, № 11 (2022); 36-39 ; Медицинская генетика; Том 21, № 11 (2022); 36-39 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2196/1661; Boone P.M., Bacino C.A., Shaw C.A. et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010;31(12):1326-42.; Lindy A.S., Stosser M.B., Butler E. et al. Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia. 2018;59(5):1062-1071.; Truty R., Paul J., Kennemer M., Lincoln S.E. et al. Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. Genet Med. 2019;21(1):114-123.; Brandt T., Sack L.M., Arjona D. et al. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants. Genet Med. 2020;22(2):336-344.; Gridina M.M., Matveeva N.M., Fishman V.S. et al. Allele-specific biased expression of the CNTN6 gene in iPS cell-derived neurons from a patient with intellectual disability and 3p26.3 microduplication involving the CNTN6 gene. Mol Neurobiol. 2018;55(8):6533-6546.; Кашеварова А.А., Лопаткина М.Е., Беляева Е.О. и др. Распространенность и спектр моногенных CNV у пациентов с нарушениями интеллектуального развития. Медицинская генетика. 2021;10(231):44-46.; Ivanovic V., Brankovic M., Bjelica B. et al. Yield of the PMP22 deletion analysis in patients with compression neuropathies. J Neurol. 2020;267(12):3617-3623.

  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 23, № 2 (2019); 244-249 ; Вавиловский журнал генетики и селекции; Том 23, № 2 (2019); 244-249 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1943/1207; Botstein D., Risch N. Discovering genotypes underlying human phe-notypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet. 2003;33:228-237. DOI 10.1038/ ng1090.; Ceballos F.C., Hazelhurst S., Ramsay M. Assessing runs of homozy-gosity: a comparison of SNP array and whole genome sequence low coverage data. BMC Genomics. 2018;19(1):106. DOI 10.1186/ s12864-018-4489-0.; Christofidou P., Nelson C.P., Nikpay M., Qu L., Li M., Loley C., De- biec R., Braund P.S., Denniff M., Charchar F.J., Arjo A.R., Tre- gouet D.A., Goodall A.H., Cambien F., Ouwehand W.H., Roberts R., Schunkert H., Hengstenberg C., Reilly M.P., Erdmann J., McPher¬son R., Konig I.R., Thompson J.R., Samani N.J., Tomaszewski M. Runs of homozygosity: association with coronary artery disease and gene expression in monocytes and macrophages. Am. J. Hum. Genet. 2015;97(2):228-237. DOI 10.1016/j.ajhg.2015.06.001.; El Hachem H., Crepaux V., May-Panloup P. Recurrent pregnancy loss: current perspectives. Int. J. Womens Health. 2017;9:331-345. DOI 10.2147/IJWH.S100817.; Gamsiz E.D., Viscidi E.W., Frederick A.M., Nagpal S., Sanders S.J., Murtha M.T., Schmidt M., Triche E.W., Geschwind D.H., State M.W., Istrail S., Cook E.H., Jr., Devlin B., Morrow E.M. Intel-lectual disability is associated with increased runs of homozygosity in simplex autism. Am. J. Hum. Genet. 2013;93(1):103-109. DOI 10.1016/j.ajhg.2013.06.004.; Ghani M., Reitz C., Cheng R., Vardarajan B.N., Jun G., Sato C., Naj A., Rajbhandary R., Wang L.S., Valladares O., Lin C.F., Lar¬son E.B., Graff-Radford N.R., Evans D., De Jager P.L., Crane P.K., Buxbaum J.D., Murrell J.R., Raj T., Ertekin-Taner N., Logue M., Baldwin C.T., Green R.C., Barnes L.L., Cantwell L.B., Fallin M.D., Go R.C., Griffith P.A., Obisesan T.O., Manly J.J., Lunetta K.L., Kamboh M.I., Lopez O.L., Bennett D.A., Hendrie H., Hall K.S., Goate A.M., Byrd G.S., Kukull W.A., Foroud T.M., Haines J.L., Far- rer L.A., Pericak-Vance M.A., Lee J.H., Schellenberg G.D., George- Hyslop P.St., Mayeux R., Rogaeva E. Association of long runs of homozygosity with Alzheimer disease among African American individuals. JAMA Neurol. 2015;72(11):1313-1323. DOI 10.1001/ jamaneurol.2015.1700.; Goddijn M. ESHRE. Recurrent Pregnancy Loss. Guideline of the Euro¬pean Society of Human Reproduction and Embryology, 2017.; McQuillan R., Leutenegger A.L., Abdel-Rahman R., Franklin C.S., Pericic M., Barac-Lauc L., Smolej-Narancic N., Janicijevic B., Po- lasek O., Tenesa A., Macleod A.K., Farrington S.M., Rudan P., Hay¬ward C., Vitart V., Rudan I., Wild S.H., Dunlop M.G., Wright A.F., Campbell H., Wilson J.F. Runs of homozygosity in European popu¬lations. Am. J. Hum. Genet. 2008;83(3):359-372. DOI 10.1016/j. ajhg.2008.08.007.; Niida Y., Ozaki M., Shimizu M., Ueno K., Tanaka T. Classification of uniparental isodisomy patterns that cause autosomal recessive dis¬orders: proposed mechanisms of different proportions and parental origin in each pattern. Cytogenet. Genome Res. 2018;154(3):137- 146. DOI 10.1159/000488572.; Nikitina T.V., Sazhenova E.A., Tolmacheva E.N., Sukhanova N.N., Kashevarova A.A., Skryabin N.A., Vasilyev S.A., Nemtseva T.N., Yuriev S.Y., Lebedev I.N. Comparative cytogenetic analysis of spontaneous abortions in recurrent and sporadic pregnancy losses. Biomed. Hub. 2016;1:446099. DOI 10.1159/000446099.; Nothnagel M., Lu T.T., Kayser M., Krawczak M. Genomic and geo-graphic distribution of SNP-defined runs of homozygosity in Eu-ropeans. Hum. Mol. Genet. 2010;19(15):2927-2935. DOI 10.1093/ hmg/ddq198.; Papenhausen P., Schwartz S., Risheg H., Keitges E., Gadi I., Burn¬side R.D., Jaswaney V., Pappas J., Pasion R., Friedman K., Tep- perberg J. UPD detection using homozygosity profiling with a SNP genotyping microarray. Am. J. Med. Genet. Pt. A. 2011;155(4):757- 768. DOI 10.1002/ajmg.a.33939.; Pemberton T.J., Absher D., Feldman M.W., Myers R.M., Rosen¬berg N.A., Li J.Z. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 2012;91(2):275-292. DOI 10.1016/j.ajhg.2012.06.014.; Peripolli E., Munari D.P., Silva M.V.G.B., Lima A.L.F., Irgang R., Bal- di F. Runs of homozygosity: current knowledge and applications in livestock. Anim. Genet. 2017;48(3):255-271. DOI 10.UU/age.12526.; Robberecht C., Pexsters A., Deprest J., Fryns J.P., D’Hooghe T., Ver- meesch J.R. Cytogenetic and morphological analysis of early pro-ducts of conception following hystero-embryoscopy from couples with recurrent pregnancy loss. Prenat. Diagn. 2012;32(10):933-942. DOI 10.1002/pd.3936.; Rooney D.E., Czepulkowski B.H. Human Cytogenetics. A Practical Approach. New York: Oxford Univ. Press, 1992.; Yang H.C., Chang L.C., Liang Y.J., Lin C.H., Wang P.L. A genome-wide homozygosity association study identifies runs of homozygo¬sity associated with rheumatoid arthritis in the human major histo¬compatibility complex. PLoS One. 2012;7(4):e34840. DOI 10.1371/ journal.pone.0034840.; https://vavilov.elpub.ru/jour/article/view/1943

  7. 7
    Academic Journal

    Source: Medical Genetics; Том 17, № 3 (2018); 49-54 ; Медицинская генетика; Том 17, № 3 (2018); 49-54 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/407/302; Macklon NS, Geraedts JP, Fauser BC. Conception to ongoing pregnancy: the «black box» of early pregnancy loss. Hum. Reprod. Update. 2002;8(4):333-343.; Неразвивающаяся беременность. Методические рекомендации МАРС / В.Е. Радзинский. - М.: Редакция журнала StatusPraesens, 2015. - 48 c.; Лебедев ИН, Кашеварова АА, Скрябин НА и др. Матричная сравнительная геномная гибридизация (array-CGH) в диагностике хромомсомного дисбаланса и CNV-полиморфизма при анэмбрионии. Материалы II национального конгресса «Дискуссионные вопросы современного акушерства». 2013;LXII (2):117-125.; Griffin DK. The incidence, origin and etiology of aneuploidy. Int. Rev. Cytol. 1996;167:263-295.; Bassett AS, Chow EW, Husted J et al. Clinical features of 78 adults with 22q11 Deletion Syndrome. Am J Med Genet A. 2005;138(4):307-313.; Blackwood DH, Fordyce A, Walker MT. Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Med Genet A. 2001;69(2):428-433.; Glessner JT, Wang K, Cai J et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459(7246):569-573.; Aitman TJ, Dong R, Vyse TJ et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature. 2006;439(7078):851-855.; Schaeffer AJ, Chung J, Heretis K et al. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am. J. Hum. Genet. 2004;74:1168-1174.; Benkhalifa M, Kasakyan S, Clement P et al. Array comparative genomic hybridization profiling of first-trimester spontaneous abortions that fail to grow in vitro. Prenat. Diagn. 2005;25:94-900.; Shimokawa O, Harada N, Miyake N et al. Array comparative genomic hybridization analysis in first-trimester spontaneous abortions with «normal» karyotypes. Am. J. Hum. Genet. 2006;140:1931-1935.; Conrad DF, Andrews TD, Carter NP et al. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 2006;38(1):75-81.; Menten B, Swerts K, Delle Chiaie B. Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples. BMC Medical Genetics. 2009;10:89-94.; Rajcan-Separovic E, Diego-Alvarez D, Robinson WP et al. Identification of copy number variants in miscarriage from couples with idiopathic recurrent pregnancy loss. Hum. Reprod. 2010;25:2913-2922.; Rajcan-Separovic E, Qiao Y, Tyson C et al. Genomic changes detected by array CGH in human embryos with developmental defects. Hum. Reprod. 2010;16:125-134.; Robberecht С, Pexsters A, Deprest J et al. Cytogenetic and morphological analysis of early products of conception following hysteroembryoscopy from couples with recurrent pregnancy loss. Prenat. Diagn. 2012;4:1-10.; Database of genomic variants. URL: http://dgv.tcag.ca/dgv/app/home (дата обращения 15.01.2016); Database of genomic variation and phenotype in humans using Ensembl Resources URL: https://decipher.sanger.ac.uk/ (дата обращения: 20.01.2016).; NCBI Gene. URL: http://www.ncbi.nlm.nih.gov/gene/ (дата обращения: 1.03.2016).; NCBI PubMed. URL: http://www.ncbi.nlm.nih.gov/pubmed/ (дата обращения: 1.03.2016).; Genome Browser University of California Santa Cruz. URL: https://genome.ucsc.edu/ (дата обращения 20.03.2016).; Genome browser Ensembl. URL: http://www.ensembl.org/index.html/ (дата обращения: 20.03.2016).; NCBI BLAST. URL: http://www.ncbi.nlm.nih.gov/tools/primer-blast/ (дата обращения: 20.03.2016).; Viaggi CD, Cavani S, Malacarne M et al. First-trimester euploid miscarriages analysed by array-CGH. J Appl Genetics. 2013;54(3):353-359.

  8. 8
    Academic Journal

    Source: Medical Genetics; Том 16, № 11 (2017); 46-50 ; Медицинская генетика; Том 16, № 11 (2017); 46-50 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/348/264; Протокол aCGH для микрочипов Agilent Technologies - http://www.chem-agilent.com/pdf/G4410-90020v3_1_CGH_ULS_Protocol.pdf; База данных геномных вариантов - http://projects.tcag.ca/variation/?source=hg18; База о генах - https://www.ncbi.nlm.nih.gov/gene; Xu F, DiAdamo AJ, Grommisch B, Li P. Interstitial duplication and distal deletion in a ring chromosome 13 with pulmonary atresia and ventricular septal defect: a case report and review of literature. N A J Med Sci. 2013; 6(4):208-212.; Brandt CA, Hertz JM, Petersen MB et al. Ring chromosome 13: lack of distinct syndromes based on different breakpoints on 13q. J Med Genet. 1992; 29:704-708.; Izykowska K, Przybylski GK, Gand C et al. Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sezary syndrome. Oncotarget. 2017; 8(24):39627-39639.

  9. 9
    Academic Journal

    Source: Medical Genetics; Том 17, № 10 (2018); 31-34 ; Медицинская генетика; Том 17, № 10 (2018); 31-34 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/590/371; Лавров А. В. и др. Генетика умственной отсталости //Российский вестник перинатологии и педиатрии. - 2016. - Т. 61. - №. 6.; Diagnostic and statistical manual of mental disorders // American Psychiatric Association. 4th ed., Rev. Washington, DC: American Psychiatric Association. - 2000.; Кашеварова А.А., Лебедев И.Н. Геномная архитектура хромосомных болезней человека // Генетика. 2016. 52. № 5. С.511-528.; Протокол aCGH для микрочипов Agilent Technologies - http://www.chem-agilent.com/pdf/G4410-90020v3_1_CGH_ULS_Protocol.pdf

  10. 10
    Academic Journal

    Source: Medical Genetics; Том 16, № 12 (2017); 39-42 ; Медицинская генетика; Том 16, № 12 (2017); 39-42 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/356/272; Khan MA, Khan S, Windpassinger C et al. The Molecular Genetics of Autosomal Recessive Nonsyndromic Intellectual Disability: a Mutational Continuum and Future Recommendations. Ann Hum Genet. 2016; 80(6):342-368.; Кашеварова А.А., Лебедев И.Н. Геномная архитектура хромосомных болезней человека // Генетика. 2016. 52. № 5. С.511-528.; Протокол CGH для микрочипов Agilent Technologies - http://www.chem-agilent.com/pdf/G4410-90020v3_1_CGH_ULS_Protocol.pdf; Кашеварова А.А., Лебедев И.Н. Траектории интерпретации фенотипа и кариотипа через призму взаимодействия врача-генетика и лабораторного генетика. Молекулярно-биологические технологии в медицинской практике / Под ред. чл.-корр. РАЕН А.Б. Масленникова. 2017; 26:47-55.; Беляева Е.О., Кашеварова А.А., Никонов А.М. и др. Значимость молекулярного кариотипирования для уточнения диагноза при цитогенетически визуализируемой хромосомной патологии. Медицинская генетика. 2016; 7:17-20.; Lebedev IN, Nazarenko LP, Skryabin NA et al. A de novo microtriplication at 4q21.21-q21.22 in a patient with a vascular malignant hemangioma, elongated sigmoid colon, developmental delay, and absence of speech. Am J Med Genet A. 2016; 170(8):2089-2096.; Park, Sang-Jin, et al. Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases. Molecular cytogenetics. 2011; 4(1):12.; D’Arrigo S. et al. The diagnostic yield of array comparative genomic hybridization is high regardless of severity of intellectual disability/developmental delay in children. 2016; 31(6):691-699.; Cappuccio, Gerarda, et al. New insights in the interpretation of array-CGH: autism spectrum disorder and positive family history for intellectual disability predict the detection of pathogenic variants. Italian journal of pediatrics. 2016; 42(1):39.; Carvalho C, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 2016; 17(4):224-238.

  11. 11
    Academic Journal

    Source: Medical Genetics; Том 15, № 4 (2016); 46-49 ; Медицинская генетика; Том 15, № 4 (2016); 46-49 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/118/106; Gilissen C, Hehir-Kwa JY, Thung DT et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014; 511(7509):344-347.; Vissers LE, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016; 17(1):9-18.; Nevado J, Mergener R, Palomares-Bralo M et al. New microdeletion and microduplication syndromes: A comprehensive review. Genet Mol Biol. 2014; 37(1):210-219.; Кашеварова А.А., Лебедев И.Н. Геномная архитектура хромосомных болезней человека. Генетика. 2016; 52(5):447-462.; Протокол aCGH для микрочипов Agilent Technologies - http://www.chem-agilent.com/pdf/G4410-90020v3_1_CGH_ULS_Protocol.pdf; База данных геномных вариантов - http://projects.tcag.ca/variation/?source=hg18; База данных «Ген» - http://www.ncbi.nlm.nih.gov/gene; Программа для подбора праймеров Primer3 - http://bioinfo.ut.ee/primer3-0.4.0/primer3/; Kashevarova AA, Nazarenko LP, Schultz-Pedersen S et al. Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability. Mol Cytogenet. 2014; 7(1):97.

  12. 12
    Academic Journal

    Source: Medical Genetics; Том 15, № 4 (2016); 6-9 ; Медицинская генетика; Том 15, № 4 (2016); 6-9 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/107/95; L.G. American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation // Genet Med. 2005. V. 7. № 9. Р. 650-654.; http://www.gks.ru - Федеральная служба статистики.; Newman S., Hermetz K.E., Weckselbatt B., Rudd M.K. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints // Am J Hum Genet. 2015. V. 96. № 2. P. 208-220.; Kashevarova A., Nazarenko L., Skryabin N. et al. Array CGH analysis of a cohort of Russian patients with intellectual disability // Gene. 2014. V. 536. № 1. Р. 145-150.; https://decipher.sanger.ac.uk/index - База данных хромосомного дисбаланса и фенотипов у человека.; Svennerholm L, Stallberg-Stenhagen S. Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age // J Lipid Res. 1968. V. 9. № 2. Р. 215-225.

  13. 13
    Academic Journal

    Source: Medical Genetics; Том 15, № 1 (2016); 38-42 ; Медицинская генетика; Том 15, № 1 (2016); 38-42 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/90/78; Миньженкова М.Е., Шилова Н.В. , Маркова Ж.Г., Козлова Ю.О., Золотухина Т.В. Эффективность различных методов диагностики хромосомных аномалий при репродуктивных потерях // Медицинская генетика. - 2014. - Т. 13, № 2. - С. 25-30.; Мусатова Е.В., Маркова Ж.Г., Витязева И.И., Шилова Н.В. Оценка возможности выделения клеток трофобласта из периферической крови и их анализа в условиях модельного эксперимента // Современные проблемы науки и образования. - 2015. - № 5; URL: http://www.science-education.ru/ru/article/view?id=21840 (дата обращения: 11.01.2016).; Emad A., Drouin R. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood // Prenat Diagn. - 2014. - Vol. 34, № 9. - Р. 878-885.; Hatt L., Brinch M., Singh R., Mоller K., Lauridsen R.H., Uldbjerg N., Huppertz B., Christensen B., Kоlvraa S. Characterization of fetal cells from the maternal circulation by microarray gene expression analysis - could the extravillous trophoblasts be a target for future cell-based non-invasive prenatal diagnosis? // Fetal. Diagn. Ther. - 2014. - Vol. 35, № 3. - Р. 218-227.; Kоlvraa S., Christensen B., Lykke-Hansen L., Philip J. The fetal erythroblast is not the optimal target for non-invasive prenatal diagnosis: preliminary results // J. Histochem. Cytochem. - 2005. - Vol. 53(3). - Р. 331-336.; Ma Y.C., Wang L., Yu F.L. Recent advances and prospects in the isolation by size of epithelial tumor cells (ISET) methodology // Technol. Cancer Res. Treat. - 2013. - Vol. 12, № 4. - Р. 295-309.; Mouawia H. Genotyping analysis of circulating fetal cells reveals high frequency of vanishing twin following transfer of multiple embryos // Avicenna J. Med. Biotechnol. - 2013. - Vol. 5, № 2. - Р. 125-132.; Vona G., Sabile A., Louha M., Sitruk V., Romana S., Schutze K., Capron F., Franco D., Pazzagli M., Vekemans M., Lacour B., Brechot C., Paterlini-Brechot P. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells // Am. J. Pathol. - 2000. - Vol. 156, № 1. - Р. 57-63.; Vona G., Beroud C., Benachi A., Quenette A., Bonnefont JP., Romana S., Munnich A., Vekemans M., Dumez Y., Lacour B., Paterlini-Brechot P. Enrichment, immunomorphological, and genetic characterization of fetal cells in maternal blood // Am. J. Pathol. - 2002. - Vol. 160, № 1. - Р. 51-58.

  14. 14
    Academic Journal

    Source: Medical Genetics; Том 15, № 6 (2016); 44-48 ; Медицинская генетика; Том 15, № 6 (2016); 44-48 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/142/130; ECARUCA - E.C.A. Register of Unbalanced Chromosome Aberrations: www.ecaruca.net; Moller R.S., Hansen C.P., Jackson G.D. et al. Interstitial deletion of chromosome 4p assosiated with mild mental retardation, epilepsy and polymicrogyria of the left temporal lobe // Clin. Genet. - 2007. - Vol. 72. - Р. 593-598.; Chitayat D., Ruvalcaba R.H., Babul R. et al. Syndrome of proximal interstitial deletion 4p15: report of three cases and review of the literature // Am. J. Med. Genet. - 1995. - Vol. 55. - Р. 147-154.; White D.M., Pillers D.A., Reiss J.A. et al. Interstitial deletions of the short arm of chromosome 4 in patients with a similar combination of multiple minor anomalies and mental retardation // Am. J. Med. Genet. - 1995. - Vol. 57. - Р. 588-597.; Ishikava T., Sumi S., Fujimoto S. et al. Syndrome of the short arm of chromosome 4 in a boy with mild psychomotor reyardation and dysmorphism // Clin. Genet. - 1990. - Vol. 38. - Р. 59-61.; Schinzel A. Catalogue of unbalanced chromosome aberrations in man. - Walter de Gruyter. - Berlin - New York, 2001. - 966 p.; Tonk V.S., Jalal S.M., Gonzalez J. et al. Familial interstitial deletion of chromosome 4 (p15.1p16.1) // Ann. Genet. - 2003. - Vol. 46. - Р. 453-458.

  15. 15
    Academic Journal

    Source: Medical Genetics; Том 15, № 7 (2016); 17-20 ; Медицинская генетика; Том 15, № 7 (2016); 17-20 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/146/134; Kolevzon A, Angarita B, Bush L et al. Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord. 2014; 6(1):39.; Luciani JJ, de Mas P, Depetris D et al. Telomeric 22q13 deletions resulting from rings, simple deletions, and translocations: cytogenetic, molecular, and clinical analyses of 32 new observations. J Med Genet. 2003; 40(9):690-696.; Vuillaume ML, Delrue MA, Naudion S et al. Expanding the clinical phenotype at the 3q13. 31 locus with a new case of microdeletion and first characterization of the reciprocal duplication. Mol Genet Metab. 2013; 110(1-2):90-97.; Molin AM, Andrieux J, Koolen DA et al. A novel microdeletion syndrome at 3q13.31 characterised by developmental delay, postnatal overgrowth, hypoplastic male genitals, and characteristic facial features. J Med Genet. 2011; 49(2):104-109.

  16. 16
    Academic Journal

    Source: Medical Genetics; Том 12, № 1 (2013); 26-35 ; Медицинская генетика; Том 12, № 1 (2013); 26-35 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/22/70; Ворсанова С.Г., Юров И.Ю., Колотий А.Д., Береше-ва А.К., Демидова И.А., Куринная О.С., Кравец B.C., Монахов В.В., Соловьев И.В., Юров Ю.Б. Хромосомный мозаицизм в материале спонтанных абортов: интерфазный молекулярно-цитогенетический анализ 650 случаев // Генетика. — 2010. — Т. 46, №10. — С. 1356—1359.; Лебедев И.Н., Островерхова Н.В., Никитина Т.В., Суханова Н.Н., Назаренко С.А. Молекулярно-цитогенетическая характеристика хромосомного дисбаланса в клетках спонтанных абортусов с низкой пролиферативной активностью in vitro // Генетика. — 2003. — Т. 39, №8. — С. 1112—1122.; Суханова Н.Н., Лебедев И.Н., Никитина Т.В., Саженова Е.А., Назаренко С.А. Структура хромосомных нарушений у 552 спонтанных абортусов Томской популяции // Медицинская генетика. — 2002. — Т. 1, №6. — С. 271—276.; Ballif B.C., Kashork C.D., Saleki R., Rorem E., Sundin K., Bejjani B.A., Shaffer L.G. Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization // Prenat. Diagn. — 2006. — Vol. 26. — P. 333—339.; Bell K.A., Van Deerlin P.G., Haddad B.R., Feinberg R.F. Cytogenetic diagnosis of «normal 46,XX» karyotypes in spontaneous abortions frequently may be misleading // Fertil. Steril. — 1999. — Vol. 71. — P. 334—341.; Benkhalifa M., Kasakyan S., Clement P., Baldi M., Tachdji-an G., Demirol A., Gurgan T., Fiorentino F., Mohammed M., Qumsiyeh M.B. Array comparative genomic hybridization profiling of first-trimester spontaneous abortions that fail to grow in vitro // Prenat. Diagn. — 2005. — Vol. 25. — P. 894—900.; Borovic C.L., Perez A.B., da Silva L.R.J., Krepischi-Sanr tos A.C.V., Costa S.S., Rosenberg C. Array-CGH testing in spontaneous abortions with normal karyotypes // Genet. Mol. Biol. — 2008. — Vol. 31, №2. — P. 416—422.; Cartegni L., Chew S.L., Krainer A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing // Nat. Rev. Genet. — 2002. — Vol. 3, №4. — P. 285—298.; Ceulemans S., van der Ven K., Del-Favero J. Targeted screening and validation of copy number variations // Methods Mol. Biol. — 2012. — Vol. 838. — P. 311—328.; Conrad D.F., Andrews T.D., Carter N.P., Hurles M.E., Pritchard J.K. Articles Legal documents include patentsinclude citations 12. Advanced searchCreate alert My Citations Settings A high-resolution survey of deletion polymorphism in the human genome // Nat. Genet. — 2006. — Vol. 38, №1. — P. 75—81.; Desphande M., Harper J., HoUoway M., Palmer R., Wang R. Evaluation of array comparative genomic hybridization for genetic analysis of chorionic villus sampling from pregnancy loss in comparison to karyotyping and multiplex ligation-dependent probe amplification // Genet. Test. Mol. Biomarkers. — 2010. — Vol. 14, №3. — P. 421—424.; de Smith A.J., Walters R.G., Froguel P., Blakemore A.I. Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease // Cytogenet. Genome Res. — 2008. — Vol. 123. — P. 17—26.; Diego-Alvarez M., de Alba R., Cardero-Merlo R., Diaz-Re-carens J., Ayuso C., Ramos C., Lorda-sanchez I. MLPA as a screening method of aneuploidy and unbalanced chromosomal rearrangements in spontaneous miscarriages. // Prenat. Diagn. — 2007. — Vol. 27. — P. 765—771.; Eiben B., Bartels I., Bahr-Porsch S., Borgmann S., Gatz G., GeUert G., Goebel R., Hammans W., Hentemann M., Osmers R. Cytogenetic analysis of 750 spontaneous abortions with the di-rect-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage // Am. J. Hum. Genet. — 1990. — Vol. 47. — P. 656—663.; Feuk L., Carson A.R., Scherer S.W. Structural variation in the human genome // Nat. Rev. Genet. — 2006. — Vol. 7, №2. — P. 85—97.; Fritz B., Hallermann C., Olert J., Fuchs B., Bruns M., Aslan M., Schmidt S., Coerdt W., Muntefering H., Rehder H. Cytogenetic analyses of culture failures by comparative genomic hybridisation (CGH)-Re-evaluation of chromosome aberration rates in early spontaneous abortions. // Eur. J. Hum. Genet. — 2001. — Vol. 9. — P. 539—547.; Gao J., Liu C., Yao F., Hao N., Zhou J., Zhou Q., Zhang L., Liu X., Bian X., Liu J. Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion // Mol. Cytogenet. — 2012. — Vol. 16, №5. doi:10.1186/1755-8166-5-33.; Goddijn M., Leschot N.J. Genetic aspects of miscarriage // Bamieres Best Pract. Res. Clin. Obstet. Gynaecol. — 2000. — Vol. 14. — P. 855—865.; Jobanputra V., Esteves C., Sobrino A., Brown S., Kline J., Warburton D. Using FISH to increase the yield and accuracy of karyotypes from spontaneous abortion specimens // Prenat. Diagnosis. — 2011. — Vol. 31. — P. 755—759.; Lebedev I.N. Mosaic aneuploidy in early fetal loss // Cytogenet. Genome Research. — 2011. — Vol. 133, №2—4. — P. 169—183.; Menten B., Swerts K., DeUe Chiaie B., Janssens S., Buys-se K., Phillipe J., Speleman F. Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples // BMC Med. Genet. — 2009. — Vol. 14. — P. 89—93.; Menasha J., Llevy B., Hirschhorn K., Kardon N.B. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from 12-year study // Genetics in Medicine. — 2005. — Vol. 7, №4. — P. 251—263.; Nikitina T.V., Lebedev I.N., Sukhanova N.N., Sazheno-va E.A., Nazarenko S.A. A mathematical model for evaluation of maternal cell contamination in cultured cells from spontaneous abortions: significance for cytogenetic analysis of prenatal selection factors // Ferfflity Stormy. — 2005. — Vol. 83, №4. — P. 964—972.; Rai R., Regan L. Recurrent miscarriage // Lancet. — 2006. — Vol. 368. — P. 601—611.; Rajcan-Separovic E., Diego-alvarez D., Robinson W.P., Tyson C., Qiao Y., Harvard C., Fawcett C., Katousek D., Philipp T., Somerville M.J., Stephenson M.D. Identification of copy number variants in miscarriage from couples with idiopathic recurrent pregnancy loss // Hum. Reprod. — 2010. — Vol. 25. — P. 2913—2922.; Raican-Separovic E., Qiao Y., Tyson C., Harvard C., Fawcett C., Kalousek D., Stephenson M., Philipp T. Genomic changes detected by array CGH in human embryos with developmental defects // Mol. Hum. Reprod. — 2010. — Vol. 16. — P. 125—134.; Robberecht C., Schuddinck V., Fryns J.P., Vermeesch J.R. Diagnosis of miscarriages by molecular karyotyping: benefits and pitfalls // Genet. Med. — 2009. — Vol. 11. — P. 646—654.; Robberecht C., Pexsters A., Deprest J., Fryns J.P., D’Hoog-he T., Vermeesch J.R. Cytogenetic and morphological analysis of early products of conception following hystero-embryoscopy from coupl es with recurrent pregnancy loss // Prenat. Diagn. — 2012. — Vol. 4. — P. 1-10. doi:10.1002/pd.3936.; Schaeffer A.J., Chung J., Heretis K., Wong A., Ledbetter D.H., Lese M.C. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages // Am. J. Hum. Genet. — 2004. — Vol. 74. — P. 1168—1174.; Scott S.A., Cohen N., Brandt T., Toruner G., Desnick R.J., Edelmann L. Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization // Genet. Med. — 2010. — Vol. 12, №2. — P. 85—92.; Shearer B.M., Thorknd E.C., Carlton A.W., Jakl S.M., Ketterling R.P. Reflex fluorescent in situ hybridization testing for unsuccessful product of conception cultures: a retrospective analysis of 5555 samples attempted by conventional cytogenetics and fluorescent in situ hybridization // Genet. Med. — 2011. — Vol. 13. — P. 545—552.; Shimokawa O., Harada N., Miyake N., Satoh K., Mizuguc-hi T., Niikawa N., Matsumoto N. Array comparative genomic hybridization analysis in first-trimester spontaneous abortions with «normal» ka^orjfpes // Am. J. Med. Genet. — 2006. — Vol. 140. — P. 1931—1935.; Solinas-Toldo S., Lampel S., Stilgenbauer S., Nickolenko J., Benner A., Dchner H., Cremer T., Lichter P. Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances // Genes, Chromoromes and Cancer. — 1997. — Vol. 20, №4. — P. 399—407.; Stranger B.E., Forrest M.S., Dunning M., Ingle C.E., Beaz-ley C., Thorne N., Redon R., Bird C.P., de Grassi A., Lee C., Ty-ler-Smith C., Carter N., Scherer S.W., Tavare S., Deloukas P., Hur-les M.E., Dermitzakis E.T. Relative impact of nucleotide and copy number variation on gene expression phenotypes // Science. — 2007. — Vol. 315. — P. 848—853.; van den Berg M.M., van Maarle M.C., van Wefy M., God-dijn M. Genetics of early miscarriage // Biochim Biophys Acta. — 2012. — doi:10.1016/ j.bbadis.2012.07.001.; Zhang Y.X., Zhang Y.P., Gu Y., Guan F.J., Li S.L., Xie J.S., Shen Y., Wu B.L., Ju W., Jenkins E.C., Brown W.T., Zhong N. Genetic analysis of first-trimester miscarriages with a combination of cytogenetic karyotyping, microsatellite genotyping and array CGH // Clin. Genet. — 2009. — Vol. 75. — P. 133—140.; Warren J.E., Turok D.K., Maxwell T.M., Brothman A.R., Silver R.M. Array comparative genomic hybridization for genetic evaluation of fetal loss between 10 and 20 weeks of gestation // Ob-stet. Gynecol. — 2009. — Vol. 114. — P. 1093—1102.

  17. 17
  18. 18
  19. 19
  20. 20