Εμφανίζονται 1 - 4 Αποτελέσματα από 4 για την αναζήτηση '"СПАСТИЧЕСКИЙ ТЕТРАПАРЕЗ"', χρόνος αναζήτησης: 0,48δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: Not specified, Не указан

    Πηγή: Current Pediatrics; Том 21, № 1 (2022); 19-28 ; Вопросы современной педиатрии; Том 21, № 1 (2022); 19-28 ; 1682-5535 ; 1682-5527

    Περιγραφή αρχείου: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/2841/1145; Bax M. Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005;47(8):571–576. doi: https://doi.org/10.1017/s001216220500112x; Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.; Бадалян Л.О., Журба Л.Т., Тимонина О.В. Детские церебральные параличи. — Киев: Здоровьe, 1988. — 328 с.; Клочкова О.А., Куренков А.Л. Ботулинотерапия при детском церебральном параличе: практические советы и ультразвуковой контроль. — М.: МЕДпресс-информ, 2020. — 248 с.; Куренков А.Л., Батышева Т.Т., Виноградов А.В. и др. Спастичность при детском церебральном параличе: диагностика и стратегии лечения // Журнал неврологии и психиатрии им. C.C. Корсакова. — 2012. — Т. 112. — № 7–2. — С. 24–28.; Graham HK. Botulinum toxin A in cerebral palsy: Functional outcomes. J Pediatr. 2000;137(3):300–303. doi: https://doi.org/10.1067/mpd.2000.109107; Lance JW. Symposium synopsis. In: Feldman RG, Young RR, Koella WP (eds). Spasticity: Disordered Motor Control; 1980. P. 485–494.; Ganguly J, Kulshreshtha D, Almotiri M, et al. Muscle Tone Physiology and Abnormalities. Toxins (Basel). 2021;13(4):282. doi: https://doi.org/10.3390/toxins13040282; Novak I, Morgan C, Fahey M, et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020;20(2):3. doi: https://doi.org/10.1007/s11910-020-1022-z; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1): 45–66. doi: https://doi.org/10.1016/j.ejpn.2009.09.005; Graham D, Aquilina K, Mankad K, et al. Selective dorsal rhizotomy: Current state of practice and the role of imaging. Quant Imaging Med Surg. 2018;8(2):209–218. doi: https://doi.org/10.21037/qims.2018.01.08; Умнов В.В. Нейрохирургические аспекты комплексного ортопедо-нейрохирургического лечения спастических параличей у детей // Вестник Российской Военно-медицинской академии. — 2008. — Т. 21. — № 1. — С. 87–91.; Королев А.А. Возможные методы нейрохирургической коррекции мышечной спастичности // Современные наукоемкие технологии. — 2012. — № 8. — С. 26–27.; Комфорт А.В., Семенова Ж.Б., Понина И.В. Селективная дорсальная ризотомия в коррекции спастического синдрома у больных детским церебральным параличом // Российский вестник детской хирургии, анестезиологии и реаниматологии. — 2014. — Т. 4. — № 4. — С. 130–135.; Кенис В.М., Иванов С.В., Киселева Т.И. Возможности селективной дорзальной ризотомии при деформациях стоп у детей с ДЦП // Ортопедия, травматология и восстановительная хирургия детского возраста. — 2015. — Т. 3. — № 1. — C. 22–26. doi: https://doi.org/10.17816/PTORS3122-26; Хаджиев О.Ч., Сиротюк М.В. Неоднозначность результатов селективной дорзальной ризотомии при детском церебральном параличе и электромиографическая объективность // Вестник физиотерапии и курортологии. — 2015. — Т. 23. — № 3. — С. 16–22.; Акижанова И.В., Кожанова А.М., Кариева Э. и др. Анализ эффективности селективной дорзальной ризотомии в сочетании с послеоперационной реабилитацией у пациентов со спастической формой ЦП с позиций МКФ (пилотный проект) // Вестник Казахского национального медицинского университета. — 2021. — № 1. — С. 115–122. doi: https://doi.org/10.53065/kaznmu.2021.60.54.027; Park TS, Dobbs MB, Cho J. Evidence Supporting Selective Dorsal Rhizotomy for Treatment of Spastic Cerebral Palsy. Cureus. 2018;10(10):e3466. doi: https://doi.org/10.7759/cureus.3466; Nicolini-Panisson RD, Tedesco AP, Folle MR, et al. Selective dorsal rhizotomy in cerebral palsy: selection criteria and postoperative physical protocols. Rev Paul Pediatr. 2018;36(1):9. doi: https://doi.org/10.1590/1984-0462/;2018;36;1;00005; Grunt S, Fieggen AG, Vermeulen RJ, et al. Selection criteria for selective dorsal rhizotomy in children with spastic cerebral palsy: A systematic review of the literature. Dev Med Child Neurol. 2014;56(4):302–312. doi: https://doi.org/10.1111/dmcn.12277; Foerster O. Über eine neue operative Methode der Behandlung spastischer Lähmungen mittels Resektion hinterer Rückenmarkswurzeln. Z Orthop Chir. 1908;22:203–223.; Gros C, Ouaknine G, Vlahovitch B, et al. La radicotomie sélective postérieure dans le traitement neuro-chirurgical de l’hypertonie pyramidale [Selective posterior radicotomy in the neurosurgical treatment of pyramidal hypertension]. Neurochirurgie. 1967;13(4):505–518.; Fasano VA, Broggi G, Barolat-Romana G, et al. Surgical treatment of spasticity in cerebral palsy. Childs Brain. 1978;4(5):289–305. doi: https://doi.org/10.1159/000119785; Peacock WJ, Arens LJ. Selective posterior rhizotomy for the relief of spasticity in cerebral palsy. S Afr Med J. 1982;62(4):119–124.; Hesselgard K, Reinstrup P, Stromblad LG, et al. Selective dorsal rhizotomy and postoperative pain management. A worldwide survey. Pediatr Neurosurg. 2007;43:107–112. doi: https://doi.org/10.1159/000098382; Park TS, Johnston JM. Surgical techniques of selective dorsal rhizotomy for spastic cerebral palsy. Technical note. Neurosurg Focus. 2006;21(2):e7.; Park TS, Liu JL, Edwards C, et al. Functional Outcomes of Childhood Selective Dorsal Rhizotomy 20 to 28 Years Later. Cureus. 2017;9(5):e1256. doi: https://doi.org/10.7759/cureus.1256; Wang KK, Munger ME, Chen BP, et al. Selective dorsal rhizotomy in ambulant children with cerebral palsy. J Child Orthop. 2018;12(5): 413–427. doi: https://doi.org/10.1302/1863-2548.12.180123; Peacock WJ, Staudt LA. Functional outcomes following selective posterior rhizotomy in children with cerebral palsy. J Neurosurg. 1991;74(3):380–385. doi: https://doi.org/10.3171/jns.1991.74.3.0380; Park TS, Joh S, Walter DM, et al. Selective Dorsal Rhizotomy for the Treatment of Spastic Hemiplegic Cerebral Palsy. Cureus. 2020;12(8):e9605. doi: https://doi.org/10.7759/cureus.9605; Park TS, Joh S, Walter DM, et al. Selective Dorsal Rhizotomy for Treatment of Hereditary Spastic Paraplegia-Associated Spasticity in 37 Patients. Cureus. 2021;13(9):e17690. doi: https://doi.org/10.7759/cureus.17690; Peacock WJ, Arens LJ, Berman B. Cerebral palsy spasticity: Selective posterior rhizotomy. Pediatr Neurosci. 1987;13(2):61–66. doi: https://doi.org/10.1159/000120302; Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2): 206–207. doi: https://doi.org/10.1093/ptj/67.2.206; Morris SL, Williams G. A historical review of the evolution of the Tardieu Scale. Brain Inj. 2018;32(5):665–669. doi: https://doi.org/10.1080/02699052.2018.1432890; Medical Research Council. Aids to the examination of the peripheral nervous system, Memorandum No. 45, 1976. Available from: https://www.ukri.org/councils/mrc/facilities-and-resources/find-an-mrc-facility-or-resource/mrc-muscle-scale/; Schwartz MH, Rozumalski A, Steele KM. Dynamic motor control is associated with treatment outcomes for children with cerebral palsy. Dev Med Child Neurol. 2016;58(11):1139–1145. doi: https://doi.org/10.1111/dmcn.13126; Roberts A, Stewart C, Freeman R. Gait analysis to guide a selective dorsal rhizotomy program. Gait Posture. 2015;42(1): 16–22. doi: https://doi.org/10.1016/j.gaitpost.2015.04.004; van de Pol LA, Vermeulen RJ, van’t Westende C, et al. Risk Factors for Dystonia after Selective Dorsal Rhizotomy in Nonwal king Children and Adolescents with Bilateral Spasticity. Neuropediatrics. 2018;49(1):44–50. doi: https://doi.org/10.1055/s-0037-1607395; Jethwa A, Mink J, Macarthur C, et al. Development of the Hypertonia Assessment Tool (HAT): A discriminative tool for hypertonia in children. Dev Med Child Neurol. 2010;52(5):e83–e87. doi: https://doi.org/10.1111/j.1469-8749.2009.03483.x; Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA. 2006;296(13):1602–1608. doi: https://doi.org/10.1001/jama.296.13.1602; Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–124. doi: https://doi.org/10.1016/S1474-4422(08)70294-1; Tedroff K, Hägglund G, Miller F. Long-term effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2020;62(5):554–562. doi: https://doi.org/10.1111/dmcn.14320; Ailon T, Beauchamp R, Miller S, et al. Long-term outcome after selective dorsal rhizotomy in children with spastic cerebral palsy. Childs Nerv Syst. 2015;31(3):415–423. doi: https://doi.org/10.1007/s00381-015-2614-9; Bolster EA, van Schie PE, Becher JG, et al. Long-term effect of selective dorsal rhizotomy on gross motor function in ambulant children with spastic bilateral cerebral palsy, compared with reference centiles. Dev Med Child Neurol. 2013;55(7):610–616. doi: https://doi.org/10.1111/dmcn.12148; Dudley RW, Parolin M, Gagnon B, et al. Long-term functional benefits of selective dorsal rhizotomy for spastic cerebral palsy. J Neurosurg Pediatr. 2013;12(2):142–150. doi: https://doi.org/10.3171/2013.4.PEDS12539; Josenby AL, Wagner P, Jarnlo GB, et al. Motor function after selective dorsal rhizotomy: A 10-year practice-based followup study. Dev Med Child Neurol. 2012;54(5):429–435. doi: https://doi.org/10.1111/j.1469-8749.2012.04258.x; Tedroff K, Lowing K, Jacobson DN, et al. Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2011;53(8):724–729. doi: https://doi.org/10.1111/j.1469-8749.2011.03969.x; Tedroff K, Löwing K, Åström E. A prospective cohort study investigating gross motor function, pain, and health-related quality of life 17 years after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2015;57(5):484–490. doi: https://doi.org/10.1111/dmcn.12665; Klochkova OA, Kurenkov AL. Muscular Weakness and Loss of Motor Skills in Patients with Cerebral Palsy. Current Pediatrics. 2020;19(2):107–115. (In Russ.)] doi: https://doi.org/10.15690/vsp.v19i2.2103; Linden O, Hagglund G, Rodby-Bousquet E, et al. The development of spasticity with age in 4,162 children with cerebral palsy: A register-based prospective cohort study. Acta Orthop. 2019;90(3):286–291. doi: https://doi.org/10.1080/17453674.2019.1590769; Steinbok P, Reiner AM, Beauchamp R, et al. A randomized clinical trial to compare selective posterior rhizotomy plus physiotherapy with physiotherapy alone in children with spastic diplegic cerebral palsy. Dev Med Child Neurol. 1997;39(3):178–184. doi: https://doi.org/10.1111/j.1469-8749.1997.tb07407.x; Wright FV, Sheil EM, Drake JM, et al. Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 1998;40(4): 239–247. doi: https://doi.org/10.1111/j.1469-8749.1998.tb15456.x; MacWilliams BA, Johnson BA, Shuckra AL, et al. Functional decline in children undergoing selective dorsal rhizotomy after age 10. Dev Med Child Neurol. 2011;53(8):717–723. doi: https://doi.org/10.1111/j.1469-8749.2011.04010.x; Steinbok P, McLeod K. Comparison of motor outcomes after selective dorsal rhizotomy with and without preoperative intensified physiotherapy in children with spastic diplegic cerebral palsy. Pediatr Neurosurg. 2002;36(3):142–147. doi: https://doi.org/10.1159/000048369; Клочкова О.А., Куренков А.Л., Кенис В.М. Формирование контрактур при спастических формах детского церебрального паралича: вопросы патогенеза // Ортопедия, травматология и восстановительная хирургия детского возраста. — 2018. — Т. 6. — № 1. — С. 58–66. doi: https://doi.org/10.17816/PTORS6158-66; Munger ME, Aldahondo N, Krach LE, et al. Long-term outcomesafter selective dorsal rhizotomy: a retrospective matched cohort study. Dev Med Child Neurol. 2017;59(11):1196–1203. doi: https://doi.org/10.1111/dmcn.13500; Chicoine MR, Park TS, Kaufman BA. Selective dorsal rhizotomy and rates of orthopedic surgery in children with spastic cerebral palsy. J Neurosurg. 1997;86(1):34–39. doi: https://doi.org/10.3171/jns.1997.86.1.0034; O’Brien DF, Park TS, Puglisi JA, et al. Orthopedic surgery after selective dorsal rhizotomy for spastic diplegia in relation to ambulatory status and age. J Neurosurg. 2005;103(1Suppl):5–9. doi: https://doi.org/10.3171/ped.2005.103.1.0005; Hicdonmez T, Steinbok P, Beauchamp R, et al. Hip joint subluxation after selective dorsal rhizotomy for spastic cerebral palsy. J Neurosurg. 2005;103(1Suppl):10–16. doi: https://doi.org/10.3171/ped.2005.103.1.0010; Nordmark E, Josenby AL, Lagergren J, et al. Long-term outcomes five years after selective dorsal rhizotomy. BMC Pediatr. 2008;8:54. doi: https://doi.org/10.1186/1471-2431-8-54; Miller SD, Juricic M, Hesketh K, et al. Prevention of hip displacement in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2017;59(11):1130–1138. doi: https://doi.org/10.1111/dmcn.13480; Limpaphayom N, Stewart S, Wang L, et al. Functional outcomes after selective dorsal rhizotomy followed by minimally invasive tendon lengthening procedures in children with spastic cerebral palsy. J Pediatr Orthop B. 2020;29(1):1–8. doi: https://doi.org/10.1097/BPB.0000000000000642; Langerak NG, Vaughan CL, Hoffman EB, et al. Incidence of spinal abnormalities in patients with spastic diplegia 17 to 26 years after selective dorsal rhizotomy. Child Nerv Syst. 2009;25(12): 1593–1603. doi: https://doi.org/10.1007/s00381-009-0993-5; Buckon CE, Thomas SS, Piatt J, et al. Selective dorsal rhizotomy versus orthopedic surgery: a multidimensional assessment of outcome efficacy. Arch Phys Med Rehabil. 2004;85(3):457–465. doi: https://doi.org/10.1016/j.apmr.2003.05.009; Morota N. Functional posterior rhizotomy: the Tokyo experience. Childs Nerv Syst. 2007;23(9):1007–1014. doi: https://doi.org/10.1007/s00381-007-0381-y; Hurvitz EA, Marciniak CM, Daunter AK, et al. Functional outcomes of childhood dorsal rhizotomy in adults and adolescents with cerebral palsy. J Neurosurg Pediatr. 2013;11(4):380–388. doi: https://doi.org/10.3171/2013.1.PEDS12311

  2. 2
    Academic Journal

    Πηγή: Neuromuscular Diseases; № 3 (2014); 28-41 ; Нервно-мышечные болезни; № 3 (2014); 28-41 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2014-0-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/27/23; Koman L.A., Mooney J.F. 3rd, Smith B. et al. Management of cerebral palsy with botulinum-A toxin: preliminary investigation. J Pediatr Orthop 1993;13(4):489–95.; Graham H.K., Aoki K.R., Autti-Ramo I. et al. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture 2000;11: 67–79.; Heinen F., Molenaers G., Fairhurst C. et al. European consensus table 2006 on botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol 2006;10(5–6):215–25.; Heinen F., Desloovere K., Schroeder A.S. et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol 2010;14(1):45–66.; Love S.C., Novak I., Kentish M. et al. Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neur 2010;17(Suppl 2):9–37.; Bax M., Goldstein M., Rosenbaum P. et al. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 2005;47(8):571–6.; Miller F. Cerebral palsy. New York: Springer Science, 2005. 1055 p.; Батышева Т.Т., Быкова О.В., Виноградов А.В. Приверженность семьи к лечению ребенка с неврологической патологией. Журн неврол и психиатр им. С.С. Корсакова 2012;7(2): 56–63.; Семенова К.А., Махмудова Н.М. Медицинская реабилитация и социальная адаптация больных детским церебральным параличом. Ташкент: Медицина, 1979. 487 с.; Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol 2000;42(12):816–24.; Palisano R., Rosenbaum P., Walter S. et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol1997;39(4):214–23.; Palisano R.J. A collaborative model of service delivery for children with movement disorders: a framework for evidence-based decision making. Phys Ther 2006;86(9): 1295–305.; Hanna S.E., Rosenbaum P.L., Bartlett D.J. et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol 2009;51(4):295–302.; Eliasson A.C., Krumlinde-Sundholm L., Rösblad B. et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol 2006;48(7):549–54.; Hidecker M.J., Paneth N., Rosenbaum P.L. et al. Developing and validating the Communication Function Classification System for individuals with cerebral palsy. Dev Med Child Neurol 2011;53(8):704–10.; Hidecker M.J., Ho N.T., Dodge N. et al. Inter-relationships of functional status in cerebral palsy: analyzing gross motor function, manual ability, and communication function classification systems in children. Dev Med Child Neurol 2012;54(8):737–42.; Bohannon R.W., Smith M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 1987;67(2): 206–7.; Boyd R.N., Graham H.K. Objective measurement of clinical findings in the use of Botulinum toxin type A for the management of children with cerebral palsy. Eur J Neurol 1999;6(Suppl. 4):23–35.; Gage J.R., Stout J.L. Gait analysis: kinematics, kinetics, electromyography, oxygen consumption and pedobarography. In: The identification and treatment of gait problems in cerebral palsy (Eds. Gage J.R., Schwartz M.H., Koop S.E., Novacheck T.F.). London: Mac Keith Press, 2009. P. 260–284.; Leonard J., Graham H.K. Treatment of motor disorders in cerebral palsy with bo tulinum neurotoxin. In book: Botulinum toxin: Therapeutic clinical practice and science (Ed. by J. Jankovic). Philadelphia: Saunders Elsevier, 2009. P. 172–191.; Simpson D.M., Gracies J.M., Graham H.K. et al. Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2008;70(19):1691–8.; Delgado M.R., Hirtz D., Aisen M. et al. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2010;74(4):336–43.; Hoare B.J., Wallen M.A., Imms C. et al. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). Cochrane Database Syst Rev 2010; (1):CD003469.; Sakzewski L., Ziviani J., Boyd R. Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics 2009;123(6):1111–22.; Артеменко А.Р., Куренков А.Л. Ботулинический токсин: вчера, сегодня, завтра. Нервно-мышечные болезни 2013;2:6–18.; Dressler D. Clinical applications of botulinum toxin. Curr Opin Microbiol 2012;15(3):325–36.; Burgen A., Dickens F., Zatman L.J. The action of botulinum toxin on the neuromusculat junction. J Phisiol 1949;109:10–24.; Grissom J.R. Chemical denervation. In book: Electrodiagnostic medicine, 2nd edition (Eds. D. Dumitru, M.J. Zwarts, A.A. Amato). Philadelphia: Hanley & Belfus, Inc., 2002. P. 479–512.; Куренков А.Л., Артеменко А.Р., Никитин С.С., Орлова О.Р. Современные представления о механизмах действия ботулинического токсина типа А. Врач 2009;7:8–12.; Giladi N. The mechanism of action of botulinum toxin type A in focal dystonia is most probably through its dual effect on efferent (motor) and afferent pathways at the injected site. J Neurol Sci 1997;152: 132–5.; Dressler D., Saberi F.A., Barbosa E.R. Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr 2005;63:180–5.; Aoki K.R. Evidence for antinociceptive activity of botulinum toxin type A in pain management. Headache 2003;43 (Suppl. 1): 9–15.; Aoki K.R. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology 2005;26 (5):785–93.; Durham P.L., Cady R. Insights into the mechanism of onabotulinumtoxinA in chronic migraine. Headache 2011;51 (10):1573–7.; Gazerani P., Pedersen N.S., Staahl C. et al. Subcutaneous Botulinum toxin type A reduces capsaicin-induced trigeminal pain and vasomotor reactions in human skin. Pain 2009;141(1–2):60–9.; Dolly J.O., O’Connell M.A. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr Opin Pharmacol 2012;12:100–8.; Sutherland D.H., Kaufman K.R., Wyatt M.P. et al. Double-blind study of botulinum toxin injections into the gastrocnemius muscle in patients with cerebral palsy. Gait and Posture 1999;10:1–9.; Koman L.A., Mooney J.F. 3rd, Smith B.P. et al. Botulinum toxin type A neuromuscular blockade in the treatment of lower extremity spasticity in cerebral palsy: a randomized, double-blind, placebo-controlled trial. BOTOX Study Group. J Pediatr Orthop 2000;20(1):108–15.; Love S.C., Valentine J.P., Blair E.M. et al. The effect of botulinum toxin type A on the functional ability of the child with spastic hemiplegia a randomized controlled trial. Eur J Neurol 2001;8 (Suppl 5): 50–8.; Corry I.S., Cosgrove A.P., Duffy C.M. et al. Botulinum toxin A compared with stretching casts in the treatment of spastic equinus: a randomised prospective trial. J Pediatr Orthop 1998;18(3): 304–11.; Kirschner J., Berweck S., Mall V. et al. Botulinum toxin treatment in cerebral palsy: evidence for a new treatment option. J Neurol 2001;248(Suppl 1):28–30.; Koman L.A., Paterson Smith B., Balkrishnan R. Spasticity associated with cerebral palsy in children: guidelines for the use of botulinum A toxin. Paediatr Drugs 2003;5(1):11–23.; Naumann M., Albanese A., Heinen F. Safety and efficacy of botulinum toxin type A following long-term use. Eur J Neurol 2006;13 (Suppl 4):35–40.; Howell K., Selber P., Graham H.K., Reddihough D. Botulinum neurotoxin A: an unusual systemic effect. J Paediatr Child Health 2007;43(6):499–501.; Crowner B.E., Brunstrom J.E., Racette B.A. Iatrogenic botulism due to therapeutic botulinum toxin a injection in a pediatric patient. Clin Neuropharmacol 2007;30(5):310–3.; Sätilä H.K., Pietikäinen T., Lehtonen-Räty P. et al. Treatment of spastic equinus gait with botulinum toxin A: Does dose matter? Analysis of a clinical cohort. Neuropediatrics 2006;37(6):344–9.; Willis A.W., Crowner B., Brunstrom J.E. et al. High dose botulinum toxin A for the treatment of lower extremity hypertonicity in children with cerebral palsy. Dev Med Child Neurol 2007;49(11):818–22.; Molenaers G., Schörkhuber V., Fagard K. et al. Long-term use of botulinum toxin type A in children with cerebral palsy: treatment consistency. Eur J Paediatr Neurol 2009;13(5): 421–9.; Инструкция по применению лекарственного препарата для лекарственного применения Ботокс 100 ЕД. Регистрационный номер: П №011936/01, 2013.; https://nmb.abvpress.ru/jour/article/view/27

  3. 3
  4. 4