Showing 1 - 20 results of 138 for search '"СООСАЖДЕНИЕ"', query time: 0.94s Refine Results
  1. 1
    Academic Journal

    Contributors: The author thanks Charles Banks from the Stowers Institute for Medical Research for assistance in protocol development. The work was supported by the Russian Foundation for Basic Research (project Nos. 05-04-89005-NWО and 14-04-00816). The equipment was provided by the Common Use Center “Biotechnology” of the All-Russian Research Institute of Agricultural Biotechnology (project No. RFMEFI62114X0003).

    Source: Vavilov Journal of Genetics and Breeding; Том 28, № 1 (2024); 74-79 ; Вавиловский журнал генетики и селекции; Том 28, № 1 (2024); 74-79 ; 2500-3259 ; 10.18699/vjgb-24-01

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4057/1808; Banks C.A.S., Boanca G., Lee Z.T., Eubanks C.G., Hattem G.L., PeakA., Weems L.E., Conkright J.J., Florens L., Washburn M.P. TNIP2 is a hub protein in the NF-κB network with both protein and RNA mediated interactions. Mol. Cell. Proteomics. 2016;15(11):3435-3449. DOI 10.1074/mcp.M116.060509; Brooks S.A., Rigby W.F.C. Characterization of the mRNA ligands bound by the RNA binding protein hnRNP A2 utilizing a novel in vivo technique. Nucleic Acids Res. 2000;28(10):e49. DOI 10.1093/nar/28.10.e49; Frydrych Capelari É., da Fonseca G.C., Guzman F., Margis R. Circular and micro RNAs from Arabidopsis thaliana flowers are simultaneously isolated from AGO-IP libraries. Plants. 2019;8(9):302. DOI 10.3390/plants8090302; Gu J., Wang M., Yang Y., Qiu D., Zhang Y., Ma J., Zhou Y., Hannon G.J., Yu Y. GoldCLIP: gel-omitted ligation-dependent CLIP. Genom. Proteom. Bioinform. 2018;16(2):136-143. DOI 10.1016/j.gpb.2018.04.003; Köster T., Meyer K. Plant ribonomics: proteins in search of RNA partners. Trends Plant Sci. 2018;23(4):352-365. DOI 10.1016/j.tplants.2018.01.004; Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. DOI 10.1038/227680a0; Li X., Pritykin Y., Concepcion C.P., Lu Y., La Rocca G., Zhang M., King B., Cook P.J., Au Y.W., Popow O., Paulo J.A. Otis H.J., Mastroleo C., Ogrodowski P., Schreiner R., Haigis K.M., Betel D., Leslie C.S., Ventura A. High-resolution in vivo identification of miRNA targets by Halo-enhanced Ago2 pull-down. Mol. Cell. 2020; 79(1):167-179. DOI 10.1016/j.molcel.2020.05.009; Los G.V., Encell L.P., McDougall M.G., Hartzell D.D., Karassina N., Zimprich C., Wood M.G., Learish R., Ohana R.F., Urh M., Simpson D., Mendez J., Zimmerman K., Otto P., Vidugiris G., Zhu J., Darzins A., Klaubert D.H., Bulleit R.F., Wood K.V. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 2008;3(6):373-382. DOI 10.1021/cb800025k; Petri R., Jakobsson J. Identifying miRNA targets using AGO-RIPseq. In: Lamandé S. (Ed.) mRNA Decay. Methods in Molecular Biology. Vol. 1720. New York: Humana Press, 2018;131-140. DOI 10.1007/978-1-4939-7540-2_9; Ramanathan M., Porter D.F., Khavari P.A. Methods to study RNA-protein interactions. Nat. Methods. 2019;16(3):225-234. DOI 10.1038/s41592-019-0330-1; Ren Z., Zhang D., Cao L., Zhang W., Zheng H., Liu Z., Han S., Dong Y., Zhu F., Liu H., Su H., Chen Y., Wu L., Zhu Y., Ku L. Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress. Plant Cell Environ. 2020;43(9):2272-2286. DOI 10.1111/pce.13829; Samanta S., Thakur J.K. Characterization of mediator complex and its associated proteins from rice. In: Kaufmann K., Mueller-Roeber B. (Eds.) Plant Gene Regulatory Networks. Methods in Molecular Biology. Vol. 1629. New York: Humana Press, 2017;123-140. DOI 10.1007/978-1-4939-7125-1_9; Seo J.S., Chua N.H. Analysis of interaction between long noncoding RNAs and protein by RNA immunoprecipitation in Arabidopsis. In: Chekanova J.A., Wang H.-L.V. (Eds.) Plant Long Non-Coding RNAs. Methods in Molecular Biology. Vol. 1933. New York: Humana Press, 2019;289-295. DOI 10.1007/978-1-4939-9045-0_18; Sorenson R., Bailey-Serres J. Rapid immunopurification of ribonucleoprotein complexes of plants. In: Alonso J., Stepanova A. (Eds.) Plant Functional Genomics. Methods in Molecular Biology. Vol. 1284. New York: Humana Press, 2015;209-219. DOI 10.1007/978-1-4939-2444-8_10; Steffen A., Elgner M., Staiger D. Regulation of flowering time by the RNA-binding proteins AtGRP7 and AtGRP8. Plant Cell Physiol. 2019;60(9):2040-2050. DOI 10.1093/pcp/pcz124; Taranov V.V., Zlobin N.E., Evlakov K.I., Shamustakimova A.O., Babakov A.V. Contribution of Eutrema salsugineum cold shock domain structure to the interaction with RNA. Biochemistry (Moscow). 2018;83(11):1369-1379. DOI 10.1134/S000629791811007X; Urh M., Hartzell D., Mendez J., Klaubert D.H., Wood K. Methods for detection of protein–protein and protein–DNA interactions using HaloTagl™. In: Zachariou M. (Ed.) Affinity Chromatography. Methods in Molecular Biology. Vol. 421. New York: Humana Press, 2008;191-210. DOI 10.1007/978-1-59745-582-4_13; van Dijk M., Visser A., Buabeng K.M., Poutsma A., van der Schors R.C., Oudejans C.B. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation. Hum. Mol. Genet. 2015; 24(19):5475-5485. DOI 10.1093/hmg/ddv274; Xing D., Wang Y., Hamilton M., Ben-Hur A., Reddy A.S. Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell. 2015;27(12):3294-3308. DOI 10.1105/tpc.15.00641; https://vavilov.elpub.ru/jour/article/view/4057

  2. 2
    Academic Journal

    Source: Journal of the Russian Universities. Radioelectronics; Том 27, № 2 (2024); 105-118 ; Известия высших учебных заведений России. Радиоэлектроника; Том 27, № 2 (2024); 105-118 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/869/767; Deep-Level Emission Tailoring in ZnO Nanostructures Grown via Hydrothermal Synthesis / S. A. Kadinskaya, V. M. Kondratev, I. K. Kindyushov, O. Yu. Koval, D. I. Yakubovsky, A. Kusnetsov, A. I. Lihachev, A. V. Nashchekin, I. Kh. Akopyan, A. Yu. Serov, M. E. Labzovskaya, S. V. Mikushev, B. V. Novikov, I. V. Shtrom, A. D. Bolshakov // Nanomaterials. 2023. Vol. 13. P. 58. doi:10.3390/nano13010058; Amorphous Films of Ternary Zinc and Tin Oxides for Transparent Electronics / S. I. Rembeza, S. A. Belousov, N. N. Kosheleva, E. S. Rembeza, T. V. Svistova, E. Suvaci, E. Ozel, G. Tuncolu, C. Aciksari // Technical Physics Letters. 2018. Vol. 44, № 11. P. 984–987. doi:10.1134/S1063785018110147; Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors / T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. A. Golberg // Sensors. 2009. Vol. 9. P. 6504–6529. doi:10.3390/s90806504; Metal Oxide Gas Sensors: Sensitivity and Influencing Factors / C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao // Sensors. 2010. Vol. 10, iss. 3. P. 2088–2106. doi:10.3390/s100302088; Coral-like ZnFe2O4–ZnO mesoporous heterojunction architectures: synthesis and enhanced sensing properties for triethylamine / T. Yang, X. Yang, M. Zhu, H. Zhao, M. Zhang // Inorganic Chemistry Frontiers. 2020. Vol. 7, iss. 9. P. 1918–1926. doi:10.1039/d0qi00134a; Inverted Configuration of Cu(In,Ga)S2/In2S3 on 3D-ZnO/ZnSnO3 Bilayer System for Highly Efficient Photoelectrochemical Water Splitting / C. T. Altaf, N. S. Sahsuvar, N. Abdullayeva, O. Coskun, A. Kumtepe, E. Karagoz, M. Sankir, N. D. Sankir // ACS Sustainable Chemistry and Engineering. 2020. Vol. 8, iss. 40. P. 15209–15222. doi:10.1021/acssuschemeng.0c04846; Preparation and Photovoltaic Evaluation of CuO@Zn(Al)O-Mixed Metal Oxides for Dye Sensitized Solar Cell / M. B. A. Bashir, A. H. Rajpar, E. Y. Salih, E. M. Ahmed // Nanomaterials. 2023. Vol. 13, iss. 5. P. 802. doi:10.3390/nano13050802; Solar Cells Based on Complex Oxides / S. S. Kozlov, L. L. Larina, A. B. Nikolskaia, O. V. Almjasheva, O. V. Proskurina, O. I. Shevaleevskiy // Technical Physics Letters. 2021. Vol. 47. P. 283–286. doi:10.1134/S1063785021030226; Highly dispersed Fe–Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde / J. Fan, X. Niu, W. Teng, P. Zhang, W.-X. Zhang, D. Zhao // J. of Materials Chemistry A. 2020. Vol. 8, iss. 33. P. 17174–17184. doi: 1039/D0TA05473A; Ni–Fe–Al mixed oxide for combined dry reforming and decomposition of methane with CO2 utilization / Y. Kim, H. S. Lim, M. Lee, J. W. Lee // Catalysis Today. 2021. Vol. 368. P. 86–95. doi:10.1016/ j.cattod.2020.02.030; Ce–Fe–Mn ternary mixed-oxide catalysts for catalytic decomposition of ozone at ambient temperatures / X. Chen, Z. Zhao, S. Liu, J. Huang, J. Xie, Y. Zhou, Z. Pan, H. Lu // J. of Rare Earths. 2020. Vol. 38. P. 175–181. doi:10.1016/j.jre.2019.01.010; MgFe and Mg–Co–Fe mixed oxides derived from hydrotalcites: Highly efficient catalysts for COx free hydrogen production from NH3 / S. Podila, H. Driss, S. F. Zaman, A. M. Ali, A. A. Al-Zahrani, M. A. Daous, L. A. Petrov// Intern. J. of Hydrogen Energy. 2020. Vol. 45, iss. 1. P. 873–890. doi:10.1016/j.ijhydene.2019.10.107; Facile synthesis and characterization of novel Gd2O3–CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar illumination / A. M. Abu-Dief, A. A. Essawy, A. K. Diab, W. S. Mohamed // J. of Physics and Chemistry of Solids. 2021. Vol. 148. P. 109666. doi:10.1016/j.jpcs.2020.109666; Multi metal oxide NiO–CdO–ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity / T. Munawar, F. Iqbal, S. Yasmeen, K. Mahmood, A. Hussain // Ceramics International. 2020. Vol. 46, iss. 2. P. 2421–2437. doi:10.1016/j.ceramint.2019.09.236; Nanocomposite Co3O4–ZnO Thin Films for Photoconductivity Sensors / V. V. Petrov, V. V. Sysoev, I. O. Ignatieva, I. A. Gulyaeva, M. G. Volkova, A. P. Ivanishcheva, S. A. Khubezhov, Y. N. Varzarev, E. M. Bayan // Sensors. 2023. Vol. 23, № 12. P. 5617. doi:10.3390/s23125617; Nalimova S. S., Kondratev V. M. Study of Surface Acid-Base Properties of Gas-Sensitive Metal Oxides // 2020 IEEE Conf. of Russ. Young Researchers in Electrical and Electronic Engineering (EIConRus), St Petersburg and Moscow, Russia, 27–30 Jan. 2020. IEEE, 2020. P. 987–990. doi:10.1109/EIConRus49466.2020.9039264; Study of sensor properties of zinc oxide based nanostructures / S. S. Nalimova, V. M. Kondratev, A. A. Ryabko, A. I. Maksimov, V. A. Moshnikov // J. of Physics: Conf. Series. 2020. Vol. 1658. P. 012033. doi:10.1088/1742-6596/1658/1/012033; Gopel W. Chemisorption and charge transfer at ionic semiconductor surfaces: Implications in designing gas sensors // Progress in Surface Science. 1985. Vol. 20. P. 9–103. doi:10.1016/0079-6816(85)90004-8; Surface oxygen vacancies enriched FeOOH/Bi2MoO6 photocatalysisfenton synergy degradation of organic pollutants / J. Hu, J. Li, J. Cui, W. An, L. Liu, Y. Liang, W. Cui // J. of Hazardous Materials. 2020. Vol. 384. P. 121399. doi:10.1016/j.jhazmat.2019.121399; Structural, morphological and sensor properties of the fractal percolation nanosystem ZnO/NiO / A. Kornyushchenko, Y. Kosminska, S. Stas, G. Wilde, V. Perekrestov // J. of Electronic Materials. 2021. Vol. 50. P. 2268–2276. doi:10.1007/s11664-021-08749-3; Sol-Gel-Prepared Ni–Mo–Mg–O System for Catalytic Transformation of Chlorinated Organic Wastes into Nanostructured Carbon / G. B. Veselov, T. M. Karnaukhov, Y. I. Bauman, I. V. Mishakov, A. A. Vedyagin // Materials. 2020. Vol. 13, iss. 19. P. 4404. doi:10.3390/ma13194404; Иванов К. В., Плотвина А. В., Агафонов А. В. Влияние Fe3O4 на физико-химические и фотокаталитические свойства наноразмерного титаната бария // Журн. неорганической химии. 2023. Т. 68, № 1. С. 133–144. doi:10.31857/S0044457X22601134; Hierarchical nanostructured semiconductor porous materials for gas sensors / V. A. Moshnikov, I. E. Gracheva, V. V. Kuznezov, A. I. Maximov, S. S. Karpova, A. A. Ponomareva // J. of NonCrystalline Solids. 2010. Vol. 356. P. 2020–2025. doi:10.1016/j.jnoncrysol.2010.06.030; Hydrothermally synthesized UV light active zinc stannate:tin oxide (ZTO:SnO2) nanocomposite photocatalysts for photocatalytic applications / E. Keles, M. Yildirim, T. Ozturk, O. A. Yildirim // Materials Science in Semiconductor Processing. 2020. Vol. 110. P. 104959. doi:10.1016/j.mssp.2020.104959; Бачина А. К., Альмяшева О. В., Попков В. И. Формирование ZrTiO4 в гидротермальных условиях // Журн. неорганической химии. 2022. Т. 67, № 6. С. 761–769. doi:10.31857/S0044457X22060022; Shuklina A. I., Almjasheva O. V. Structure of Nanocomposites in the ZrO2–Y2O3–Al2O3 System and Their Formation under Hydrothermal Conditions // Russ. J. of Inorganic Chemistry. 2022. Vol. 67, № 6. P. 904–911. doi:10.1134/S0036023622060201; Nanocrystalline complex oxides NixCo3–xO4: Cations distribution impact on electrical and gas sensor behavior / S. A. Vladimirova, K. Ya. Prikhodko, M. N. Rumyantseva, E. A. Konstantinova, A. S. Chizhov, N. O. Khmelevsky, A. M. Gaskov // J. of Alloys and Compounds. 2020. Vol. 828. P. 154420. doi:10.1016/j.jallcom.2020.154420; Shams S., Sheibanizadeh Z., Khalaj Z. Ternary nanocomposite of ZnFe2O4/α-Fe2O3/ZnO; synthesis via coprecipitation method and physical properties characterization // Applied Physics A. 2021. Vol. 127. Art. num. 459. doi:10.1007/s00339-021-04607-5; Optimization Preparation of Indium Tin Oxide Nanoparticles via Microemulsion Method Using Orthogonal Experiment / Z. Jiang, T. Liu, X. Zhai, J. Liu // Crystals. 2021. Vol. 11, iss. 11. P. 1387. doi:10.3390/cryst11111387; Structural and Chemical Properties of ZnFe2O4 Nanoparticles Synthesised by Chemical Co-Precipitation Technique / D. D. Andhare, S. A. Jadhav, M. V. Khedkar, S. B. Somvanshi, S. D. More, K. M. Jadhav // J. of Physics: Conf. Series. 2020. Vol. 1644. P. 012014. doi:10.1088/1742-6596/1644/1/012014; Size-controlled synthesis of porous ZnSnO3 nanocubes for improving formaldehyde gas sensitivity / J. Zheng, H. Hou, H. Fu, L. Gao, H. Liu // ACS Advances. 2021. Vol. 11, iss. 33. P. 20268–20277. doi:10.1039/D1RA01852C; Choudhary S., Bisht A., Mohapatra S. Microwave-assisted synthesis of α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanostructures for photocatalytic applications // Ceramics Intern. 2021. Vol. 47. P. 3833–3841. doi:10.1016/j.ceramint.2020.09.243; An X-ray Photoelectron Spectroscopy Study of Zinc Stannate Layer Formation / S. S. Nalimova, Z. V. Shomakhov, V. A. Moshnikov, A. A. Bobkov, A. A. Ryabko, Z. Kh. Kalazhokov // Technical Physics. 2020. Vol. 65, № 7. P. 1087–1090. doi:10.1134/S1063784220070142; Газочувствительные композитные наноструктуры на основе оксида цинка для детектирования паров органических растворителей / С. С. Налимова, З. В. Шомахов, К. В. Герасимова, К. Н. Пунегова, А. М. Гукетлов, Р. М. Калмыков // Физикохимические аспекты изучения кластеров, наноструктур и наноматериалов. 2022. № 14. С. 678–687. doi:10.26456/pcascnn/2022.14.678; Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance / B. Palanivel, S. M. Perumal, T. Maiyalagan, V. Jayarman, C. Ayyappan, M. Alagiri // Applied Surface Science. 2019. Vol. 498. P. 143807. doi:10.1016/j.apsusc.2019.143807; Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials // Applied Surface Science. 2008. Vol. 254. P. 2441–2449. doi:10.1016/j.apsusc.2007.09.063; MOF-derived ZnFe2O4/(Fe–ZnO) nanocomposites with enhanced acetone sensing performance / E. Cao, Z. Guo, G. Song, Y. Zhang, W. Hao, L. Sun, Z. Nie // Sensors and Actuators B. 2020. Vol. 325. P. 128783. doi:10.1016/j.snb.2020.128783; A comparative study on the VOCs gas sensing properties of Zn2SnO4 nanoparticles, hollow cubes, and hollow octahedra towards exhaled breath analysis / N. H. Hanh, T. M. Ngoc, L. V. Duy, C. M. Hung, N. V. Duy, N. D. Hoa // Sensors and Actuators B. 2021. Vol. 343. P. 130147. doi:10.1016/j.snb.2021.130147; Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system / T. Suetens, M. Guo, K. Van Acker, B. Blanpain // J. of Hazardous Materials. 2015. Vol. 287. P. 180–187. doi:10.1016/j.jhazmat.2015.01.050; Changes in the Energy of Surface Adsorption Sites of ZnO Doped with Sn / Z. V. Shomakhov, S. S. Nalimova, V. M. Kondratev, A. I. Maksimov, A. A. Ryabko, V. A. Moshnikov, O. A. Molokanov // J. of Surface Investigation. 2023. Vol. 17, № 4. P. 898–902. doi:10.1134/S1027451023040316; Mandelbrot B. B., Given J. A. Physical Properties of a New Fractal Model of Percolation Clusters // Physical Review Letters. 1984. Vol. 52. P. 1853. doi:10.1103/PhysRevLett.52.1853; Moshnikov V. A., Nalimova S. S., Seleznev B. I. Gas-sensitive layers based on fractal-percolation structures // Semiconductors. 2014. Vol. 48. P. 1499–1503. doi:10.1134/S1063782614110177; https://re.eltech.ru/jour/article/view/869

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Известия Томского политехнического университета

    File Description: application/pdf

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20