-
1Academic Journal
Συγγραφείς: D. Yu. Khokhlova, I. A. Loskutov, Д. Ю. Хохлова, И. А. Лоскутов
Πηγή: Ophthalmology in Russia; Том 18, № 3S (2021); 727-734 ; Офтальмология; Том 18, № 3S (2021); 727-734 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-3S
Θεματικοί όροι: спектральная оптическая когерентная томография, aflibercept, retinal vein occlusion, antiangiogenic therapy, spectral optical coherence tomography, афлиберцепт, окклюзия вен сетчатки, антиангиогенная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/1650/891; Hayreh S.S. Retinal vein occlusion. Indian J. Ophthalmol. 1994;42(3):109–132.; Scholl S., Augustin А., Loewenstein A. General pathophysiology of macular edema. Eur. J. Ophthalmol.2011;21;10–19. DOI:10.5301/EJO.2010.6050; McIntosh R.L., Rogers S.L., Lim L. Natural history of central retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117:1113–1123. DOI:10.1016/j.ophtha.2010.01.060; Boyer D., Heier J., Brown D.M, Clark W.L., Vitti R. Vascular endothelial growth factor Trap-Eye for macular edema secondary to central retinal vein occlusion: six-month results of the phase 3 COPERNICUS study. Ophthalmology. 2012;119(5):1024–1032. DOI:10.1016/j.ophtha.2012.01.042. 1; Brown D.M, Heier J.S, Lloyd Clark W., Boyer D.S., Vitti R., Berliner A.J. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-Year Results From the Phase 3 COPERNICUS Study. American Journal of Ophthalmology. 2013;155(3):429–437. DOI:10.1016/j.ajo.2012.09.026; Holz F.G, Roider J., Ogura Y., Korobelnik J-F, Simader C., Groetzbach G., Vitti R., Berliner J., Hiemeyer F., Beckmann K., Zeitz O., Sandbrink R. VEGF trap-Eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study. British Journal of Ophthalmology. 2013;97(3):278–284. DOI:10.1136/bjophthalmol-2012-301504; Korobelnik J., Holz F.G., Roider J., Ogura Y. Intravitreal Aflibercept Injection for Macular Edema Resulting from Central Retinal Vein Occlusion: One-Year Results of the Phase 3 GALILEO Study. Ophthalmology. 2014;121(1):202–208. DOI:10.1016/j.ophtha.2013.08.012; Choi K.E, Yun C., Cha J., Kim S.W. OCT angiography features associated with macular edema recurrence after intravitreal bevacizumab treatment in branch retinal vein occlusion. Sci Rep. 2019;9(1):14153. DOI:10.1038/s41598-019-50637-8; Jang J.H, Kim Y.C, Shin J.P. Correlation between macular edema recurrence and macular capillary network destruction in branch retinal vein occlusion. BMC Ophthalmol. 2020;20(1):341. DOI:10.1186/s12886-020-01611-w; Aghdam A.K., Reznicek L, Sanjari S.M., Klingenstein A., Kernt M., Seidensticker F. Anti-VEGF treatment and peripheral retinal nonperfusion in patients with central retinal vein occlusion. Clin Ophthalmol. 2017;11:331–336. DOI:10.2147/OPTH.; Forooghian F., Kertes P.J, Eng K.T, Albiani D.A, Kirker A.W, Merkur A.B, Fallah N., Cao S., Cui J., Or C., Matsubara J.A. Alterations in intraocular cytokine levels following intravitreal ranibizumab. Can J Ophthalmol. 2016;51(2):87–90. DOI:10.1016/j.jcjo.2015.11.001; Noma H., Yasuda K., Shimura M. Change of cytokines after intravitreal ranibizumab in patients with recurrent branch retinal vein occlusion and macular edema. Eur J Ophthalmol. 2021 Jan;31(1):204–210. DOI:10.1177/1120672119885054; Fujihara-Mino A., Mitamura Y., Inomoto N., Sano H., Akaiwa K., Semba K. Optical coherence tomography parameters predictive of visual outcome after anti-VEGF therapy for retinal vein occlusion. Clin Ophthalmol. 2016;10:1305–1313. DOI:10.2147/; Groneberg T., Trattnig J.S., Feucht N., Lohmann C.P., Maier M. Morphologic patterns on spectral-domain optical coherence tomography (SD-OCT) as a prognostic indicator in treatment of macular edema due to retinal vein occlusion. Klin Monbl Augenheilkd. 2016;233(9):1056–1062. DOI:10.1055/s-0041-108680; Mimouni M., Segev О., Dori D. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with macular edema secondary to vein occlusion. Am. J. Ophthalmol. 2017;182:160–167.; Шпак А.А. Новая номенклатура оптической когерентной томографии. Офтальмохирургия. 2015;3:80–82.; Будзинская М.В., Мазурина Н.К., Егоров А.Е., Куроедов А.В., Лоскутов И.А., Плюхова А.А., Разик С., Рябцева А.А., Симонова С.В. Алгоритм ведения пациентов с ретинальными венозными окклюзиями. Сообщение 2. Макулярный отек. Вестник офтальмологии. 2015;131(6):57–66. DOI:10.17116/oftalma2015131657-66; Еричев В.П., Козлова И.В., Косова Д.В., Аветисов К.С., Мазурова Ю.В. Динамика морфометрических параметров макулярной зоны у пациентов с глаукомой после факоэмульсификации. Вестник офтальмологии. 2019;135(52):129–134. DOI:10.17116/oftalma2019135052129; Будзинская М.В., Фурсова А.Ж., Педанова Е.К. Специфические биомаркеры ответа на антиангиогенную терапию. Вестник офтальмологии. 2020.;136(2):117–124. DOI:10.17116/oftalma2020136021117; Jung S.H., Kim K.A., Sohn S.W., Yang S.J. Association of aqueous humor cytokines with the development of retinal ischemia and recurrent macular edema in retinal vein occlusion. Invest Ophthalmol Vis Sci. 2014 Apr 9;55(4):2290–2296. DOI:10.1167/iovs.13-13587; Дроздова Е.А., Хохлова Д.Ю. Динамическая оценка морфологических и иммунологических параметров при макулярном отеке на фоне окклюзии вен сетчатки. Практическая медицина. 2017;3(104):25–29.; Ogino K., Murakami T., Tsujikawa A., Miyamoto K., Sakamoto A., Ota M., Yoshimura N. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina. 2012 Jan;32(1):77–85. DOI:10.1097/IAE.0b013e318217ffc7; Do J.R., Park S.J., Shin J.P., Park D.H. Assessment of hyperreflective foci after bevacizumab or dexamethasone treatment according to duration of macular edema in patients with branch retinal vein occlusion. Retina. 2021 Feb 1;41(2):355–365. DOI:10.1097/IAE.0000000000002826. PMID: 32349101; Dogan E., Sever O., Köklü Çakır B., Celik E. Effect of intravitreal ranibizumab on serous retinal detachment in branch retinal vein occlusion. Clin Ophthalmol. 2018;17(12):1465–1470. DOI:10.2147/OPTH.S162019; Celık E., Doğan E., Turkoglu E.B., Çakır B., Alagoz G. Serous retinal detachment in patients with macular edema secondary to branch retinal vein occlusion. Arq Bras Oftalmol. 2016;79(1):9–11. DOI:10.5935/0004-2749.20160004; Khokhlova D.Yu., Drozdova E.A. Kurysheva N.I., Loskutov I.A. Optical coherence tomographic patterns in patients with retinal vein occlusion and macular edema treated by ranibizumab: a predictive and personalized approach. EPMA J. 2021 Mar 3;12(1):57–66. DOI:10.1007/s13167-021-00233-6; Дроздова Е.А., Хохлова Д.Ю., Мезенцева Е.А., Никушкина К.В. Исследование системного и локального уровня цитокинов при окклюзии вен сетчатки на фоне антиангиогенной терапии. Медицинская иммунология. 2018;20(3):365–372. DOI:10.15789/1563-06252018-3-365-372; https://www.ophthalmojournal.com/opht/article/view/1650
-
2Academic Journal
Συγγραφείς: Ulianova, N. A., Burdeinyi, S. I.
Πηγή: Archive of Ukrainian Ophthalmology; Том 5, № 3 (2017); 80-84
Архив офтальмологии Украины-Arhìv oftalʹmologìï Ukraïni; Том 5, № 3 (2017); 80-84
Архів офтальмології України-Arhìv oftalʹmologìï Ukraïni; Том 5, № 3 (2017); 80-84Θεματικοί όροι: прогрессирующая миопия, диск зрительного нерва, спектральная оптическая когерентная томография, прогресуюча міопія, диск зорового нерва, спектральна оптична когерентна томографія, progressive myopia, optic nerve disc, spectral optical coherence tomography
Περιγραφή αρχείου: application/pdf
-
3Academic Journal
Συγγραφείς: Iakymenko, I. V., Ulianova, N. A., Venger, L.V.
Πηγή: Archive of Ukrainian Ophthalmology; Том 5, № 2 (2017); 64-67
Архив офтальмологии Украины-Arhìv oftalʹmologìï Ukraïni; Том 5, № 2 (2017); 64-67
Архів офтальмології України-Arhìv oftalʹmologìï Ukraïni; Том 5, № 2 (2017); 64-67Θεματικοί όροι: спектральная оптическая когерентная томография, измерения, экскавация диска зрительного нерва, глаукома, спектральна оптична когерентна томографія, вимірювання, екскавація диска зорового нерва, глаукома, spectral optical coherence tomography, measurement, excavation of the optic nerve disk, glaucoma
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://ophthalm.zaslavsky.com.ua/article/view/172460
-
4Academic Journal
Συγγραφείς: I. A. Loskutov, E. A. Drozdova, D. Yu. Khokhlova, И. А. Лоскутов, Е. А. Дроздова, Д. Ю. Хохлова
Πηγή: National Journal glaucoma; Том 19, № 1 (2020); 10-19 ; Национальный журнал Глаукома; Том 19, № 1 (2020); 10-19 ; 2311-6862 ; 2078-4104 ; 10.25700/10.25700/NJG.2020.01
Θεματικοί όροι: внутриглазное давление, retinal vein occlusion, ranibizumab, spectral optical coherence tomography, anti-angiogenic therapy, glaucoma, intraocular pressure, окклюзия вен сетчатки, ранибизумаб, спектральная оптическая когерентная томография, антиангиогенная терапия, глаукома
Περιγραφή αρχείου: application/pdf
Relation: https://www.glaucomajournal.ru/jour/article/view/269/277; Groneberg T., Trattnig J.S., Feucht N., Lohmann C.P. et al. Morphologic patterns on spectral-domain optical coherence tomography (SD-OCT) as a prognostic indicator in treatment of macular edema due to retinal vein occlusion. Klin Monbl Augenheilkd. 2016; 233(9): 1056-1062. doi:10.1055/s-0041-108680; Scholl S., Augustin A., Loewenstein A., Rizzo S. et al. General pathophysiology of macular edema. Eur J Ophthalmol. 2011; 21 Suppl. 6:S10-19. doi:10.5301/EJO.2010.6050; Rogers S.L., McIntosh R.L., Lim L., Mitchell P. et al. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010; 117(6):1094-1101. doi:10.1016/j.ophtha.2010.01.058; Rogers S., McIntosh R.L., Cheung N., Lim L. et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010; 117(2):313-319. doi:10.1016/j.ophtha.2009.07.017; Будзинская М.В., Мазурина Н.К., Егоров А.Е., Куроедов А.В. и др. Алгоритм ведения пациентов с ретинальными венозными окклюзиями. Сообщение 2. Макулярный отек. Вестник офтальмологии. 2015; 131(6):57-66.; Brown D.M., Campochiaro P.A., Singh R.P., Li Z. et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010; 117(6):1124-1133. doi:10.1016/j.ophtha.2010.02.022; Campochiaro P.A., Heier J.S., Feiner L., Gray S. et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010; 117(6):1102-1112. doi:10.1016/j.ophtha.2010.02.021; Campochiaro P.A., Sophie R., Pearlman J., Brown D.M. et al. Long-term outcomes in patients with retina vein occlusion treated with ranibizumab: the RETAIN study. Ophthalmology. 2014; 121(1):209-219. doi:10.1016/j.ophtha.2013.08.038; Kida T., Fukumoto M., Sato T. et al. Clinical features of japanese patients with central retinal vein occlusion complicated by normaltension glaucoma: a retrospective study. Ophthalmologica. 2017; 237(3):173-179. doi.org/10.1159/000459636; Kolar P. Risk factors for central and branch retinal vein occlusion: a meta-analysis of published clinical data. J Ophthalmol. 2014; Article ID: 724780. doi:10.1155/2014/724780; Martínez F., Furió E., Fabiá M.J., Pérez A.V. et al. Risk factors associated with retinal vein occlusion. Int J Clin Pract. 2014; 68(7):871-881. doi:10.1111/ijcp.12390; Park H.L., Jung Y., Han K., Lee M.Y. et al. Health care claims for primary open-angle glaucoma and retinal vein occlusion from an 11-year nationwide dataset. Sci Rep. 2017; 7(1):80-38. doi:10.1038/s41598- 017-07890-6; Schwaber E.J., Fogelman N., Sobol E.K., Mehrotra D. et al. Associations with retinal vascular occlusions in a diverse, urban population. Ophthalmic Epidemiol. 2018; 25(3):220-226. doi:10.1080/0928658.2 017.1406530; Hayreh S.S. Retinal vein occlusion. Indian J Ophthalmol. 1994; 42(3): 109-132. doi:10.1001/archopht.1980.01020040452011; Hayreh S.S., Podhajsky P.A., Zimmerman M.B. Natural history of visual outcome in central retinal vein occlusion. Ophthalmology. 2011; 118(1):119-133. doi:10.1016/j.ophtha.2010.04.019; Ogura Y., Kondo M., Kadonosono K., Shimura M. et al. Current practice in the management of branch retinal vein occlusion in Japan: Survey results of retina specialists in Japan. Jpn J Ophthalmol. 2019; 63(5):365-373. doi:10.1007/s10384-019-00685-4; Hayreh S.S., Zimmerman M.B., Podhajsky P.A. Retinal vein occlusion and the optic disk. Retina. 2012; 32(10):2108-2118. doi:10.1097/ IAE.0b013e31825620f2; Jaulim A., Ahmed B., Khanam T., Chatziralli I.P. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013; 33(5):901-910. doi:10.1097/IAE.0b013e3182870c15; Querques G., Sacconi R., Borrelli E., Bandello F. Management of patients with macular oedema secondary to central retinal vein occlusion: new findings from SCORE2 and LEAVO studies. Eye (Lond). 2020; 34(2): 215-216. doi:10.1038/s41433-019-0708-4; Coscas G., Loewenstein A., Augustin A., Bandello F. et al. Management of retinal vein occlusion-consensus document. Ophthalmologica. 2011; 226(1):4-28. doi:10.1159/000327391; Kamei M., Terasaki H., Yoshimura N., Shiraga F. et al. Short-term efficacy and safety of ranibizumab for macular oedema secondary to retinal vein occlusion in Japanese patients. Acta Ophthalmol. 2017; 95(1):e29-e35. doi:10.1111/aos.13196; Minami Y., Nagaoka T., Ishibazawa A., Yoshida A. Correlation between short- and long-term effects of intravitreal ranibizumab therapy on macular edema after branch retinal vein occlusion: a prospective observational study. BMC Ophthalmol. 2017; 17(1):90. doi:10.1186/ s12886-017-0485-4; Pichi F., Elbarky A.M., Elhamaky T.R. Outcome of "treat and monitor" regimen of aflibercept and ranibizumab in macular edema secondary to non-ischemic branch retinal vein occlusion. Int Ophthalmol. 2019; 39(1):145-153. doi:10.1007/s10792-017-0798-6; Larsen M., Waldstein S.M., Boscia F., Gerding H. et al. Individualized ranibizumab regimen driven by stabilization criteria for central retinal vein occlusion: twelve-month results of the CRYSTAL Study. Ophthalmology. 2016; 123(5):1101-1111. doi:10.1016/j.ophtha.2016.01.011; Berger A.R., Cruess A.F., Altomare F., Chaudhary V. et al. Optimal treatment of retinal vein occlusion: Canadian Expert Consensus. Ophthalmologica. 2015; 234(1):6-25. doi:10.1159/000381357; Еричев В.П., Петров С.Ю., Макарова А.С., Козлова И.В., Рещикова В.С. Современные методы функциональной диагностики и мониторинга глаукомы. Часть 2. Диагностика структурных повреждений сетчатки и зрительного нерва. Национальный журнал глаукома. 2015; 14(3):72-79.; Курышева Н.И., Паршунина О.А. Оптическая когерентная томография в диагностике глаукомной оптиконейропатии. Часть 1. Национальный журнал глаукома. 2016; 15(1):86-96.; Курышева Н.И. Оптическая когерентная томография в диагностике глаукомной оптиконейропатии. Часть 2. Национальный журнал глаукома. 2016; 15(3):60-70.; Егоров Е.А., Еричев В.П., Онищенко А.Л. и др. Системные факторы риска развития первичной открытоугольной глаукомы. РМЖ. Клиническая офтальмология. 2018; 18(3):140-145.; Muraoka Y., Tsujikawa A., Murakami T., Ogino K. et al. Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology. 2013; 120(1):91-99. doi:10.1016/j. ophtha.2012.06.054; https://www.glaucomajournal.ru/jour/article/view/269
-
5Academic Journal
Πηγή: Head and neck Russian Journal. 8
Θεματικοί όροι: разрушающая лазеркоагуляция, destroying laser coagulation, early melanoma of the choroid, transpupillary thermotherapy, артифакия, pseudophakia, транспупиллярная термотерапия, начальная меланома хориоидеи, спектральная оптическая когерентная томография, spectral optical coherence tomography, 3. Good health
-
6Academic Journal
Πηγή: Head and neck Russian Journal.
Θεματικοί όροι: ultrasound, orbitotomy, small cavernous hemangioma, орбитотомия, цветовое допплеров-ское картирование, спектральная оптическая когерентная томография, ультразвуковое исследование, spectral optical coherence tomography, 3. Good health, кавернозная гемангиома орбиты малых размеров, color Doppler mapping
-
7Academic Journal
Συγγραφείς: Rykov, S., Suk, S., Saksonov, S., Venediktova, O.
Πηγή: Archive of Ukrainian Ophthalmology; Том 1, № 1 (2013); 98-102
Архив офтальмологии Украины-Arhìv oftalʹmologìï Ukraïni; Том 1, № 1 (2013); 98-102
Архів офтальмології України-Arhìv oftalʹmologìï Ukraïni; Том 1, № 1 (2013); 98-102Θεματικοί όροι: премакулярний субгіалоїдальний крововилив, задня гіалоїдна мембрана, YAG – гіалоїдотомія, спектральна оптична когерентна томографія, премакулярное субгиалоидальное кровоизлияние, задняя гиалоидная мембрана, YAG –гиалоидотомия, спектральная оптическая когерентная томография, premacular subhyaloid hemorrhage, posterior hyaloid membrane, YAG – hyaloidotomy, spectral optical coherence tomography, 3. Good health
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://ophthalm.zaslavsky.com.ua/article/view/173780
-
8Academic Journal
Συγγραφείς: A. V. Tereshchenko, I. G. Trifanenkova, E. V. Erokhina, Yu. A. Sidorova, А. В. Терещенко, И. Г. Трифаненкова, Е. В. Ерохина, Ю. А. Сидорова
Πηγή: Ophthalmology in Russia; Том 14, № 3 (2017); 240-246 ; Офтальмология; Том 14, № 3 (2017); 240-246 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2017-3
Θεματικοί όροι: спектральная оптическая когерентная томография, spectral optical coherence tomography
Περιγραφή αρχείου: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/396/414; Zhang W., Chen C. Research advances in aggressive posterior retinopathy of prematurity. Zhongguo Dang Dai Er Ke Za Zhi.2014;16(7):769-773.; Baker P., Tasman W. Optical coherence tomography imaging of the fovea in retinopathy of prematurity. Ophthalmic Surg Lasers Imaging.2010;41(2):201-206. DOI:10.3928/15428877-20100303-08.; Gursoy H., Bilgec M., Erol N. The macular findings on spectral-domain optical coherence tomography in premature infants with or without retinopathy of prematurity. Int Ophthalmol. 2016;36(4):591-600. DOI:10.1007/s10792-016-01769.; Erol M., Ozdemir O., Coban D. Macular findings obtained by spectral domain optical coherence tomography in retinopathy of prematurity. J Ophthalmol. 2014;2014:653-658. DOI:10.1155/2014/468653.; Tong A., El-Dairi M., Maldonado R. Evaluation of optic nerve development in preterm and term infants using handheld spectral-domain optical coherence tomography. Ophthalmology.2014;121(9):1818-1826. DOI:10.1016/j. ophtha.2014.03.020; Терещенко А.В., Белый Ю.А., Терещенкова М.С., Трифаненкова И.Г. Клас сификация задней агрессивной ретинопатии недоношенных, основанная на клинических и морфометрических критериях. Офтальмология.2012;2:29-32. [Tereshchenko A.V., Belyy Yu. A., Tereshchenkova M. S., Trifanenkova I. G. Classification of aggressive posterior retinopathy of prematurity, based on clinical and morphological criteria. Ophthalmology in Russia=Oftalmologiya. 2012; 2: 2932. (In Russ.)]. DOI: http://dx.doi.org/10.18008/1816-5095-2012-2-29-32; Vinekar A., Mangalesh S., Jayadev C. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography. Biomed Res Int.2015;2015:782-790. DOI:10.1155/2015/782420.; Катаргина Л.А., Рудницкая Я.Л., Коголева Л.В., Рябцев Д.И. Формирование макулы у детей с ретинопатией недоношенных по данным оптической когерентной томографии. Российский офтальмологический журнал. 2011;4(4):30-33. [Katargina L. A., Rudnitskaya Ya. L., Kogoleva L. V., Ryabtsev D. I. The formation of the macula in children with retinopathy of prematurity according to optical coherence tomography. Russian ophthalmological journal = Rossiyskiy oftalmologicheskiy zhurnal. 2011; 4 (4)6: 30-33. (In Russ.)].; Терещенко А.В., Белый Ю.А., Трифаненкова И.Г. Оптическая когерентная томография у детей с ранними стадиями активной ретинопатии недоношенных. Офтальмохирургия.2005;4:48-51. [Tereshchenko A.V., Belyy Yu. A., Trifanenkova I. G. Optical coherence tomography in children with early stages of active retinopathy of prematurity. Ophthalmоsurgery = Oftalmokhirurgiya. 2005; 4: 48-51. (In Russ.)].; Vinekar A., Avadhani K., Sivakumar M. Understanding clinically undetected macular changes in early retinopathy of prematurity on spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci.2015;52(8):5183-5188. DOI:10.1167/iovs.10-7155.; Park K., Oh S. Retinal nerve fiber layer thickness in prematurity is correlated with stage of retinopathy of prematurity. Eye (Lond).2015;29(12):1594-1602. DOI:10.1038/eye.2015.166; Erol M., Coban D., Özdemir Ö. Spectral-Domain OCT Analyses of Macular Changes After Ranibizumab Therapy for Type 1 Retinopathy of Prematurity. J Pediatr Ophthalmol Strabismus.2015;52(3):152-158. DOI:10.3928/0191391320150326-12.; Narang S., Singh A., Jain S. Optical coherence tomography of fovea before and after laser treatment in retinopathy of prematurity. Middle East Afr J Ophthalmol.2014;21(4):302-306. DOI:10.4103/0974-9233.194078; Muni R., Kohly R., Charonis A., Lee T. Retinoschisis detected with handheld spectral-domain optical coherence tomography in neonates with advanced retinopathy of prematurity. Arch Ophthalmol. 2010;128(1):57-62. DOI:10.1001/ archophthalmol.2009.361.; Chen Y., Lien R., Chiang M. Outer Retinal Structural Alternation and Segmentation Errors in Optical Coherence Tomography Imaging in Patients With a History of Retinopathy of Prematurity. Am J Ophthalmol.2016;166:169-180. DOI:10.1016/j. ajo.2016.03.030.; Villegas V., Capó H., Cavuoto K. Foveal structure-function correlation in children with history of retinopathy of prematurity. Am J Ophthalmol.2014;158(3):508-512. DOI:10.1016/j.ajo.2014.05.017.; Vinekar A., Sivakumar M., Shetty R. A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine nonanaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity. Eye (Lond).2010;24(2):379-382. DOI:10.1038/eye.2009.313.; https://www.ophthalmojournal.com/opht/article/view/396
-
9Academic Journal
Συγγραφείς: N. I. Kurysheva, T. D. Ardzhevnishvili, A. V. Fomin, Наталия Ивановна Курышева, Т. Д. Арджевнишвили, А. В. Фомин
Πηγή: National Journal glaucoma; Том 13, № 1 (2014); 60-67 ; Национальный журнал Глаукома; Том 13, № 1 (2014); 60-67 ; 2311-6862 ; 2078-4104
Θεματικοί όροι: SD-OCT, глаукома, глазной кровоток, перфузионное давление, спектральная оптическая когерентная томография, choroidal thickness, glaucoma, ocular blood flow, perfusion pressure
Περιγραφή αρχείου: application/pdf
Relation: https://www.glaucomajournal.ru/jour/article/view/9/10; Anderson D.R. Vascular supply to the optic nerve of primates. Am J Ophthalmol 1970; 70(3): 341-351.; Hayreh S.S. Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res 2001; 20(5): 595-624.; Grunwald J.E., Piltz J., Hariprasad S.M., DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci 1998; 39(12): 2329-2336.; Yamazaki S., Inoue Y., Yoshikawa K. Peripapillary fluorescein angiographic findings in primary open angle glaucoma. Br J Ophthalmol 1996; 80: 812-817.; Spraul C.W., Lang G.E., Lang G.K., Grossniklaus H.E. Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vision Res 2002; 42: 923-932.; Quigley H., Friedman S., Congdon N.G. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma 2003; 12(2): 167-180.; Anderson D.R. What happens to the optic disc and retina in glaucoma? Ophthalmology 1983; 90(7): 766-770.; Anand-Apte B., Ebrahem Q., Cutler A., Farage E., Sugimoto M., Hollyfield J., Folkman J. Developmental anatomy of the retinal and choroidal vasculature. Elsevier Ltd. 2010; 9-15.; Linsenmeier R.A., Padnick-Silver L. Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 2000; 41(10): 3117-3123.; Kubota T., Jonas J.B., Naumann G.O. Decreased choroidal thickness in eyes with secondary angle closure glaucoma. An aetiological factor for deep retinal changes in glaucoma? Br J Ophthalmol 1993; 77: 430-432.; Read S.A., Collins M.J., Sander B.P. Human optical axial length and defocus. Invest Ophthalmol Vis Sci 2010; 51: 6262-6269.; Brubaker R.F., Pederson J.E. Ciliochoroidal detachment. Surv Ophthalmol 1983; 27: 281-289.; Nickla D., Wallman J. The multifunction choroid. Prog Retin Eye Res 2010; 29(2): 144-168.; Nicolela M.T. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol 2008; 43(3): 337-341.; Boltz A., Schmidl D., Weigert G., Lasta M., Pemp B., Resch H., Garhöfer G., Fuchsjäger-Mayrl G., Schmetterer L. Effect of latanoprost on choroidal blood flow regulation in healthy subjects. Invest Ophthalmol Vis Sci 2011; 52: 4410-4415.; Schmidl D., Weigert G., Dorner G.T., Resch H., Kolodjaschna J., Wolzt M., Garhofer G., Schmetterer L. Role of adenosine in the control of choroidal blood flow during changes in ocular perfusion pressure. Invest Ophthalmol Vis Sci 2011; 52: 6035-6039.; Flugel C., Tamm E., Mayer B., Lütjen-Drecoll E. Species differences in choroidal vasodilative innervation: Evidence for specific intrinsic nitregic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 1994; 35(2): 592-599.; Курышева Н.И., Царегородцева М.А., Иртегова Е.Ю., Рябова Т.Я., Шлапак В.Н. Глазное перфузионное давление и первичная сосудистая дисрегуляция у больных глаукомой нормального давления. Глаукома 2011; 3: 11-17.; Курышева Н.И., Киселева Т.Н., Иртегова Е.Ю. Особенности венозного кровотока глаза при первичной открытоугольной глаукоме. Глаукома 2012; 4: 24-31; Lutjen-Drecoll E. Choroidal innervation in primate eyes. Exp Eye Res 2006; 82: 357-361.; Schmidl D., Boltz A., Kaya S., Werkmeister R., Dragostinoff N., Lasta M., Polska E., Garhofer G., Schmetterer L. Comparison of choroidal and optic nerve head blood flow regulation during changes in ocular perfusion pressure. Invest Ophthalmol Vis Sci 2012; 53: 4337-4346.; Elschnig A. Der normale Sehnerveneintritt des meschlichen Auges. Denkschrift der kaiserlichen akademie der wissenschaften wien. Mathmatisch Natuwisenschaftliche 1901; 70: 219-310.; Francois J., Neetens A. Central retinal artery and central optic nerve artery. Br J Ophthalmol 1963; 47: 21-30.; Yin Z.Q., Vaegan, Millar T.J., Beaumont P., Sarks S. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 1997; 6(1): 23-32.; Spraul C.W., Lang G.E., Lang G.K., Grossniklaus H.E. Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vision Res 2002; 42(7): 923-932.; Kaiser H., Flammer J., Hendrickson P. Ocular Blood Flow. Karger Basel. 1997; 120-127.; Marangoni D., Falsini B., Colotto A., Salgarello T., Anselmi G., Fadda A., Di Renzo A., Campos E.C., Riva C.E. Subfoveal choroidal blood flow and central retinal function in early glaucoma. Acta Ophthalmol 2012; 90(4): 288- 294.; Minckler D.S., Bunt A.H. Axoplasmic transport in ocular hypotony and papilledema in the monkey. Arch Ophthalmol 1977; 95(8): 1430-1436.; Destro M., Puliafito C.A. Indocyanine green videoangiography of choroidal neovascularization. Ophthalmology 1989; 96: 846-853.; Spaide R.F., Koizumi H., Pozonni M.C. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2008; 146: 496-500.; Gloesmann M., Hermann B., Schubert C., Sattmann H., Ahnelt P.K., Drexler W. Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2003; 44(4): 1696-703.; Wei W.B., Xu L., Jonas J.B., Shao L., Du K.F., Wang S., Chen C.X., Xu J., Wang Y.X., Zhou J.Q., You Q.S. Subfoveal choroidal thickness: the Beijing eye study. Ophthalmology 2013; 120(1): 175-180.; Ikuno Y., Maruko I., Yasuno Y., Miura M., Sekiryu T., Nishida K., Iida T. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52: 5536-5540.; Tan C.S., Ouyang Y., Ruiz H., Sadda S.R. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 261-266.; Ikuno Y., Fujimoto S., Jo Y., Asai T., Nishida K. Choroidal thinning in high myopia measured by optical coherence tomography. Clin Ophthalmol 2013; 7: 889-893.; Elagouz M., Stanescu-Segall D., Jackson T.L. Uveal effusion syndrome. Surv Ophthalmol 2010; 55(2): 134-145.; Chakraborty R., Read S., Collins M. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci 2011; 52: 5121-5129.; Ouyang Y., Heussen F.M., Mokwa N., Walsh A.C., Durbin M.K., Keane P.A., Sanchez P.J., Ruiz-Garcia H., Sadda S.R. Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52: 7019-7026.; Ikuno Y., Kawaguchi K., Nouchi T., Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 2010; 51: 2173-2176.; Li X.Q., Larsen M., Munch I.C. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci 2011; 52(11): 8438-8441.; Tomlinson A., Phillips C.I. Applanation tension and axial length of the eyeball. Br J Ophthalmol 1970; 54: 548-553.; Polak K., Luksch A., Berisha F., Fuchsjaeger-Mayrl G., Dallinger S., Schmetterer L. Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol 2007; 125: 494-498.; Vance S.K., Imamura Y., Freund K.B. The effects of sildenafil citrate on choroidal thickness as determined by enhanced depth imaging optical coherence tomography. Retina 2010; 31: 332-335.; Sogawa K., Nagaoka T., Takahashi A., Tanano I., Tani T., Ishibazawa A., Yoshida A. Relationship between choroidal thickness and choroidal circulation in healthy young subjects. Am J Ophthalmol 2012; 153: 1129-1132.; Tan C.S., Ouyang Y., Ruiz H., Sadda S.R. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53(1): 261-266.; Kim M., Kim S. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Invest Ophthalmol Vis Sci 2012; 53(12): 7710-7717.; Kim M., Kim S., Kwon H., Koh H., Lee S.C. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Invest Ophthalmol Vis Sci 2012; 53(12): 7710-7717.; Kiel J.W., van Heuven W.A. Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 1995; 36: 579-585.; Manjunath Y., Goren J., Fujimoto J., Duker J. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol 2011; 152(4): 663-668.; Maul E.A., Friedman D.S., Chang D.S., Boland M.V., Ramulu P.Y., Jampel H.D., Quigley H.A. Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology 2011; 118(8): 1571-1579.; Mwanza J.C., Hochberg J.T., Banitt M.R., Feuer W.J., Budenz D.L. Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52(6): 3430-3435.; Hirooka K., Fujiwara A., Shiragami C., Baba T., Shiraga F. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol 2012; 40(6): 576-582.; Usui S., Ikuno Y., Miki A., Matsushita K., Yasuno Y., Nishida K. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol 2012; 153(1): 10-16.; Cennamo G., Finelli M., Iaccarino G., de Crecchio G. Choroidal thickness in open-angle glaucoma measured by spectral-domain scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 2012; 228(1): 47-52.; Ehrlich J.R., Peterson J., Parlitsis G., Kay K.Y., Kiss S., Radcliffe N.M. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography. Exp Eye Res 2011; 92(3): 189-194.; Rhew J.Y., Kim Y.T., Choi K.R. Measurement of subfoveal choroidal thickness in normal-tension glaucoma in Korean patients. J Glaucoma 2014; 23(1): 46-49.; Mwanza J.C., Sayyad F.E., Budenz D.L. Choroidal thickness in unilateral advanced glaucoma. Invest Ophthalmol Vis Sci 2012; 53(10): 6695-6701.; Курышева Н.И., Киселева Т.Н., Рыжков П.К., Ходак Н.А., Арждевнишвили Т.Д., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Глаукома. 2013; 3: 73-83.; Trelsted R.L., Silbermann N.N., Brockhurst R.J. Nanophthalmic sclera. Ultrastructural, histochemical, and biochemical observations. Arch Ophthalmol 1982; 100: 1935-1938.; Duke-Elder S., Perkins E.S. Diseases of the uveal tract. In: Duke-Elder S., ed. System of Ophthalmology, vol IX. St. Louis: CVMosby; 1966: 940.; Arora K.S., Jefferys J.L., Maul E.A., Quigley H.A. Choroidal thickness change after water drinking is greater in angle closure than in open angle eyes. Invest Ophthalmol Vis Sci 2012; 53(10): 6393-6402.; Петров С.Ю. Лимфатическая система глаза. Глаукома. Журнал НИИ ГБ РАМН 2011; 3: 58-62.; Шмырева В.Ф., Зиангирова Г.Г., Мазурова Ю.В., Петров С.Ю. Клинико-морфологическая характеристика дренажной зоны склеры при глаукоме нормального внутриглазного давления. Вестник офтальмологии 2007; 6: 32-35; Zhou M., Wang W., Ding X., Huang W., Chen S., Laties A.M., Zhang X. Choroidal thickness in fellow eyes of patients with acute primary angle-closure measured by enhanced depth imaging spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54(3): 1971-1978; https://www.glaucomajournal.ru/jour/article/view/9
Διαθεσιμότητα: https://www.glaucomajournal.ru/jour/article/view/9
-
10Academic Journal
Συγγραφείς: N. I. Kurysheva, O. A. Parshunina, Н. И. Курышева, О. А. Паршунина
Πηγή: National Journal glaucoma; Том 15, № 1 (2016); 86-96 ; Национальный журнал Глаукома; Том 15, № 1 (2016); 86-96 ; 2311-6862 ; 2078-4104
Θεματικοί όροι: lamina cribrosa, GCC, спектральная оптическая когерентная томография, RNFL, толщина хориоидеи, решетчатая мембрана, primary open-angle glaucoma, SD-OCT, choroidal thickness
Περιγραφή αρχείου: application/pdf
Relation: https://www.glaucomajournal.ru/jour/article/view/98/99; Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41(3): 741-748.; Medeiros F.A., Lisboa R., Weinreb R.N., Liebmann J.M., Gir-kin C., Zangwill L.M. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology 2013; 120: 736-744. doi 10.1016/j.ophtha.2012.09.039.; Harwerth R.S., Carter-Dawson L., Smith E.L., 3rd, Barnes G., Holt W.F., Crawford M.L. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 2004; 45: 3152-3160. doi 10.1167/iovs.04-0227.; Johnson C.A., Sample P.A., Zangwill L.M. et al. Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. Am J Ophthalmol 2003; 135: 148-154.; Johnson D.E., El-Defrawy S.R., Almeida D.R., Campbell R.J. Comparison of retinal nerve fibre layer measurements from time domain and spectral domain optical coherence tomography systems. Can J Ophthalmol 2009; 44: 562-566. doi 10.3129/i09-106.; Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: a review. JAMA 2014; 311: 1901-1911. doi 10.1001/jama.2014.3192.; Kim J.S., Ishikawa H., Gabriele M.L. et al. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. Invest Ophthalmol Vis Sci 2010; 5: 896-902. doi 10.1167/iovs.09-4110.; Leung C.K., Cheung C.Y., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 2009; 116: 1257-1263. doi 10.1016/j.ophtha.2011.10.010.; Park S.B., Sung K.R., Kang S.Y., Kim K.R., Kook M.S. Comparison of glaucoma diagnostic capabilities of cirrus HD and stratus optical coherence tomography. Arch Ophthalmol 2009; 127: 16031609. doi 10.1001/archophthalmol.2009.296.; Sehi M., Grewal D.S., Sheets C.W., Greenfield D.S. Diagnostic ability of Fourier-domain time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol 2009; 148: 597-605. doi 10.1016/j.ajo.2009.05.030.; Sull A.C., Vuong L.N., Price L.L. et al. Comparison of spectral/ Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 2010; 30: 221-235. doi.org/10.1097/iae.0b013e3181bd2c3b.; Leite M.T., Rao H.L., Zangwill L.M., Weinreb R.N., Medeiros F.A. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 2011; 118: 1334-1339. doi.org/10.1016/j.ophtha.2010.11.029.; Leung C.K., Lam S., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 2010; 117: 1684-1691. doi.org/10.1097/ijg.0b013e3182070684.; Rao H.L., Zangwill L.M., Weinreb R.N., Sample P.A., Alencar L.M., Medeiros F.A. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 2010; 117: 1692-1699. doi.org/10.1016/j.ophtha.2010.01.031.; Wang X., Li S., Fu J. et al. Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC. Br J Ophthalmol 2011; 95: 509-513. doi.org/10.1136/bjo.2009.163493.; Pechauer A., Liu L., Gao S., Jian C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci 2015; 56: 32873291. doi.org/10.1167/iovs.15-16655.; Jonas J.B., Fernandez M.C., Sturmer J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 1993; 100: 63-68. doi.org/10.1016/s0161-6420(13)31694-7.; Inoue R., Hangai M., Kotera Y., Nakanishi H., Mori S., Morishita S. et al. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology 2009; 116: 214-222. doi 10.1016/j.ophtha.2008.09.008.; Шпак А.А., Малаханова М.К., Огородникова С.Н. Оценка стереометрических параметров диска зрительного нерва и слоя нервных волокон сетчатки на приборе HRT III. Сообщение 3. Сравнение ошибки методов гейдельбергской ретинотомографии и спектральной оптической когерентной томографии. Вестник офтальмологии 2011; 2: 46-49; Nilforushan N., Nassiri N., Moghimi S. et al. Structure-function relationships between spectral-domain OCT and standard achromatic perimetry. Invest Ophthalmol Vis Sci 2012; 53(6): 2740-2748. doi.org/10.1167/iovs.11-8320.; Rao H.L., Zangwill L.M., Weinreb R.N., Leite M.T., Sample P.A., Medeiros F.A. Structure-function relationship in glaucoma using spectral-domain optical coherence tomography. Arch Ophthalmol 2011; 129(7): 864-871. doi.org/10.1001/archophthalmol.2011.145.; Swanson W.H., Felius J., Pan F. Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Invest Ophthalmol Vis Sci 2004; 45(2): 466-472. doi.org/10.1167/iovs.03-0374.; Curcio C.A., Allen K.A. Topography of ganglion cells in human retina. J Comp Neurol 1990; 300: 5-25. doi.org/10.1002/cne.903000103.; Gabriele M.L., Wollstein G., Ishikawa H., Xu J., Kim J., Kagemann L., Folio L.S., Schuman J.S. Three dimensional optical coherence tomography imaging: advantages and advances. Prog Retin Eye Res 2010; 29: 556-579. doi.org/10.1016/j.preteyeres.2010.05.005.; Bixenman W.W., von Noorden G.K. Apparent foveal displacement in normal subjects and in cyclotropia. Ophthalmology 1982; 89: 58-62. doi.org/10.1016/s0161-6420(82)34862-9.; Lefevre F., Leroy K., Delrieu B., Rao H.L., Alencar L.M., Medeiros F.A. Study of the optic nerve head fovea angle with retinophotog-raphy in healthy patients. J Fr Ophthalmol 2007; 30: 598-606. doi.org/10.1016/s0181-5512(07)89664-1.; Rohrschneider K. Determination of the location of the fovea on the fundus. Invest Ophthalmol Vis Sci 2004; 45: 3257-3258. doi.org/10.1167/iovs.03-1157.; Timberlake G.T., Sharma M.K., Grose S.A., Gobert D.V., Gauch J.M., Maino J.H. Retinal location of the preferred retinal locus relative to the fovea in scanning laser ophthalmoscope images. Optom Vis Sci 2005; 82: 177-185. doi.org/10.1097/01.opx.0000156311.49058.c8.; Hood D.C., Anderson S.C., Wall M., Raza A.S., Kardon R.H. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Invest Ophthalmol Vis Sci 2009; 27: 875-881. doi.org/10.1167/iovs.08-2697.; Курышева Н.И., Паршунина О.А., Арджевнишвили Т.Д., Иртегова Е.Ю., Киселева Т.Н., Лагутин М.Б. Поиск новых маркеров в ранней диагностике первичной открытоугольной глаукомы. Российский офтальмологический журнал 2015; 8(3)23-30.; Stamper R.L. The effect of glaucoma on central visual function. Trans Am Ophthalmol Soc 1984; 82: 792-826.; Araie M. Pattern of visual field defects in normal-tension and high-tension glaucoma. Curr Opin Ophthalmol 1995; 6: 36-45. doi.org/10.1097/00055735-199504000-00007.; Anctil J.L., Anderson D.R. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol 1984; 102: 363-370. doi.org/10.1001/archopht.1984.01040030281019.; Aulhorn E., Harms M. Early visual field defects in glaucoma. Glaucoma, Tutzing Symposium. Karger, Basel. 1967; 151-186. doi.org/10.1159/000389404.; Grewal D.S., Sehi M., Paauw J.D., Greenfield D.S. and The Advanced Imaging in Glaucoma Study Group. Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomo-graphy using three criteria for functional progression. J Glaucoma 2012; 21(4): 214-220. doi:10.1097/IJG.0b013e3182071cc7; Heijl A., Lundqvist L. The frequency distribution of earliest glaucomatous visual field defects documented by automated perimetry. Acta Ophthalmol 1984; 62: 657-664. doi.org/10.1111/j.1755-3768.1984.tb03979.x.; Wang M., Hood D.C., Cho J.S., Ghadiali Q., De Moraes G.V., Zhang X., Ritch R., Liebmann J.M. Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch Ophthalmol 2009; 127: 875881. doi.org/10.1001/archophthalmol.2009.145.; Traynis I., de Moraes C.G., Raza A.S., Liebmann J.M., Ritch R., Hood D.C. The Prevalence and Nature of Glaucomatous Defects in the Central 10° of the Visual Field. ARVO 2012. doi.org/10.1001/jamaophthalmol.2013.7656.; Su D., Park S.C., Simonson J.L., Liebmann J.M., Ritch R. Progression pattern of initial parafoveal scotomas in glaucoma. Ophthalmology 2013; 120(3): 520-527. doi:10.1016/j.ophtha.2012.08.018.; Schiefer U., Papageorgiou E., Sample P.A., Pascual J.P., Selig B., Krapp E., Paetzold J. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci 2010; 51: 5685-5689. doi.org/10.1167/iovs.09-5067.; Hood D.C., Raza A.S., de Moraes C.G.V., Odel J.G., Greensten V.C., Liebmann J.M., Ritch R. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 940946. doi.org/10.1167/iovs.10-5803.; Huang J.Y., Pekmezci M., Mesiwala N., Kao A., Lin S. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography. J Glaucoma 2011; 20: 87-95. doi.org/10.1097/ijg.0b013e3181d787b6.; Kotowski J., Folio L.S., Wollstein G. et al. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol 2012; 96: 1420-1425. doi.org/10.1136/bjophthalmol-2011-301021.; Choi S.S., Zawadzki R.J., Lim M.C. et al. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. Br J Ophthalmol 2011; 95: 131-141. doi.org/10.1136/bjo.2010.183756.; Эскина Э.Н., Зыкова А.В. Ранние критерии риска развития глаукомы у пациентов с близорукостью. Офтальмология 2014; 11(2): 59-63. [Eskina E.N., Zykova A.V. Early criteria of glaucoma development risk in patients with myopia. Ophthalmology 2014; 11(2): 59-63. (In Russ.)].; Cho J.W., Sung K.R., Lee S. et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 6401-6407. doi.org/10.1167/iovs.09-5035.; Chiba N., Omodaka K., Yokoyama Y., Aizawa N., Tsuda S., Yasuda M. et al. Association between optic nerve blood flow and objective examinations in glaucoma patients with generalized enlargement disctype. Clin Ophthalmol 2011; 5: 1549-1556. doi:10.2147/OPTH.S22097; Yokoyama Y., Tanito M., Nitta K., Katai M., Kitaoka Y., Omodaka K. et al. Stereoscopic analysis of optic nerve head parameters in primary open angle glaucoma: the glaucoma stereo analysis study. PLoSOne 2014; 9: 99-138. doi:10.1371/journal.pone.0099138.; Reis A.S., O’Leary N., Yang H., Sharpe G.P., Nicolela M.T., Bur-goyne C.F., Chauhan B.C. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 2012; 53(4): 1852-1860. doi:10.1167/iovs.11-9309.; Povazay B., Hofer B., Hermann B. et al. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt 2007; 12: 204-241. doi.org/10.1117/1.2773736.; Strouthidis N.G., Fortune B., Yang H. et al. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 1206-1219. doi.org/10.1167/iovs.10-5599.; Reis A.S., Sharpe G.P., Yang H., Nicolela M.T., Burgoyne C.F., Chauhan B.C. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 2012; 119(4): 738-747. doi:10.1016/j.ophtha.2011.09.054.; Chauhan B.C., O’Leary N., Almobarak F.A. et al. Enhanced detection of open angle glaucoma with an anatomically accurate optical coherence tomography derived neuroretinal rim parameter. Ophthalmology 2013; 120: 535-543. doi.org/10.1016/j.ophtha.2012.09.055.; Furlanetto R.L., Park S.C., Damle U.J., Sieminski S.F., Kung Y., Siegal N. et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo inter individual and inter eye comparisons. Invest Ophthalmol Vis Sci 2013; 54: 4836-4842. doi:10.1167/iovs.12-11530.; Nadler Z., Wang B., Wollstein G., Nevins J.E., Ishikawa H., Kagemann L. et al. Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed Opt Express 2013; 4: 2596-2608. doi:10.1364/BOE.4.002596.; Leitgeb R., Schmetterer L.F., Wojtkowski M., Hitzenberger C.K., Sticker M., Fercher A.F. Flow velocity measurements by frequency domain short coherence interferometry. Proc 2002; 4619: 16-21. doi.org/10.1117/12.470477.; Park H.Y., Jeon S.H., Park C.K. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology 2012; 119: 10-20. doi:10.1016/j.ophtha.2011.07.033.; Omodaka K., Horii T., Takahashi S., Kikawa T., Matsumoto A., Shiga Y. et al. 3D Evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS ONE 2015; 10(4): 122-347. doi:10.1371/journal.pone.0122347.; Hayreh S.S. Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res 2001; 20(5): 595-624. doi.org/10.1016/s1350-9462(01)00005-2.; Grunwald J.E., Piltz J., Hariprasad S.M., DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci 1998; 39(12): 2329-2336. doi.org/10.1016/s0002-9394(01)00871-6.; Mrejen S., Spaide R.F. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 2013; 58: 387-429. doi.org/10.1016/j.survophthal.2012.12.001; Hirooka K., Fujiwara A., Shiragami C., Baba T., Shiraga F. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol 2012; 40(6): 576-582. doi.org/10.1111/j.1442-9071.2012.02762.x; Cennamo G., Finelli M., Iaccarino G., de Crecchio G. Choroidal thickness in open-angle glaucoma measured by spectral-domain scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 2012; 228(1): 47-52. doi.org/10.1159/000336903; Ehrlich J.R., Peterson J., Parlitsis G., Kay K.Y., Kiss S., Radcliffe N.M. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography. Exp Eye Res 2011; 92(3): 189-194. doi.org/10.1016/j.exer.2011.01.002; Курышева Н.И., Арджевнишвили Т.Д., Киселева Т.Н., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Национальный журнал глаукома 2013; 4: 73-83. [Kurysheva N.I., Ardzhevnishvili T.D., Kiseleva T.N., Fomin A.V. Choroid in glaucoma: the results of an optical coherence tomography study. Natsional’nyi zhurnal glaukoma 2013; 4: 73-83 (In Russ.)].; Mangan B.G., Al-Yahya K., Chen C.T. et al. Retinal pigment epithelial damage, breakdown of the blood-retinal barrier, and retinal inflammation in dogs with primary glaucoma. Vet Ophthalmol 2007; 10(1): 117-124. doi.org/10.1111/j.1463-5224.2007.00585.x; Jonas J.B., Naumann G.O. Parapapillary retinal vessel diameter in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci 1989; 30(7): 1604-1611.; Guo Y., Wang Y.X., Xu L., Jonas J.B. Five-year follow-up of para-papillary atrophy: the Beijing Eye Study. PloS One 2012; 7(5): 32-35. doi.org/10.1371/journal.pone.0032005.; Caprioli J. Discrimination between normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 1992; 33: 153-159.; Wieser W., Biedermann B.R., Klein T. et al. Multimegahertz OCT: high quality3D imaging at 20 million A-scans and 4.5 G Voxels per second. Opt Express 2010; 18: 14685-14704. doi.org/10.1364/ oe.18.014685; Liu B., Brezinski M.E. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt 2007; 12: 44-47. doi.org/10.1117/1.2753410.; Takayama K., Hangai M., Kimura Y. et al. Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 4798-4807. doi.org/10.1167/iovs.13-11677.; Wang B., Nevins J.E., Nadler Z. et al. In vivo lamina cribrosa micro-architecturein healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 8270-8274. doi.org/10.1167/iovs.13-13109.; Lopilly Park H.Y., Lee N.Y., Choi J.A., Park C.K. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open angle glaucoma and myopia. Am J Ophthalmol 2014; 157: 876-884. doi.org/10.1016/j.ajo.2014.01.007.; Nadler Z., Wang B., Wollstein G. et al. Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography. Biomed Opt Express 2014; 5: 1114-1123. doi.org/10.1364/boe.5.001114.; Gotzinger E., Pircher M., Baumann B. et al. Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. Opt Express 2009; 17: 4151-4165. doi.org/10.1364/oe.17.004151.; Yamanari M., Makita S., Lim Y., Yasuno Y. Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation. Opt Express 2010; 18: 13964-13980. doi.org/10.1364/oe.18.013964.; Cense B., Gao W., Brown J.M. et al. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. Opt Express 2009; 17: 21634-21651. doi.org/10.1364/oe.17.021634.; Dwelle J., Liu S., Wang B. et al. Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous nonhuman primates. Invest Ophthalmol Vis Sci 2012; 53: 4380-4395. doi.org/10.1167/iovs.11-9130.; Liu S., Wang B.B., Yin B.M. et al. Retinal nerve fiber layer reflectance for early glaucoma diagnosis. J Glaucoma 2014; 23: 45-52. doi.org/10.1097/ijg.0b013e31829ea2a7.; https://www.glaucomajournal.ru/jour/article/view/98
Διαθεσιμότητα: https://www.glaucomajournal.ru/jour/article/view/98
-
11Academic Journal
-
12Academic Journal
Συγγραφείς: ЗЕЛЕНЦОВ КИРИЛЛ СЕРГЕЕВИЧ, ИОЙЛЕВА ЕЛЕНА ЭДУАРДОВНА, ЗЕЛЕНЦОВ СЕРГЕЙ НИКОЛАЕВИЧ, ДУГИНОВ АНДРЕЙ ГЕННАДЬЕВИЧ
Θεματικοί όροι: СПЕКТРАЛЬНАЯ ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ,ТРАВМА ГЛАЗА,ЗРИТЕЛЬНЫЙ НЕРВ,SPECTRAL OPTICAL COHERENCE TOMOGRAPHY,EYE TRAUMA,OPTIC NERVE
Περιγραφή αρχείου: text/html
-
13Academic Journal
Συγγραφείς: ПОМЫТКИНА НАТАЛЬЯ ВИКТОРОВНА, СОРОКИН ЕВГЕНИЙ ЛЕОНИДОВИЧ
Περιγραφή αρχείου: text/html
-
14Academic Journal
Συγγραφείς: Амиров, Айдар, Абдулаева, Эльмира, Минхузина, Элина
Θεματικοί όροι: САХАРНЫЙ ДИАБЕТ, ДИАБЕТИЧЕСКИЙ МАКУЛЯРНЫЙ ОТЁК, СПЕКТРАЛЬНАЯ ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ, ИЗМЕНЕНИЯ СЕТЧАТКИ, МЕТОДЫ ДИАГНОСТИКИ, ЛЕЧЕНИЕ
Περιγραφή αρχείου: text/html
-
15Academic Journal
Συγγραφείς: Anqi, Zhang, Qinqin, Zhang, Yanping, Huang, Zhiwei, Zhong, Ruikang, K.
Θεματικοί όροι: ВИЗУАЛИЗАЦИЯ МИКРОЦИРКУЛЯТОРНОГО РУСЛА,ИЗОБРАЖЕНИЕ СЕТЧАТКИ,ОПТИЧЕСКАЯ МИКРОАНГИОГРАФИЯ,СПЕКТРАЛЬНАЯ ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ, microvasculature imaging, retinal imaging, optical microangiography, spectral domain optical coherence tomography
Περιγραφή αρχείου: text/html
-
16Academic Journal
Συγγραφείς: Jan Studnicka, A. Stepanov, E. Rencova, Ya. Breznajova, M. Burova, H. Langrova, P. Rozsival, Я. Студничка, А. Степанов, Э. Ренцова, Я. Брезнайова, М. Бурова, Г. Лангрова, П. Розсивал
Πηγή: Ophthalmology in Russia; Том 10, № 2 (2013); 76-78 ; Офтальмология; Том 10, № 2 (2013); 76-78 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2013-2
Θεματικοί όροι: отек макулы, SD-OCT, macular edema, спектральная оптическая когерентная томография (SD-OCT)
Περιγραφή αρχείου: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/92/85; Gass J. D. M. Acute posterior multifocal pigment epitheliopathy // Arch Ophthalmol. 1968. V. 80. P. 177‑185.; Fiore T., Iaccheri B., Androudi S., et al. Acute posterior multifocal placoid pigment epitheliopathy: outcome and visual prognosis // Retina. 2009. V. 29. P. 994‑1001.; Jones N. P. Acute posterior multifocal placoid pigment epitheliopathy // Br J Ophthalmol. 1995. V. 79. P. 384‑389.; Deutman A. F., Lion F. Choriocapillaris non-perfusion in acute posterior multifocal placoid pigment epitheliopathy // Am J Ophthalomol. 1977. V. 84. P. 45‑49.; Augsten R., Pfister W., Königsdörffer E. Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) and borreliosis // Klin Monbl Augenheilkd. 2009. V. 226. V. 512‑513.; Mendrinos E., Baglivo E. Acute posterior multifocal placoid pigment epitheliopathy following influenza vaccination // Eye (Lond.). 2010. V. 24. P. 180‑181.; Fine H. F., Kim E., Flynn T. E., et al. Acute posterior multifocal placoid pigment epitheliopathy following varicella vaccination // Br J Ophthalmol. 2010. V. 94. P. 282‑283.; Montero J. A., Ruiz-Moreno J. M., Fernandez-Munoz M. Spectral domain optical coherence tomography findings in acute posterior multifocal placoid pigment epitheliopathy // Ocul Immunol Inflamm. 2011. V. 19. P. 48‑50.; https://www.ophthalmojournal.com/opht/article/view/92
-
17Academic Journal
Συγγραφείς: Азнабаев, Б., Мухамадеев, Т., Александров, А., Дибаев, Т.
Θεματικοί όροι: ВИТРЕОМАКУЛЯРНЫЙ ТРАКЦИОННЫЙ СИНДРОМ, СПЕКТРАЛЬНАЯ ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ, СКРИ-НИНГ
Περιγραφή αρχείου: text/html
-
18Academic Journal
Πηγή: Бюллетень Восточно-Сибирского научного центра Сибирского отделения Российской академии медицинских наук.
Θεματικοί όροι: ДРУЗЫ ДИСКА ЗРИТЕЛЬНОГО НЕРВА,СПЕКТРАЛЬНАЯ ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ,КОМПЬЮТЕРНАЯ ЛАЗЕРНАЯ РЕТИНОТОМОГРАФИЯ,ВИДЕООФТАЛЬМОГРАФИЯ,УЛЬТРАЗВУКОВОЕ В-СКАНИРОВАНИЕ ОРБИТЫ И ЗРИТЕЛЬНОГО НЕРВА,ФЛЮОРЕСЦЕНТНАЯ АНГИОГРАФИЯ СЕТЧАТКИ,КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ ОРБИТ,МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ ГОЛОВНОГО МОЗГА И ОРБИТ,OPTIC NERVE DRUSEN,SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY,HEIDELBERG RETINA TOMOGRAPHY,VIDEOOCULOGRAPHY,B-SCAN ULTRASONOGRAPHY,FLUORESCENT ANGIOGRAPHY,COMPUTED TOMOGRAPHY AND MAGNETICRESONANCE IMAGING OF THE BRAIN AND ORBITS, 3. Good health
Περιγραφή αρχείου: text/html
-
19Academic Journal
Πηγή: Вестник Тамбовского университета. Серия: Естественные и технические науки.
Θεματικοί όροι: 0101 mathematics, 01 natural sciences, СПЕКТРАЛЬНАЯ ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ,ТРАВМА ГЛАЗА,ЗРИТЕЛЬНЫЙ НЕРВ,SPECTRAL OPTICAL COHERENCE TOMOGRAPHY,EYE TRAUMA,OPTIC NERVE
Περιγραφή αρχείου: text/html
-
20Academic Journal
Συγγραφείς: Катаргина, Л., Мазанова, Екатерина, Тарасенков, А., Рябцев, Д.
Θεματικοί όροι: ВРОЖДЕННАЯ ГЛАУКОМА, ГЛАУКОМНАЯ ОПТИЧЕСКАЯ НЕЙРОПАТИЯ, МЕТОД КОНФОКАЛЬНОЙ ЛАЗЕРНОЙ СКАНИРУЮЩЕЙ ОФТАЛЬМОСКОПИИ (HRT), CONFOCAL LASER SCANNING OPHTHALMOSCOPY (HRT), СПЕКТРАЛЬНАЯ ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ (С-ОКТ), SPECTRAL OPTICAL COHERENT TOMOGRAPHY (S-OCT)
Περιγραφή αρχείου: text/html