-
1Academic Journal
Authors: S. A. Kryzhanovskii, G. V. Mokrov, I. B. Tsorin, E. O. Ionova, M. B. Vititnova, V. N. Stolyaruk, I. A. Miroshkina, A. V. Sorokina, A. D. Durnev, С. А. Крыжановский, Г. В. Мокров, И. Б. Цорин, Е. О. Ионова, М. Б. Вититнова, В. Н. Столярук, И. А. Мирошкина, А. В. Сорокина, А. Д. Дурнев
Source: Pharmacokinetics and Pharmacodynamics; № 4 (2024); 39-48 ; Фармакокинетика и Фармакодинамика; № 4 (2024); 39-48 ; 2686-8830 ; 2587-7836
Subject Terms: крысы, Epac protein antagonists, compound ZMEI-3, cardiac arrhythmias, alcoholic cardiomyopathy, myocardial contractility, rats, антагонисты белков Ерас, соединение ZMEI-3, нарушения ритма сердца, алкогольная кардиомиопатия, сократимость миокарда
File Description: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/437/389; Walsh DA, Perkins JP, Krebs EG. An adenosine 3',5'-monophosphatedependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968 Jul 10; 243(13):3763-5.; Renström E, Eliasson L, Rorsman P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol. 1997 Jul 1;502 (Pt 1)(Pt 1):105-18. doi:10.1111/j.1469-7793.1997.105bl.x.; Anciaux K, Van Dommelen K, Nicolai S, et al. Cyclic AMP-mediated induction of the glial fibrillary acidic protein is independent of protein kinase A activation in rat C6 glioma. J Neurosci Res. 1997 May 15;48(4):324-33.; de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guaninenucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998 Dec 3;396(6710):474-7. doi:10.1038/24884.; Banerjee U, Cheng X. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: Structure, function and therapeutics. Gene. 2015 Oct 10;570(2):157-67. doi:10.1016/j.gene.2015.06.063.; Aronoff DM, Canetti C, Serezani CH, et al. Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol. 2005 Jan 15; 174(2):595-9. doi:10.4049/jimmunol.174.2.595.; Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai). 2008 Jul;40(7):651-62. doi:10.1111/j.1745-7270.2008.00438.x.; Muñoz-Llancao P, Henríquez DR, Wilson C, et al. Exchange Protein Directly Activated by cAMP (EPAC) Regulates Neuronal Polarization through Rap1B. J Neurosci. 2015 Aug 12;35(32):11315-29. doi:10.1523/JNEUROSCI.3645-14.2015.; Lin HB, Cadete VJ, Sra B, et al. Inhibition of MMP-2 expression with siRNA increases baseline cardiomyocyte contractility and protects against simulated ischemic reperfusion injury. Biomed Res Int. 2014;2014:810371. doi:10.1155/2014/810371.; Gong W, Ma Y, Li A, Shi H, Nie S. Trimetazidine suppresses oxidative stress, inhibits MMP-2 and MMP-9 expression, and prevents cardiac rupture in mice with myocardial infarction. Cardiovasc Ther. 2018 Oct;36(5):e12460. doi:10.1111/1755-5922.12460.; Dai ZL, Song YF, Tian Y, et al. Trimetazidine offers myocardial protection in elderly coronary artery disease patients undergoing non-cardiac surgery: a randomized, double-blind, placebo-controlled trial. BMC Cardiovasc Disord. 2021 Oct 1;21(1):473. doi:10.1186/s12872-021-02287-w.; Lee LC, Maurice DH, Baillie GS. Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Med Chem. 2013 Mar;5(4):451-64. doi:10.4155/fmc.12.216.; Belacel-Ouari M, Zhang L, Hubert F, et al. Influence of cell confluence on the cAMP signalling pathway in vascular smooth muscle cells. Cell Signal. 2017 Jul;35:118-128. doi:10.1016/j.cellsig.2017.03.025.; Pereira L, Rehmann H, Lao DH, et al. Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3991-6. doi:10.1073/pnas.1416163112.; Ulucan C, Wang X, Baljinnyam E, et al. Developmental changes in gene expression of Epac and its upregulation in myocardial hypertrophy. Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1662-72. doi:10.1152/ajpheart.00159.2007.; Cazorla O, Lucas A, Poirier F, et al. The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14144-9. doi:10.1073/pnas.0812536106.; Pereira L, Ruiz-Hurtado G, Morel E, et al. Epac enhances excitationtranscription coupling in cardiac myocytes. J Mol Cell Cardiol. 2012 Jan;52(1):283-91. doi:10.1016/j.yjmcc.2011.10.016.; Wu XM, Ou QY, Zhao W, et al. The GLP-1 analogue liraglutide protects cardiomyocytes from high glucose-induced apoptosis by activating the Epac-1/Akt pathway. Exp Clin Endocrinol Diabetes. 2014 Nov;122(10):608-14. doi:10.1055/s-0034-1384584.; Fazal L, Laudette M, Paula-Gomes S, et al. Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circ Res. 2017 Feb 17;120(4):645-657. doi:10.1161/CIRCRESAHA.116.309859.; Métrich M, Lucas A, Gastineau M, et al. Epac mediates betaadrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res. 2008 Apr 25;102(8):959-65. doi:10.1161/CIRCRESAHA.107.164947.; Berthouze-Duquesnes M, Lucas A, Saulière A, et al. Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cell Signal. 2013 Apr;25(4):970-80. doi:10.1016/j.cellsig.2012.12.007.; Chen C, Du J, Feng W, et al. β-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCδ/p38 MAPK signalling in neonatal mouse cardiac fibroblasts. Br J Pharmacol. 2012 May;166(2):676-88. doi:10.1111/j.1476-5381.2011.01785.x.; Neef S, Heijman J, Otte K, et al. Chronic loss of inhibitor-1 diminishes cardiac RyR2 phosphorylation despite exaggerated CaMKII activity. Naunyn Schmiedebergs Arch Pharmacol. 2017 Aug;390(8):857-862. doi:10.1007/s00210-017-1376-1.; Lezcano N, Mariángelo JIE, Vittone L, et al. Early effects of Epac depend on the fine-tuning of the sarcoplasmic reticulum Ca2+ handling in cardiomyocytes. J Mol Cell Cardiol. 2018 Jan;114:1-9. doi:10.1016/j.yjmcc.2017.10.005.; Pereira L, Cheng H, Lao DH, et al. Epac2 mediates cardiac β1-adrenergicdependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation. 2013 Feb 26;127(8):913-22. doi:10.1161/CIRCULATIONAHA.12.148619.; Yang Z, Kirton HM, Al-Owais M, et al. Epac2-Rap1 Signaling Regulates Reactive Oxygen Species Production and Susceptibility to Cardiac Arrhythmias. Antioxid Redox Signal. 2017 Jul 20;27(3):117-132. doi:10.1089/ars.2015.6485.; Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Biomed Pharmacother. 2022 Apr;148:112726. doi:10.1016/j.biopha.2022.112726.; Slika H, Mansour H, Nasser SA, et al. Epac as a tractable therapeutic target. Eur J Pharmacol. 2023 Apr 15;945:175645. doi:10.1016/j.ejphar.2023.175645.; Мокров Г.В., Крыжановский С.А., Воробьева Т.Ю. и др. Производные пиридинов со свойствами Ерас-ингибиторов. Заявка на патент РФ № 2023131685. Дата приоритета: 04.12.2023.; Kryzhanovskii SA, Kolik LG, Tsorin IB, et al. Alcoholic Cardiomyopathy: Translation Model. Bull Exp Biol Med. 2017 Sep;163(5):627-631. doi:10.1007/s10517-017-3865-0.; Teichholz LE, Kreulen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol. 1976 Jan;37(1):7-11. doi:10.1016/0002-9149(76)90491-4.; Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63. doi:10.1016/j.echo.2005.10.005.; Ruiz-Hurtado G, Morel E, Domínguez-Rodríguez A, et al. Epac in cardiac calcium signaling. J Mol Cell Cardiol. 2013 May;58:162-71. doi:10.1016/j.yjmcc.2012.11.021.; Pereira L, Bare DJ, Galice S, et al. β-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway. J Mol Cell Cardiol. 2017 Jul;108:8-16. doi:10.1016/j.yjmcc.2017.04.005.; Крыжановский С.А., Никифорова Т.Д., Вититнова М.Б., Дурнев А.Д. Роль регуляторных белков Ерас в физиологии и патологии сердечно-сосудистой системы. Часть II. Роль белков Ерас в физиологии и патологии сердца. Физиология человека. 2020; 46(4):111-134.; Mattiazzi A, Argenziano M, Aguilar-Sanchez Y, et al. Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts. J Mol Cell Cardiol. 2015 Feb;79:69-78. doi:10.1016/j.yjmcc.2014.10.011.; Драпкина О.М., Ашихмин Я.И., Ивашкин В.Т. Проблема алкогольной кардиомиопатии. Врач. 2005;8:48-50.; Ерохин Ю.А., Хритинин Д.Ф. Поражение сердца при хронической алкогольной интоксикации. Вестник новых медицинских технологий. 2003;10(4):19-20.; Laudette M, Coluccia A, Sainte-Marie Y, et al. Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovasc Res. 2019 Oct 1;115(12):1766-1777. doi:10.1093/cvr/cvz076.; Insel PA, Murray F, Yokoyama U, et al. cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol. 2012 May;166(2):447-56. doi:10.1111/j.1476-5381.2012.01847.x.; Cai W, Fujita T, Hidaka Y, et al. Disruption of Epac1 protects the heart from adenylyl cyclase type 5-mediated cardiac dysfunction. Biochem Biophys Res Commun. 2016 Jun 17;475(1):1-7. doi:10.1016/j.bbrc.2016.04.123.; https://www.pharmacokinetica.ru/jour/article/view/437
-
2Academic Journal
Authors: V. V. Chestukhin, F. A. Blyakhman, В. В. Честухин, Ф. А. Бляхман
Contributors: Грант РНФ № 22-71-10071 «Гемореологическое моделирование течений в коронарных артериях для нужд персонифицированной диагностики и лечения ишемической болезни сердца»
Source: Russian Journal of Transplantology and Artificial Organs; Том 24, № 4 (2022); 145-151 ; Вестник трансплантологии и искусственных органов; Том 24, № 4 (2022); 145-151 ; 1995-1191
Subject Terms: коронарный кровоток, left ventricle, coronary arteries, myocardial contractility, arterial compression, coronary circulation, левый желудочек, коронарные артерии, сократимость миокарда, компрессия артерий
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1558/1397; https://journal.transpl.ru/vtio/article/view/1558/1432; https://journal.transpl.ru/vtio/article/downloadSuppFile/1558/1214; https://journal.transpl.ru/vtio/article/downloadSuppFile/1558/1215; https://journal.transpl.ru/vtio/article/downloadSuppFile/1558/1216; https://journal.transpl.ru/vtio/article/downloadSuppFile/1558/1217; Scaramucci J. De motu cordis, theorema sextum. Theoremata familiaria de physico-medicis lucubrationibus iucta leges mecanicas. 1695: 70–81.; Anrep GV, Cruickshank EW, Downing AC, Subba RA. The coronary circulation in relation to the cardiac cycle. Heart. 1927; 14: 111–133.; Gregg DE, Green HD. Registration and interpretation of normal phasic inflow into the left coronary artery by an improved differential manometric method. Am J Physiol. 1940; 130: 114–125.; Gregg DE, Sabiston DC. Effect of cardiac contraction on coronary blood flow. Circulation. 1957; 15: 14–20.; Westerhof N, Boer C, Lamberts RR, Sipkema P. Crosstalk between cardiac muscle and coronary vasculature. Physiol Rev. 2006; 86: 1263–1308. doi:10.1152/physrev.00029.2005.; Duncer DJ, Koller A, Mercus D, Canty Jr JМ. Regulation of coronary blood flow in health and ischemic heart disease. Progress in Cardiovascular Disease. 2015; 57 (5): 409–422. doi:10.1016/j.pcad.2014.12.002.; Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol. 2017; 7: 321–382. doi:10.1002/cphy.c160016.; Duncker DJ. Regulation of Coronary Blood Flow. ETP. https://www.escardio.org/static-file/Escardio/education/live-events/courses/education-resource/101-Duncker.pdf.; Murtaza G, Mukherjee D, Gharacholou SM, Nanjundappa A, Lavie CJ, Khan AA et al. An updated review on myocardial bridging. Cardiovascular Revascularization Medicine. 2020; 21 (9): 1169–1179. https://doi.org/10.1016/j.carrev.2020.02.014.; Rizzoni D, De Ciuceis C, Salvetti M, Paini A, Rossini C, Agabiti-Rosei C, Muiesan ML. Interactions between macro- and micro-circulation: are they relevant? High Blood Press. Cardiovasc Prev. 2015; 22: 119–128. doi:10.1007/s40292-015-0086-3.; Motwani M, Kidambi A, Uddin A, Sourbron S, Greenwood JP, Plein S. Quantification of myocardial blood with cardiovascular magnetic resonance throughout the cardiac cycle. Journal of Cardiovascular Magnetic Resonance. 2015; 17 (1): 4. doi:10.1186/s12968-015-0107-3.; Kuhl JT, George RT, Merha VC, Lind JJ, Chen M, Arai AE et al. Endocardial – epicardial distribution of myocardial perfusion reserve assessed by multidetector computer tomography in symptomatic patients without significant coronary artery disease: insights from the CORES320 multicentre study. European Heart Journal Cardivascular Imaging. 2016; 17 (7): 779–787. doi:10.1093/ehjci/jev206.; Westerhof N, Sipkema P, Vist M. How cardiac contraction affects the coronary vasculature. Adv Exp Med Biol. 1997; 430: 111–121. doi:10.1007/978-1-4615-5959-7_10.; Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res. 1975; 36: 753–760. doi:10.1161/01.res.36.6.753.; Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981; 49: 584–593. doi:10.1161/01.res.49.3.584.; Spaan JA, Breuls NP, Laird JD. Forward coronary flow normally seen in systole is the result of both forward and concealed back flow. Basic Res Cardiol. 1981; 76: 582–586. doi:10.1007/BF01908365.; Krams R, van Haelst AC, Sipkema P, Westerhof N. Сan coronary systolic-diastolic flow differences be predicted by left ventricular pressure or time-varying intramyocardial elastanse? Basic Res Cardiol. 1989; 84: 149–159. doi:10.1007/BF01907924.; Van Winkle DM, Swafford Jr AN, Downey JM. Subendocardial coronary compression in beating dog hearts is independent of pressure in the ventricular lumen. Am J Physiol Heart Circ Physiol. 1991; 261 (2 Pt 2): H500–H505. doi:10.1152/ajpheart.1991.261.2.H500.; Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973; 32: 314–322. https://doi.org/10.1161/01.res.32.3.314.; Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol Heart Circ Physiol. 1989; 257: H1936–H1944. https://doi.org/10.1152/ajpheart.1989.257.6.H1936.; Willemsen MJ, Duncker DJ, Krams R, Dijkman MA, Lamberts RR, Sipkema P, Westerhof N. Decrease in coronary vasculare volume in systole augments cardiac contraction. Am J Physiol Heart Circ Physiol. 2001; 281: 731–737. doi:10.1152/ajpheart.2001.281.2.H731.; Fibich G, Lanir Y, Liron N, Abovsky M. Modeling of coronary capillary flow. Adv Exp Ved Biol. 1993; 346: 137–150. doi:10.1007/978-1-4615-2946-0_13.; Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol. 1986; 251 (4): H779–H788. https://doi.org/10.1152/ajpheart.1986.251.4.H779.; Starodumov IO, Sokolov SY, Alexandrov DV, Zubarev AY, Bessonov IS, Chestukhin VV, Blyakhman FA. Modelling of hemodynamics in bifurcation lesions of coronary arteries before and after myocardial revascularization. Phil Trans R Soc A. 2022; 380: 20200303. https://doi.org/10.1098/rsta.2020.0303.; Forte E, Punzo B, Gentile F, Salvatore M, Cavaliere C, Cademartiri F. Normal patterns of left ventricle rest myocardial perfusion assessed by third-generation cardiac computed tomography. Clin Physiol Funct Imaging, 2020; 40: 30–36. doi:10.1111/cpf.12598.; Namani R, Lee LC, Lanir Y, Kaimovitz B, Shavik SM, Kassab GS. Effects of myocardial function and systemic circulation on regional coronary perfusion. J Appl Physiol. 2020; 128: 1106–1122. doi:10.1152/japplphysiol.00450.2019.; Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K et al. Evidence of a dominant backward-propagating «Suction» wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 2006; 113: 1768–1778. https://doi.org/10.1161/circulationaha.105.603050.; Ladwiniec A, White PA, Sukhjinder S. Diastolic backward-traveling decompression (Suction) wave correlates with simultaneously acquired indices of diastolic function and is reduced in left ventricular stunning. Circ Cardiovasc Interv. 2016; 9 (9): 1–9. doi:10.1161/circinterventions.116.003779.; Sabbah HN, Marzzilli M, Liu ZL, Stein PD. Coronary extravascular compression influence systolic coronary blood flow. Heart Vessels. 1986; 2: 140–146. doi:10.1007/BF02128139.; Jacob M, Chahhell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. Crit Care. 2016; 20 (1): 319. https://doi.org/10.1186/s13054-016-1485-0.; Schubert T, Santini F, Stalder AF, Bock J, Meckel S, Bonati L et al. Dampening of blood-flow pulsatility along the carotid siphon: does form follow function? AJNR Am J Neuroradiol. 2011; 32 (6): 1107–1112. doi:10.3174/ajnr.A2426.; Blyakhman F. Left ventricular inhomogeneity and the heart’s functional reserve. The cardiac pumping and perfusion engineering. Ghista D, Ng E, eds. Singapore: World Scientific Press, 2007: 17–56. doi:10.1142/9789812775597_0002.; https://journal.transpl.ru/vtio/article/view/1558
-
3Academic Journal
Subject Terms: БОЛЕЗНЬ АЛЬЦГЕЙМЕРА, СОКРАТИМОСТЬ МИОКАРДА, АДРЕНОРЕЦЕПТОРЫ, НОРАДРЕНАЛИН, ТРАНСГЕННЫЕ ЖИВОТНЫЕ, ИММУНОГИСТОХИМИЯ, ALZHEIMER'S DISEASE
File Description: text/html
-
4Academic Journal
Authors: Циркин, Виктор, Коротаева, Юлия
Subject Terms: ГИСТИДИН, ТРИПТОФАН, ТИРОЗИН, СОКРАТИМОСТЬ МИОКАРДА, БЕТА-АДРЕНОРЕЦЕПТОРЫ
File Description: text/html
-
5Academic Journal
Subject Terms: СЕРОВОДОРОД, СОКРАТИМОСТЬ МИОКАРДА, АТФ-ЗАВИСИМЫЕ КАЛИЕВЫЕ КАНАЛЫ, ПОТЕНЦИАЛ-ЗАВИСИ-МЫЕ КАЛИЕВЫЕ КАНАЛЫ, КАЛЬЦИЙ-АКТИВИРУЕМЫЕ КАЛИЕВЫЕ КАНАЛЫ, L-ЦИСТЕИН
File Description: text/html
-
6Academic Journal
Authors: Сабирьянов, Артур, Сабирьянова, Елена, Подзолко, Татьяна
File Description: text/html
-
7Academic Journal
Authors: Богус, Саида, Галенко-ярошевский, Павел
Subject Terms: ПРОИЗВОДНОЕ ИНДОЛА SS-68, КОРОНАРНОЕ КРОВООБРАЩЕНИЕ, СОКРАТИМОСТЬ МИОКАРДА, ОБЩАЯ ГЕМОДИНАМИКА, ИНТАКТНЫЙ МИОКАРД
File Description: text/html
-
8Academic Journal
Authors: Богус, Саида, Галенко-ярошевский, Павел
File Description: text/html
-
9Academic Journal
Влияние некоторых производных арилалканов на кровоснабжение и сократимость ишемизированного миокарда
Authors: Пашин, Е. Н.
Subject Terms: медицина, фармакология, биология, физиология животных, коронароокклюзия, коллатеральный коронарный кровоток, сократимость миокарда, производные арилалканов, ЛХТ 51-93, собаки, эксперименты
Availability: http://dspace.bsu.edu.ru/handle/123456789/55305
-
10Academic Journal
Authors: Киняшева, Н., Туаева, З., Береговая, Н., Овинников, Д.
Subject Terms: ТРОМБОЛИТИЧЕСКАЯ ТЕРАПИЯ, ИНФАРКТ МИОКАРДА, СОКРАТИМОСТЬ МИОКАРДА
File Description: text/html
-
11Academic Journal
Source: Гены и клетки.
File Description: text/html
-
12Academic Journal
Source: Казанский медицинский журнал.
Subject Terms: БОЛЕЗНЬ АЛЬЦГЕЙМЕРА, СОКРАТИМОСТЬ МИОКАРДА, АДРЕНОРЕЦЕПТОРЫ, НОРАДРЕНАЛИН, ТРАНСГЕННЫЕ ЖИВОТНЫЕ, ИММУНОГИСТОХИМИЯ, ALZHEIMER'S DISEASE, 3. Good health
File Description: text/html
-
13Academic Journal
Authors: Фомина, И., Галанина, Н., Георгадзе, З., Гайдамакина, Н.
Subject Terms: ХРОНИЧЕСКИЕ ПОСТИНФАРКТНЫЕ АНЕВРИЗМЫ, ОБЩАЯ И ЛОКАЛЬНАЯ СОКРАТИМОСТЬ МИОКАРДА, ЛЕВЫЙ ЖЕЛУДОЧЕК, ПРАВЫЙ ЖЕЛУДОЧЕК, ПЕРИНДОПРИЛ
File Description: text/html
-
14Academic Journal
Source: Гены и клетки.
File Description: text/html
-
15Academic Journal
Source: Журнал медико-биологических исследований.
File Description: text/html
-
16Academic Journal
Source: Сибирский медицинский журнал (Иркутск).
File Description: text/html
-
17Academic Journal
Source: Вестник Челябинского государственного университета.
Subject Terms: АНАЛИЗ ВАРИАБЕЛЬНОСТИ, СОКРАТИМОСТЬ МИОКАРДА, ФИЗИЧЕСКАЯ НАГРУЗКА, ПОДРОСТКОВЫЙ ВОЗРАСТ, PHYSICAL ЕXERCISE
File Description: text/html
-
18Academic Journal
Source: Новые технологии.
Subject Terms: ПРОИЗВОДНОЕ ИНДОЛА SS-68, КОРОНАРНОЕ КРОВООБРАЩЕНИЕ, СОКРАТИМОСТЬ МИОКАРДА, ОБЩАЯ ГЕМОДИНАМИКА, ИНТАКТНЫЙ МИОКАРД, 3. Good health
File Description: text/html
-
19Academic Journal
Source: Новые технологии.
Subject Terms: ПРОИЗВОДНОЕ ИНДОЛА SS-68, КОРОНАРНОЕ КРОВООБРАЩЕНИЕ, СОКРАТИМОСТЬ МИОКАРДА, ОБЩАЯ ГЕМОДИНАМИКА, ИШЕМИЗИРОВАННЫЙ МИОКАРД, 3. Good health
File Description: text/html
-
20Academic Journal
Влияние некоторых производных арилалканов на кровоснабжение и сократимость ишемизированного миокарда
Source: Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация.
Subject Terms: КОРОНАРООККЛЮЗИЯ,КОЛЛАТЕРАЛЬНЫЙ,КОРОНАРНЫЙ КРОВОТОК,СОКРАТИМОСТЬ МИОКАРДА,ЛХТ 51-93 И ЛХТ 52-93
File Description: text/html