Εμφανίζονται 1 - 20 Αποτελέσματα από 209 για την αναζήτηση '"СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ"', χρόνος αναζήτησης: 0,79δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Dissertation/ Thesis

    Συγγραφείς: Lopatin, I. S.

    Συνεισφορές: Запрудин, А. Г., Zaprudin, A. G., УрФУ. Институт строительства и архитектуры, Кафедра промышленного, гражданского строительства и экспертизы недвижимости

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: https://elar.urfu.ru/handle/10995/145462

  5. 5
    Academic Journal

    Συνεισφορές: Исследование выполнено за счет гранта Российского научного фонда № 24-29-00004

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 6 (2024); 59-79 ; Альтернативная энергетика и экология (ISJAEE); № 6 (2024); 59-79 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2432/1978; Renewables 2022 [Online]. Available: https://www.iea.org/reports/renewables-2022 [accessed 15 August 2023]; Renewable Energy Market Update – June 2023 [Online]. Available: https://www.iea.org/reports/renewable-energy-market-update-june-2023 [accessed 20 September 2023]; Solar (photovoltaic) panel prices: [Online]. URL: https://ourworldindata.org/grapher/solar-pvprices?time=earliest.latest [accessed 20 September 2023]; Suvorov A., Askarov A., Kievets A., Rudnik V. A comprehensive assessment of the stateof-the-art virtual synchronous generator models // Electric Power Systems Research, 2022, 209, 108054. https://doi.org/10.1016/j.epsr.2022.108054; Ruban N., Rudnik V., Askarov A., Maliuta B. Frequency control by the PV station in electric power systems with hydrogen energy storage // International Journal of Hydrogen Energy, 2023, 48(73), pp 28262-28276. https://doi.org/10.1016/j.ijhydene.2023.04.048; Ilyushin P., Filippov S., Kulikov A., Suslov K., Karamov D. Specific Features of Operation of Distributed Generation Facilities Based on Gas Reciprocating Units in Internal Power Systems of Industrial Entities // Machines, 2022, 10, 693. https://doi.org/10.3390/machines10080693.; Suvorov A., Askarov A., Bay Y., Ufa R. Freely Customized virtual generator model for grid-forming converter with hydrogen energy storage // International Journal of Hydrogen Energy, 2022, 47(82), pp. 34739-34761. https://doi.org/10.1016/j.ijhydene.2022.08.119.; Al-Ghussain L. Ahmad A. D., Abubaker A. M., Hassan M. A. Exploring the feasibility of green hydrogen production using excess energy from a country-scale 100 % solar-wind renewable energy system. International Journal of Hydrogen Energy, 2022, 47, pp. 21613-21633. https://doi.org/10.1016/j.ijhydene.2022.04.289; Şevik S. Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus. International Journal of Hydrogen Energy, 47 (2022), pp. 23935-23956. https://doi.org/10.1016/j.ijhydene.2022.05.193; Huang S.H, et al. Voltage control challenges on weak grids with high penetration of wind generation: ERCOT experience // IEEE PES General Meeting, San Diego. – CA, 2012, pp. 1-7. https://doi.org/10.1109/PESGM.2012.6344713; Ramasubramanian D, et al. Positive Sequence Voltage Source Converter Mathematical Model for Use in Low Short Circuit Systems // IET Generation Transmission and Distribution, 2020, 14, pp. 87-97. https://doi.org/10.1049/iet-gtd.2019.0346; Cheng Y, et al. Real-World Subsynchronous Oscillation Events in Power Grids With High Penetrations of Inverter-Based Resources. IEEE Transactions on Power Systems, 2023, 38(1), pp. 316-330. https://doi.org/10.1109/TPWRS.2022.3161418; Yazdani A., Iravani R. Voltage-Sourced Converters in Power Systems // Hoboken, NJ, USA: Wiley. – 2010.; Teodorescu R., Liserre M., Rodriguez P. Grid Converters For Photovoltaic and Wind Power Systems // Hoboken, NJ, USA: Wiley. – 2011.; Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies, IEEE Power and Energy Society, Tech. Rep. PESTR77, May 2020. [Online]. Available: https://resourcecenter.ieeepes.org/technical-publications/technicalreports/PES_TP_TR77_PSDP_stability_051320.html [accessed 14 September 2023]; Bialek J, et al. Benchmarking and Validation of Cascading Failure Analysis Tools // IEEE Transactions on Power Systems, 2016, 31(6), pp. 4887-4900. https://doi.org/10.1109/TPWRS.2016.2518660; Ramasubramanian D., Yu D., Ayyanar D. Vittal V., Undrill J. Converter Model for Representing Converter Interfaced Generation in Large Scale Grid Simulations // IEEE Transactions on Power Systems, 2017, 32(1), pp. 765-773. https://doi.org/10.1109/TPWRS.2016.2551223; IEEE Std 1204-1997. IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities. https://doi.org/10.1109/IEEESTD.1997.85949; Grid-Forming Inverter-Based Resources Workshop. October 13, 2021: [Online]. Available: https://www.esig.energy/event/wecc-esig-grid-forminginverter-based-resources-workshop/ [accessed 15 August 2023]; Liu H, et al Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks // IEEE Transactions on Power Systems, 2017, 32(6), PP. 4708-4720. https://doi.org/10.1109/TPWRS.2017.2682197; Wang C., Mishra C., Jones K. D., Vanfretti L. Identifying oscillations injected by inverterbased solar energy sources in dominion energy’s service territory using synchrophasor data and point-on-wave data. [Online]. Available: https://naspi.org/sites/default/files/2021-04/D1S1_02_wang_dominion_naspi_20210413.pdf [accessed 15 August 2023]; Wang C, et al. Identifying Oscillations Injected by Inverter-Based Solar Energy Sources // IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5. https://doi.org/10.48550/arXiv.2202.11579; Li Y. et al. A Multi-Rate Co-Simulation of Combined Phasor-Domain and Time-Domain Models for Large-Scale Wind Farms. IEEE Transactions on Energy Conversion, 2020, 35(1), рр. 324-335. https://doi.org/10.1109/TEC.2019.2936574; Ruban N. Y., et al. Software and Hardware Decision Support System for Operators of Electrical Power Systems // IEEE Transactions on Power Systems, 2021, 36(5), pp. 3840-3848. https://doi.org/10.1109/TPWRS.2021.3063511; Martino M. et al. Main hydrogen production processes: an overview. Catalysts, 2021, 11(5), p. 547. https://doi.org/10.3390/catal11050547; Leijiao Ge. et al. A review of hydrogen generation, storage, and applications in power system //journal of Energy Storage, 2024, 75, 109307, https://doi.org/10.1016/j.est.2023.109307; Diabate M., Vriend T., Krishnamoorthy H. S., Shi J. Hydrogen and Battery – Based Energy Storage System (ESS) for Future DC Microgrids // IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 2022, pp. 1-6. https://doi.org/10.1109/PEDES56012.2022.10080550; Wen T. et al. Research on Modeling and the Operation Strategy of a Hydrogen-Battery Hybrid Energy Storage System for Flexible Wind Farm GridConnection // in IEEE Access, 2020, 8, pp. 79347-79356. https://doi.org/10.1109/ACCESS.2020.2990581; Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications // International journal of hydrogen energy, 2013, 38 (5), 2039-2061. https://doi.org/10.1016/j.ijhydene.2012.12.010; Susan S., Keller J. Commercial potential for renewable hydrogen in California // International journal of hydrogen energy, 2017, 42(19), 13321-13328. https://doi.org/10.1016/j.ijhydene.2017.01.005; Ufa R. A., Rudnik V. E., Malkova Y. Y., Bay Y. D., Kosmynina N. M. Impact of renewable generation unit on stability of power systems // International Journal of Hydrogen Energy, 2022, 47(46), 19947-19954. https://doi.org/10.1016/j.ijhydene.2022.04.141; Ufa R. A., Vasilev A. S., Gusev A. L., Pankratov A. V., Malkova Y. Y., Gusev A. S. Analysis of the influence of the current-voltage characteristics of the voltage rectifiers on the static characteristics of hydrogen electrolyzer load // International Journal of Hydrogen Energy, 2021, 46(68), 33670-33678. https://doi.org/10.1016/j.ijhydene.2021.07.183; Makaryan I. A., Efimov O. N., Gusev A. L. State-of-market and perspectives on development of lithium-ion batteries // International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2013, 06/1(127), 100-115.; Shi Z., Wang W., Huang Y., Li P., Dong L. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control // CSEE Journal of Power and Energy Systems, 2022, 8(1), pp. 95-104. https://doi.org/10.17775/CSEEJPES.2019.01470; Xuewei S et al. Research on Energy Storage Configuration Method Based on Wind and Solar Volatility // 2020 10th International Conference on Power and Energy Systems (ICPES), Chengdu, China, 2020, pp. 464468. https://doi.org/10.1109/ICPES51309.2020.9349645; Li X. et al. Cooperative Dispatch of Distributed Energy Storage in Distribution Network With PV Generation Systems // IEEE Transactions on Applied Superconductivity, 2021, 31(8), pp. 1-4. https://doi.org/10.1109/TASC.2021.3117750; Liu X. et al. Microgrid Energy Management with Energy Storage Systems: A Review // CSEE Journal of Power and Energy Systems, 2023, 9(2), pp. 483-504. https://doi.org/10.17775/CSEEJPES.2022.04290; Naseri N. et al. Solar Photovoltaic Energy Storage as Hydrogen via PEM Fuel Cell for Later Conversion Back to Electricity // IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019, pp. 4549-4554, doi: https://doi.org/10.1109/IECON.2019.8927094; Arsad A. Z. et al. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 2022, 47(39), PP. 17285-17312 0360, https://doi.org/10.1016/j.ijhydene.2022.03.208; Razzhivin I. A., Suvorov A. A., Ufa R. A., Andreev M. V., Askarov A. B. The energy storage mathematical models for simulation and comprehensive analysis of power system dynamics: A review. Part II // International Journal of Hydrogen Energy, 2023, 48(15), рр. 6034-6055, https://doi.org/10.1016/j.ijhydene.2022.11.102; Arsad A. Z. et al. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 2022, 47(39), 2022, рр. 17285-17312, https://doi.org/10.1016/j.ijhydene.2022.03.208; Diaz I. U., de Queiróz Lamas, W., Lotero R. C. Development of an optimization model for the feasibility analysis of hydrogen application as energy storage system in microgrids // International Journal of Hydrogen Energy, 2023, 48 (43), рр. 16159-16175, https://doi.org/10.1016/j.ijhydene.2023.01.128; Tawalbeh M., Farooq A., Martis R., AlOthman A. Optimization techniques for electrochemical devices for hydrogen production and energy storage applications // International Journal of Hydrogen Energy, 2023, https://doi.org/10.1016/j.ijhydene.2023.06.264; S. Fukaume, Y. Nagasaki, M. Tsuda. Stable power supply of an independent power source for a remote island using a Hybrid Energy Storage System composed of electric and hydrogen energy storage systems // International Journal of Hydrogen Energy, 2022, 47 (29), рр. 13887-13899, https://doi.org/10.1016/j.ijhydene.2022.02.142; N. Shamarova, K.Suslov, P. Ilyushin, I. Shushpanov. Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation // Energies 2022, 15, 6967. https://doi.org/10.3390/en15196967; Zhang Z. et. Continuous operation in an electric and hydrogen hybrid energy storage system for renewable power generation and autonomous emergency power supply // International Journal of Hydrogen Energy, 2019, 44 (41), рр. 23384-23395, https://doi.org/10.1016/j.ijhydene.2019.07.028; Armghan H., Xu Y., Sun H., Ali N., Liu J. Event-triggered multi-time scale control and low carbon operation for electric-hydrogen DC microgrid // Applied Energy, 2024, Volume 355, https://doi.org/10.1016/j.apenergy.2023.122149; WECC REMTF. Solar Photovoltaic Power Plant Modeling and Validation Guideline MVWG. [Электронный ресурс]. URL: https://www.wecc.org/Reliability/Solar%20PV%20Plant%20Modeling%20and%20Validation%20Guidline.pdf (дата обращения: 10.02.2023); Clark K., Miller N. W., Walling R. Modeling of GE Solar Photovoltaic Plants for Grid Studies. General Electr. Int. Rep. Ver. 1.1. 2010.; Pourbeik P. et al. Generic Dynamic Models for Modeling Wind Power Plants and Other Renewable Technologies in Large-Scale Power System Studies // IEEE Transactions on Energy Conversion, 2017, 32(3), 2017, pp. 1108-1116, https://doi.org/10.1109/PESGM.2018.8585944; Machlev R. et al. Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks // Energies, 2020, 13, https://doi.org/3191.10.3390/en13123191; Xu X. K., Bishop M., Oikarinen D. G., Hao C. Application and modeling of battery energy storage in power systems // CSEE Journal of Power and Energy Systems, 2016, 2(3), pp. 82-90, https://doi.org/10.17775/CSEEJPES.2016.00039.; Ruban N., Rudnik V., Razzhivin I., Kievec A. A hybrid model of photovoltaic power stations for model ling tasks of large power systems. EEA Electrotehnica, Electronica, Automatica, 2021, 69, pp. 43-49, https://doi. org/10.46904/eea.21.69.4.1108005; Ufa R., Vasiliev A., Ruban N., Rudnik V. Hybrid real-time simulator for setting of automatic secondary frequency and active power control // EEA Electrotehnica, Electronica, Automatica, 2020, 68(2), pp. 41-48.; Sun Yin et al. The Impact of PLL Dynamics on the Low Inertia Power Grid: A Case Study of Bonaire Island Power System // Power Electronics in Renewable Energy Systems, 2019, 12(7). https://doi.org/10.3390/en12071259; Huang L., Xin H., Wang Z. Damping LowFrequency Oscillations Through VSC-HVdc Stations Operated as Virtual Synchronous Machine. IEEE Transactions on Power Electronics, 2019, 34(6), pp. 5803-5818, https://doi.org/10.1109/TPEL.2018.2866523; Mohammadpour H. A., Santi E. SSR Damping Controller Design and Optimal Placement in Rotor-Side and Grid-Side Converters of Series-Compensated DFIGBased Wind Farm // IEEE Transactions on Sustainable Energy, 2015, 6(2), pp. 388-399, https://doi.org/10.1109/TSTE.2014.2380782; Wang X. et al. An Active Damper for Stabilizing Power-Electronics-Based AC Systems // IEEE Transactions on Power Electronics, 2014, 29(7), pp. 3318-3329, https://doi.org/10.1109/APEC.2013.6520441; Alawasa K. M., Mohamed Y. A. -R. I. A Simple Approach to Damp SSR in Series-Compensated Systems via Reshaping the Output Admittance of a Nearby VSC-Based System // IEEE Transactions on Industrial Electronics, 2015, 62(5), pp. 2673-2682. https://doi.org/10.1109/TIE.2014.2363622; https://www.isjaee.com/jour/article/view/2432

  6. 6
  7. 7
  8. 8
    Academic Journal

    Πηγή: Вісник Приазовського Державного Технічного Університету. Серія: Технічні науки; № 40 (2020): Вісник ПДТУ. Серія: Технічні науки; 126-140
    Вестник Приазовского государственного технического университета. Серия: Технические науки; № 40 (2020): Вестник ПГТУ. Серия: Технические науки; 126-140
    Reporter of the Priazovskyi State Technical University. Section: Technical sciences; № 40 (2020): Reporter of the Priazovskyi State Technical University. Section: Technical sciences; 126-140

    Περιγραφή αρχείου: application/pdf

  9. 9
  10. 10
    Dissertation/ Thesis

    Συγγραφείς: Matytsin, A. S.

    Συνεισφορές: Борисов, В. И., Borisov, V. I., УрФУ. Институт радиоэлектроники и информационных технологий-РТФ, Кафедра информационных технологий и систем управления

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/140522

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Πηγή: Informatics; Том 20, № 2 (2023); 96-110 ; Информатика; Том 20, № 2 (2023); 96-110 ; 2617-6963 ; 1816-0301

    Περιγραφή αρχείου: application/pdf

    Relation: https://inf.grid.by/jour/article/view/1231/1055; Dorin, P. Modelling and simulation of photovoltaic cells / P. Dorin, C. Farcas, I. Ciocan // ACTA Technica Napocensis. – 2008. – Vol. 49, no. 1. – Р. 42–47.; Modeling and simulation of energy recovery from a photovoltaic solar cell / Adeniyi O. D. [et al.] // Nigerian J. of Technological Research. – 2016. – Vol. 11. – Р. 26–31.; MATLAB/Simulink based modelling of solar photovoltaic cell / T. Salmi [et al.] // Intern. J. of Renewable Energy Research. – 2012. – Vol. 2, no. 2. – Р. 213–218.; Tina, G. Monitoring and diagnostics of photovoltaic power plants / G. Tina, F. Cosentino, C. Ventura // Renewable Energy in the Service of Mankind / ed. A. Sayigh. – Springer, Cham, 2016. – Vol. 2. – Р. 505–516.; Ibbini, M. Analysis and design of a maximum power point tracker for a stand-alone photo voltaic system using simscape / M. Ibbini, A. Adawi // Intern. J. of Advanced Trends in Computer Science and Engineering. – 2019. – Vol. 8, no. 1. – Р. 54–57.; Rashid, Md. M. Design and construction of the solar photovoltaic simulation system with the implementation of MPPT and boost converter using Matlab/Simulink / Md. M. Rashid, A. Habib, M. Mahdi Hasan // Asian J. of Current Research. – 2018. – Vol. 3, no. 1. – Р. 27–36.; Flatness-based control for the maximum power point tracking in a photovoltaic system / G.-A. Leopoldo [et al.] // Energies. – 2019. – Vol. 12. – P. 1843–1862. https://doi.org/10.3390/en12101843; Modeling of PV module with consideration of environmental factors / N. Kishor [et al.] // 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), Gothenburg, Sweden, 11–13 Oct. 2010. – Gothenburg, 2010. – Р. 121–126.; Simulation of PV array output power for modified PV cell model / N. Kishor [et al.] // 2010 IEEE Intern. Conf. on Power and Energy, Kuala Lumpur, Malaysia, 29 Nov. – 01 Dec. 2010. – Kuala Lumpur, 2010. – Р. 533–538.; Steady-state model and power flow analysis of grid-connected photovoltaic power system / Y. Wang [et al.] // 2008 IEEE Intern. Conf. on Industrial Technology, Chengdu, China, 21–24 Apr. 2008. – Chengdu, 2008. – Р. 1–6.; Virtual laboratory for testing of solar power plants in big data analysis / R. M. Asimov [et al.] // Collection of Materials of the V Intern. Scientific and Practical Conf. "Big Data and Advanced Analytics", Minsk, 13–14 Mar. 2019. – Minsk, 2019. – Р. 61–65.; Asipovich, V. S. Digital twin in the analysis of a big data / V. S. Asipovich, R. M. Asimov, S. V. Chernoshey // Collection of Materials of the IV Intern. Scientific and Practical Conf. "Big Data and Advanced Analytics", Minsk, 3–4 May 2018. – Minsk, 2018. – Р. 69–78.; Digital twin for PV module fault detection / S. Valevich [et al.] // J. of Engineering Science. – 2020. – Vol. XXVII, no. 4. – Р. 80–87.; Digital twin for PV plant’s power generation analysis / R. M. Asimov [et al.] // Collection of Materials of the VI Intern. Scientific and Practical Conf. "Big Data and Advanced Analytics", Minsk, 20–21 May 2020. – Minsk, 2020. – Р. 78–88.; Информационное обеспечение мониторинга технического состояния солнечных электростанций / С. В. Валевич [и др.] // Информационные технологии. – 2020. – Т. 26, № 10. – С. 594–601.; https://inf.grid.by/jour/article/view/1231

  19. 19
  20. 20