-
1Academic Journal
Συγγραφείς: V. A. Pospelov, K. Yu. Novokshonov, R. A. Chernikov, I. V. Sleptsov, T. S. Pridvizhkina, В. А. Поспелов, К. Ю. Новокшонов, Р. А. Черников, И. В. Слепцов, Т. С. Придвижкина
Πηγή: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 60-72 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 60-72 ; 2079-5343
Θεματικοί όροι: малоинвазивная паратиреоидэктомия, thyroid gland, primary hyperparathyroidism, parathormone, ultrasound, computed tomography, single photon emission computed tomography, single photon emission computed tomography combined with computed tomography, positron emission computed tomography combined with computed tomography, minimally invasive parathyroidectomy, щитовидная железа, первичный гиперпаратиреоз, паратгормон, ультразвуковое исследование, компьютерная томография, однофотонная эмиссионная компьютерная томография, совмещенная с компьютерной томографией, позитронная эмиссионная компьютерная томография
Περιγραφή αρχείου: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/940/623; Воронкова И.А., Еремкина А.К., Крупинова Ю.А. Нейроэндокринные маркеры в опухолях околощитовидных желез // Архив патологии. 2020. Т. 82, № 6. С. 70–78. https://doi.org/10.17116/patol20208206170.; Мокрышева Н.Г., Крупинова Ю.А., Воронкова И.А. Околощитовидные железы: нормальное развитие, анатомическое и гистологическое строение // Эндокринная хирургия. 2018. Т. 12, № 4. С. 178–187. https://doi.org/10.14341/serg10039.; Мокрышева Н.Г., Еремкина А.К., Ковалева Е.В. Современные проблемы гипер- и гипопаратиреоза // Терапевтический архив. 2021. Т. 93, № 10. С. 1149–1154. doi:10.26442/00403660.2021.10.201109.; Мокрышева Н.Г., Ковалева Е.В., Еремкина А.К. Регистры заболеваний околощитовидных желез в Российской Федерации // Проблемы эндокринологии. 2021. Т. 67, № 4. С. 4–7. https://doi.org/10.14341/probl12803.; Islam A.K. Advances in the diagnosis and the management of primary hyperparathyroidism // Ther. Adv. Chronic. Dis. 2021. Jun 11. Vol. 12. Р. 1–54. doi:10.1177/20406223211015965.; Khan A.A., Hanley D.A., Rizzoli R. et al. Primary hyperparathyroidism: review and recommendations on evaluation, diagnosis, and management // A Canadian and international consensus. Osteoporos Int. 2017. Vol. 28, No. 1. Р. 1–19. doi:10.1007/s00198-016-3716-2.; Дедов И.И., Мельниченко Г.А., Мокрышева Н.Г. Первичный гиперпаратиреоз: клиника, диагностика, дифференциальная диагностика, методы лечения // Проблемы эндокринологии. 2016. Т. 62, № 6. С. 40–77. https://doi.org/10.14341/probl201662640-77.; Bilezikian J.P., Brandi M.L., Eastell R. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop // J. Clin. Endocrinol. Metab. 2014. Vol. 99, No. 10. Р. 3561–3569. doi:10.1210/jc.2014-2413.; Никитина Т.П., Гладкова И.Н., Русаков В.Ф. Качество жизни пациентов с первичным гиперпаратиреозом после хирургического лечения // Проблемы эндокринологии. 2022. Т. 68, № 1. С. 27–39. doi: https://doi.org/10.14341/probl12825.; Мокрышева Н.Г., Еремкина А.К., Мирная С.С. Клинические рекомендации по первичному гиперпаратиреозу, краткая версия // Проблемы эндокринологии. 2021. Т. 67, № 4. С. 94–124. https://doi.org/10.14341/probl12801.; Слепцов И.В., Выборнова Н.Б., Черников Р.А. Модифицированная интраоперационная методика измерения уровня паратгормона крови при лечении первичного гиперпаратиреоза // Эндокринная хирургия. 2015. Т. 9, № 4. С. 12–21. https://doi.org/10.14341/serg2015412-21.; Слепцов И.В., Черников Р.А., Бубнов А.Н. Малоинвазивные операции в лечении первичного гиперпаратиреоза // Эндокринная хирургия. 2012. Т. 6, № 4. С. 24–33.; Singh Ospina N.M., Rodriguez-Gutierrez R, Maraka S. et al. Outcomes of parathyroidectomy in patients with primary hyperparathyroidism: a systematic review and meta-analysis // World J. Surg. 2016. Vol. 40, No. 10. Р. 2359–2377. doi:10.1007/s00268-016-3514-1.; Ahmadieh H., Kreidieh O., Akl E.A. et al. Minimally invasive parathyroidectomy guided by intraoperative parathyroid hormone monitoring (IOPTH) and preoperative imaging versus bilateral neck exploration for primary hyperparathyroidism in adults // Cochrane Database. Syst. Rev. 2020. Vol. 10. Р. 1–110. doi:10.1002/14651858.CD010787.pub2.; Yeh M.W., Wiseman J.E., Chu S.D. et al. Population-level predictors of persistent hyperparathyroidism // Surgery. 2011. Vol. 150, No. 6. Р. 1113–1119. doi:10.1016/j.surg.2011.09.025.; Venkat R., Kouniavsky G., Tufano R. Long-term outcome in patients with primary hyperparathyroidism who underwent minimally invasive parathyroidectomy // World J. Surg. 2012. Vol. 36, No. 1. Р. 55–60. doi:10.1007/s00268-011-1344-8.; Бузанаков Д.М., Слепцов И.В., Семенов А.А. Место двусторонней ревизии шеи при хирургическом лечении первичного гиперпаратиреоза // Проблемы эндокринологии. 2022. Т. 68, № 6. С. 22–29. https://doi.org/10.14341/probl13096.; Buzanakov D.M., Sleptsov I.V., Semenov A.A. et al. Persistence of primary hyperparathyroidism: a single-center experience // Langenbecks Arch. Surg. 2022. Vol. 407. Р. 3651–3659. doi:10.1007/s00423-022-02711-5.; Слащук К.Ю, Дегтярев М.В., Румянцев П.О. Методы визуализации околощитовидных желез при первичном гиперпаратиреозе. Обзор литературы // Эндокринная хирургия. 2019. Т. 13, № 4. С. 153–174. https://doi.org/10.14341/serg12241.; Guerin C., Paladino N., Lowery A. Persistent and recurrent hyperparathyroidism // Updates in Surgery. 2017. Vol. 69, No. 2. Р. 161–169. doi:10.1007/s13304-017-0447-7.; Wilhelm S.M., Wang T.S., Ruan D.T. et al. The American Association of Endocrine Surgeons guidelines for definitive management of primary hyperparathyroidism // JAMA Surg. 2016. Vol. 151. Р. 959–968. doi:10.1001/jamasurg.2016.2310.; Hessman O., Stalberg P., Sundin A. et al. High success rate of parathyroid reoperation may be achieved with improved localization diagnosis // World J. Surg. 2008. Vol. 32, No. 5. Р. 774–781. doi:10.1007/s00268-008-9537-5.; Feingold D.L., Alexander H.R., Chen C.C. et al. Ultrasound and sestamibi scan as the only preoperative imaging tests in reoperation for parathyroid adenomas // Surgery. 2000. Vol. 128, No. 6. Р. 1103–1110. doi:10.1067/msy.2000.109963.; Caveny S.A., Klingensmith W.C. 3rd, Martin W.E. Parathyroid imaging: the importance of dual-radiopharmaceutical simultaneous acquisition with 99mTc-sestamibi and 123I // J. Nucl. Med Technol. 2012. Vol. 40, No. 2. Р. 104–110. https://doi.org/10.2967/jnmt.111.098400.; Hassler S., Ben-Sellem D., Hubele F. Dual-isotope 99mTc-MIBI/123I parathyroid scintigraphy in primary hyperparathyroidism: comparison of subtraction SPECT/CT and pinhole planar scan // Clin. Nucl. Med. 2014. Vol. 39, No. 1. Р. 32–36. https://doi.org/10.1097/RLU.0000000000000272.; Krakauer M., Wieslander B., Myschetzky P.S. A Prospective Comparative Study of Parathyroid Dual-Phase Scintigraphy, Dual-Isotope Subtraction Scintigraphy, 4D-CT, and Ultrasonography in Primary Hyperparathyroidism // Clinical Nuclear Medicine. 2016. Vol. 41, No. 2. Р. 93–100. doi:10.1097/rlu.0000000000000988.; Kushchayeva Y.S., Tella S.H., Kushchayev S.V. Comparison of hyperparathyroidism types and utility of dual radiopharmaceutical acquisition with Tc99m sestamibi and 123I for localization of rapid washout parathyroid adenomas // Osteoporos Int. 2019 May. Vol. 30, No. 5. Р. 1051–1057. doi:10.1007/s00198-019-04846-6. Epub 2019 Jan 31. PMID: 30706095.; Neumann D.R., Obuchowski N.A., DiFilippo F.P. Preoperative 123I/99mTc-Sestamibi Subtraction SPECT and SPECT/CT in Primary Hyperparathyroidism // Journal of Nuclear Medicine. 2008. Vol. 49, No. 12. Р. 2012–2017. doi:10.2967/jnumed.108.054858; Treglia G. et al. Detection rate of 99m Tc-MIBI single photon emission computed tomography (SPECT)/CT in preoperative planning for patients with primary hyperparathyroidism: a meta-analysis // Head Neck. 2016. Vol. 38. Р. 2159–2172. doi:10.1002/hed.24027.; Sun L., Yao J., Hao P. Diagnostic Role of Four-Dimensional Computed Tomography for Preoperative Parathyroid Localization in Patients with Primary Hyperparathyroidism: A Systematic Review and Meta-Analysis // Diagnostics (Basel). 2021. Apr 7. Vol. 11, No. 4. Р. 664. 1–14. doi:10.3390/diagnostics11040664. PMID: 33917261. Vol. PMCID: PMC8068020.; Grimaldi S., Young J., Kamenicky P. Challenging pre-surgical localization of hyperfunctioning parathyroid glands in primary hyperparathyroidism: the added value of 18F-Fluorocholine PET/CT // European Journal of Nuclear Medicine and Molecular Imaging. 2018. 45, No. 10. Р. 1772–1780. doi:10.1007/s00259-018-4018-z.; Mathey C., Keyzer C., Blocklet D. 18F-Fluorocholine PET/CT Is More Sensitive Than 11C-Methionine PET/CT for the Localization of Hyperfunctioning Parathyroid Tissue in Primary Hyperparathyroidism // J. Nucl. Med. 2022. May. Vol. 63, No. 5. Р. 785–791. doi:10.2967/jnumed.121.262395.; PetranovićOvčariček, P., Giovanella, L., CarrióGasset, I. et al. The EANM practice guidelines for parathyroid imaging // Eur. J. Nucl. Med. Mol. Imaging. 2021. 48. Р. 2801–2822. doi:10.1007/s00259-021-05334-y.; Nawrot I., Chudziński W., Ciąćka T. Reoperations for persistent or recurrent primary hyperparathyroidism: results of a retrospective cohort study at a tertiary referral center // Med. Sci. Monit. 2014. Sep 9. Vol. 20. Р. 1604–1612. doi:10.12659/MSM.890983. PMID: 25201515. Vol. PMCID: PMC4166223.; Weber T., Dotzenrath C., Dralle H. Management of primary and renal hyperparathyroidism: guidelines from the German Association of Endocrine Surgeons (CAEK) // Langenbecks Arch. Surg. 2021. May. Vol. 406, No. 3. Р. 571–585. doi:10.1007/s00423-021-02173-1. Epub 2021 Apr 21. PMID: 33880642.; Parikh P.P., Farra J.C., Allan B.J. Long-term effectiveness of localization studies and intraoperative parathormone monitoring in patients undergoing reoperative parathyroidectomy for persistent or recurrent hyperparathyroidism // The American Journal of Surgery. 2015. Vol. 210, No. 1. Р. 117–122. doi:10.1016/j.amjsurg.2014.09.039.; Richards M.L., Thompson G.B., Farley D.R. Reoperative parathyroidectomy in 228 patients during the era of minimal-access surgery and intraoperative parathyroid hormone monitoring // American Journal of Surgery. 2008. Vol. 196, No. 6. Р. 937–943. doi:10.1016/j.amjsurg.2008.07.022.; Yen T.W.F., Wang T.S., Doffek K.M. Reoperative parathyroidectomy: an algorithm for imaging and monitoring of intraoperative parathyroid hormone levels that results in a successful focused approach // Surgery. 2008. Vol. 144, No. 4. Р. 611–621. doi:10.1016/j.surg.2008.06.017.; Schalin-Jantti C., Ryhanen E., Heiskanen I. et al. Planar scintigraphy with 123I/99mTc-Sestamibi, 99mTc-sestamibi SPECT/CT, 11C-methionine PET/CT, or selective venous sampling before reoperation of primary hyperparathyroidism? // Journal of Nuclear Medicine. 2013. Vol. 54, No. 5. Р. 739–747. doi:10.2967/jnumed.112.109561.; Wong K.K., Fig L.M., Gross M.D. Parathyroid adenoma localization with 99mTc-sestamibi SPECT/CT: a meta-analysis // Nucl. Med. Commun. 2015. Apr. Vol. 36, No. 4. Р. 363–375. doi:10.1097/MNM.0000000000000262. PMID: 25642803.; Yin L., Guo D., Liu J. The role of 99mTc-MIBI SPECT-CT in reoperation therapy of persistent hyperparathyroidism patients // OpenMed (Wars). 2015. Dec 17. Vol. 10, No. 1. Р. 462–467. doi:10.1515/med-2015–0064. PMID: 28352737. Vol. PMCID: PMC5368852.; Witteveen J.E., Kievit J., Stokkel M.P. Limitations of Tc99m-MIBI-SPECT imaging scans in persistent primary hyperparathyroidism // World J. Surg. 2011 Jan. Vol. 35, No. 1. Р. 128–139. doi:10.1007/s00268-010-0818-4. PMID: 20957360; PMCID: PMC3006642.; Cruz-Centeno N., Longoria-Dubocq T., Mendez-Latalladi W. Efficacy of 4D CT Scan in Re-operative Parathyroid Surgery // Am. Surg. 2022. Jul. Vol. 88, No. 7. Р. 1549–1550. doi:10.1177/00031348221083938.
-
2Academic Journal
Συγγραφείς: E. A. Nikolaeva, A. S. Krylov, A. D. Ryzhkov, T. M. Geliashvili, A. V. Pavlova, A. Yu. Goryainova, R. A. Murashko, Е. А. Николаева, А. С. Крылов, А. Д. Рыжков, Т. М. Гелиашвили, А. В. Павлова, А. Ю. Горяинова, Р. А. Мурашко
Πηγή: Cancer Urology; Том 20, № 2 (2024); 74-86 ; Онкоурология; Том 20, № 2 (2024); 74-86 ; 1996-1812 ; 1726-9776
Θεματικοί όροι: радионуклидная терапия, metastatic castration-resistant prostate cancer, quantitative single-photon emission computed tomography/computed tomography, radium-223 dichloride, radionuclide therapy, метастатический кастрационно-резистентный рак предстательной железы, количественная однофотонная эмиссионная компьютерная томография, совмещенная с компьютерной томографией, дихлорид радия-223
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1762/1547; Tannock I.F., de Wit R., Berry W.R. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351(15):1502–12. DOI:10.1056/NEJMoa040720; Pezaro C., Omlin A., Lorente D. et al. Visceral disease in castration-resistant prostate cancer. Eur Urol 2014;65(2):270–3. DOI:10.1016/j.eururo.2013.10.055; Smith H.S. Painful osseous metastases. Pain Physician 2011;14(4):E373–403.; Coleman R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006;12(20 Pt 2):6243s–9s. DOI:10.1158/1078-0432.CCR-06-0931; Tait C., Moore D., Hodgson C. et al. Quantification of skeletal metastases in castrate-resistant prostate cancer predicts progressionfree and overall survival. BJU Int 2014;114(6b):E70–3. DOI:10.1111/bju.12717; Riihimäki M., Thomsen H., Brandt A. et al. What do prostate cancer patients die of? Oncologist 2011;16(2):175–81. DOI:10.1634/theoncologist.2010-0338; Cornford P., Bellmunt J., Bolla M. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 2017;71(4):630–42. DOI:10.1016/j.eururo.2016.08.002; Parker C., Nilsson S., Heinrich D. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369(3):213–23. DOI:10.1056/NEJMoa1213755; Sartor O., Coleman R., Nilsson S. et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol 2014;15(7):738–46. DOI:10.1016/S1470-2045(14)70183-4; Hoskin P., Sartor O., O’Sullivan J.M. et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol 2014; 15(12):1397–406. DOI:10.1016/S1470-2045(14)70474-7; Nilsson S., Cislo P., Sartor O. et al. Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann Oncol 2016;27(5):868–74. DOI:10.1093/annonc/mdw065; Parker C., Finkelstein S.E., Michalski J.M. et al. Efficacy and safety of radium-223 dichloride in symptomatic castration-resistant prostate cancer patients with or without baseline opioid use from the phase 3 ALSYMPCA trial. Eur Urol 2016;70(5):875–83. DOI:10.1016/j.eururo.2016.06.002; Николаева Е.А., Тарачкова Е.В., Шейх Ж.В. и др. Обзор методов визуализации для оценки ответа на лечение метастазов в костях при раке предстательной железы и молочной железы. Кремлевская медицина. Клинический вестник 2022;3:107–14. DOI:10.26269/tvby-7e26; Helyar V., Mohan H.K., Barwick T. et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging 2010;37(4):706–13. DOI:10.1007/s00259-009-1334-3; Vogelzang N.J., Coleman R.E., Michalski J.M. et al. Hematologic safety of radium-223 dichloride: baseline prognostic factors associated with myelosuppression in the ALSYMPCA trial. Clin Genitourin Cancer 2017;15(1):42–52.e8. DOI:10.1016/j.clgc.2016.07.027; Etchebehere E.C., Araujo J.C., Fox P.S. et al. Prognostic factors in patients treated with 223Ra: the role of skeletal tumor burden on baseline 18F-fluoride PET/CT in predicting overall survival. J Nucl Med 2015;56(8):1177–84. DOI:10.2967/jnumed.115.158626; Ulmert D., Kaboteh R., Fox J.J. et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol 2012;62(1): 78–84. DOI:10.1016/j.eururo.2012.01.037; Fosbøl M.Ø., Petersen P.M., Kjaer A., Mortensen J. 223Ra therapy of advanced metastatic castration-resistant prostate cancer: quantitative assessment of skeletal tumor burden for prognostication of clinical outcome and hematologic toxicity. J Nucl Med 2018;59(4):596–602. DOI:10.2967/jnumed.117.195677; Shariftabrizi A., Kothari S., George S. et al. Optimization of radium-223 treatment of castration-resistant prostate cancer based on the burden of skeletal metastasis and clinical parameters. Oncologist 2023;28(3):246–51. DOI:10.1093/oncolo/oyac245; Николаева Е.А., Крылов А.С., Рыжков А.Д. и др. Количественная оценка методом ОФЭКТ/КТ эффективности радионуклидной терапии хлоридом радия-223 костных метастазов при метастатическом кастрационно-резистентном раке предстательной железы. Онкологический журнал: лучевая диагностика, лучевая терапия 2022;5(3):29–42. DOI:10.37174/2587-7593-2022-5-3-29-42; Shore N.D. Radium-223 dichloride for metastatic castrationresistant prostate cancer: the urologist’s perspective. Urology 2015;85(4):717–24. DOI:10.1016/j.urology.2014.11.031; Gillessen S., Omlin A., Attard G. et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 2015;26(8):1589–604. DOI:10.1093/annonc/mdv257; CTCAE. National Cancer Institute Enterprise Vocabulary Services website. Available at: https://evs.nci.nih.gov/ftp1/CTCAE/About.html (accessed 15 December 2023).; Asselah J., Sperlich C. Post-docetaxel options for further survival benefit in metastatic castration-resistant prostate cancer: questions of choice. Can Urol Assoc J 2013;7(1–2 Suppl 1):S11–7. DOI:10.5489/cuaj.274; Sathianathen N.J., Lamb A., Nair R. et al. Updates of prostate cancer staging: prostate-specific membrane antigen. Investig Clin Urol 2016;57(Suppl 2):S147–54. DOI:10.4111/icu.2016.57.S2.S147; Lowrance W.T., Roth B.J., Kirkby E. et al. Castration-resistant prostate cancer: AUA guideline amendment 2015. J Urol 2016;195(5):1444–52. DOI:10.1016/j.juro.2015.10.086; Parker C., Gillessen S., Heidenreich A., Horwich A. ESMO Guidelines Committee. Cancer of the prostate: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015;26(Suppl 5):v69–77. DOI:10.1093/annonc/mdv222; Saad F., Chi K.N., Finelli A. et al. The 2015 CUA-CUOG Guidelines for the management of castration-resistant prostate cancer (CRPC). Can Urol Assoc J 2015;9(3–4):90–6. DOI:10.5489/cuaj.2526; Носов Д.А., Волкова М.И., Гладков О.А. и др. Практические рекомендации по лечению рака предстательной железы. Злокачественные опухоли: Практические рекомендации RUSSCO 2021;11(3s2):540–55. DOI:10.18027/2224-5057-2021-11-3s2-33; Smith M., Parker C., Saad F. et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial [published correction appears in Lancet Oncol 2019;20(10):e559]. Lancet Oncol 2019;20(3):408–19. DOI:10.1016/S1470-2045(18)30860-X; Choudhury A.D., Kwak L., Cheung A. et al. Randomized phase II study evaluating the addition of pembrolizumab to radium-223 in metastatic castration-resistant prostate cancer. Journal of Clinical Oncology 2021;39(6_suppl):98. DOI:10.1200/JCO.2021.39.6_suppl.98; Sternberg C.N., Saad F., Graff J.N. et al. A randomised phase II trial of three dosing regimens of radium-223 in patients with bone metastatic castration-resistant prostate cancer. Ann Oncol 2020;31(2):257–65. DOI:10.1016/j.annonc.2019.10.025; Carles J., Alonso-Gordoa T., Mellado B. et al. Radium-223 for patients with metastatic castration-resistant prostate cancer with asymptomatic bone metastases progressing on first-line abiraterone acetate or enzalutamide: a single-arm phase II trial. Eur J Cancer 2022;173:317–26. DOI:10.1016/j.ejca.2022.06.057; Marshall C.H., Fu W., Wang H. et al. Randomized phase II trial of sipuleucel-T with or without radium-223 in men with bonemetastatic castration-resistant prostate cancer. Clin Cancer Res 2021;27(6):1623–30. DOI:10.1158/1078-0432.CCR-20-4476; Morris M.J., Loriot Y., Sweeney C.J. et al. Radium-223 in combination with docetaxel in patients with castration-resistant prostate cancer and bone metastases: a phase 1 dose escalation/ randomised phase 2a trial. Eur J Cancer 2019;114:107–16. DOI:10.1016/j.ejca.2019.04.007; Darolutamide with radium-223 or placebo and the effect on radiological Progression-free survival for patients with mCSPC (CARE). ClinicalTrials.gov. ID NCT05771896. Available at: https://clinicaltrials.gov/study/NCT05771896; Kostos L., Buteau J.P., Yeung T. et al. AlphaBet: combination of radium-223 and [177Lu]Lu-PSMA-I&T in men with metastatic castration-resistant prostate cancer (clinical trial protocol). Front Med (Lausanne) 2022;9:1059122. DOI:10.3389/fmed.2022.1059122; Pezaro C.J., Omlin A., Lorente D. et al. Visceral disease in castration-resistant prostate cancer. Eur Urol 2014;65:270–3. DOI:10.1016/j.eururo.2013.10.055; Bosch D., van der Velden K.J.M., Oving I.M. et al. The impact of baseline PSMA PET/CT vs. CT on outcomes of Radium-223 therapy in mCRPC patients. Annals of Oncology 2023;34(Suppl 2): 987–8. DOI:10.1016/j.annonc.2023.09.2771; Carles J., Castellano D., Méndez-Vidal M.J. et al. Circulating tumor Cells as a biomarker of survival and response to Radium-223 therapy: experience in a cohort of patients with metastatic castration-resistant prostate cancer. Clin Genitourin Cancer 2018;16(6):e1133–9. DOI:10.1016/j.clgc.2018.07.013; Iizuka J. Evaluating radium-223 response in metastatic castrationresistant prostate cancer with imaging. Asia Pac J Clin Oncol 2018;14(Suppl 5):16–23. DOI:10.1111/ajco.13058; Scher H.I., Morris M.J., Stadler W.M. et al. Prostate cancer clinical trials working group 3. Trial design and objectives for castrationresistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol 2016;34(12):1402–18. DOI:10.1200/JCO.2015.64.2702; https://oncourology.abvpress.ru/oncur/article/view/1762
-
3Academic Journal
Συγγραφείς: A. Yu. Shurinov, E. V. Borodavina, А. Ю. Шуринов, Е. В. Бородавина
Πηγή: Head and Neck Tumors (HNT); Том 13, № 1 (2023); 91-101 ; Опухоли головы и шеи; Том 13, № 1 (2023); 91-101 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-1
Θεματικοί όροι: TENIS-синдром, dynamic observation, differentiated thyroid cancer, 131 I whole-body scintigraphy, 131 I single-photon emission computed tomography/X-ray computed tomography, 18 F-fluorodeoxyglucose positron emission tomography/computed tomography, TENIS syndrome, динамическое наблюдение, дифференцированный рак щитовидной железы, сцинтиграфия всего тела с 131 I, однофотонная эмиссионная компьютерная томография, совмещенная с рентгеновской компьютерной томографией, с 131 I, позитронная эмиссионная томография, совмещенная с компьютерной томографией, с 18 F-фтордезоксиглюкозой
Περιγραφή αρχείου: application/pdf
Relation: https://ogsh.abvpress.ru/jour/article/view/871/575; Filetti S., Durante C., Hartl D., Leboulleux S. et al. Berruti on behalf of the ESMO Guidelines Committee. 2019. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019;30(12):1856–83. DOI:10.1093/annonc/mdz400; Клинические рекомендации. Дифференцированный рак щитовидной железы. 2020 г. Доступно по: https://cr.minzdrav.gov.ru/schema/329_1#doc_a1.; Gulec S., Ahuja S., Avram A. et al. A joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the European Thyroid Association, the Society of Nuclear Medicine and Molecular Imaging on Current Diagnostic and Theranostic Approaches in the Management of Thyroid Cancer. Thyroid 2021;31(7):1009–19. DOI:10.1089/ thy.2020.0826; Haddad R., Bischoff L., Ball D. et al. Thyroid Carcinoma. Version 2.2022. NCCN Clinical Practice Guidelines in Oncology. J Nat Compr Canc Netw 2022;20(8):925–51. DOI:10.6004/ jnccn.2022.0040; Шуринов А.Ю., Крылов В.В., Бородавина Е.В. Радиойодаблация при раке щитовидной железы. Исторические и современные аспекты. Обзор литературы. Онкологический журнал: лучевая диагностика, лучевая терапия 2021;4(4):9–19. DOI:10.37174/2587-7593-2021-4-4-9-19; Duren M., Siperstein A., Shen W. et al. Value of stimulated serum thyroglobulin levels for detecting persistent or recurrent differentiated thyroid cancer in high- and low-risk patients. Surgery 1999;26(1):13–9. DOI:10.1067/msy.1999.98849; Pacini F., Lippi F., Formica N. et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med 1987;28(12):1888–91.; Pineda J., Lee T., Ain K. et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab 1995;80(5):1488–92. DOI:10.1210/ jcem.80.5.7744991; Roelants V., De Nayer P., Bouckaert A., Beckers C. The predictive value of serum thyroglobulin in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:722–7. DOI:10.1007/ BF00879658; Pacini F., Molinaro E., Castagna M. et al. Ablation of thyroid residues with 30 mCi 131I: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab 2002;87(9):4063–8. DOI:10.1210/jc.2001-011918; Kukulska A., Krajewska J., Gawkowska-Suwiriska M. et al. Radioiodine thyroid remnant ablation in patients with differentiated thyroid carcinoma (DTC): prospective comparison of long-term outcomes of treatment with 30, 60, and 100 mCi. Thyroid Res 2010;3(1):9. DOI:10.1186/1756-6614-3-9; Toubeau M., Touzery C., Arveux P. et al. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after 131I ablation therapy in patients with differentiated thyroid cancer. J Nucl Med 2004;45(6):988–94.; Haugen B., Alexander E., Bible K.C. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26(1):1–133. DOI:10.1089/thy.2015.0020; Lamartina L., Grani G., Durante C., Filetti S. Recent advances in managing differentiated thyroid cancer. F1000Res 2018;7:86. DOI:10.12688/f1000research.12811.1; Gray J., Singh G., Uttley L., Balasubramanian S. Routine thyroglobulin, neck ultrasound and physical examination in the routine follow up of patients with differentiated thyroid cancer: where is the evidence? Endocrine 2018;62(1):26–33. DOI:10.1007/s12020-018-1720-3; Prpić M., Franceschi M., Romić M. et al. Thyroglobulin as a tumor marker in differentiated thyroid cancer – clinical considerations. Acta Clin Croat 2018;57(3):518–27. DOI:10.20471/acc.2018.57.03.16; Giovanella L., Clark P., Chiovato L. et al. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol 2014;171(2):R33–46. DOI:10.1530/EJE-14-0148; Spencer C. Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab 2011;96(12):3615–27. DOI:10.1210/jc.2011-1740; Dekker B., Van der Horst-Schrivers A., Brouwers A. et al. Clinical irrelevance of lower titer thyroglobulin autoantibodies in patients with differentiated thyroid carcinoma. Eur Thyroid J 2022 20;11(6):e220137. DOI:10.1530/ETJ-22-0137; Brassard M., Borget I., Edet-Sanson A. et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J Clin Endocrinol Metab 2011;96(5):1352–9. DOI:10.1210/jc.2010-2708; Durante C., Montesano T., Attard M. et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab 2012;97(8):2748–53. DOI:10.1210/jc.2012-1123; Angell T., Spencer C., Rubino B. et al. In search of an unstimulated thyroglobulin baseline value in low-risk papillary thyroid carcinoma patients not receiving radioactive iodine ablation. Thyroid 2014;24(7):1127–33. DOI:10.1089/thy.2013.0691; Grani G., Fumarola A. Thyroglobulin in lymph node fine-needle aspiration washout: a systematic review and meta-analysis of diagnostic accuracy. J Clin Endocrinol Metab 2014;99(6):1970–82. DOI:10.1210/jc.2014-1098; Torlontano M., Attard M., Crocetti U. et al. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J Clin Endocrinol Metab 2004;89(7):3402–7. DOI:10.1210/ jc.2003-031521; Grani G., Lamartina L., Cantisani V. et al. Enterobserver agreement of various thyroid imaging reporting and data systems. Endocr Connect 2018;7(1):1–7. DOI:10.1530/EC-17-0336; Lamartina L., Grani G., Biffoni M. et al. Risk stratification of neck lesions detected sonographically during the follow-up of differentiated thyroid cancer. J Clin Endocrinol Metab 2016;101(8):3036–44. DOI:10.1210/jc.2016-1440; Leboulleux S., Girard E., Rose M. et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 2007;92(9):3590–4. DOI:10.1210/jc.2007-0444; Leenhardt L., Erdogan M., Hegedus L. et al. 2013 European Thyroid Association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J 2013;2(3):147–59. DOI:10.1159/000354537; Lamartina L., Deandreis D., Durante C., Filetti S. ENDOCRINE TUMOURS: imaging in the follow-up of differentiated thyroid cancer: current evidence and future perspectives for a risk-adapted approach. Eur J Endocrinol 2016;175(5):R185–202. DOI:10.1530/ EJE-16-0088; Grani G., Ramundo V., Falcone R. et al. Thyroid cancer patients with no evidence of disease: the need for repeat neck ultrasound. J Clin Endocrinol Metab 2019;104(11):4981–9. DOI:10.1210/jc.2019-00962; Castagna M., Maino F., Cipri C. et al. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol 2011;165(3):441–6. DOI:10.1530/EJE-11-0466; Tuttle R., Tala H., Shah J. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010;20(12):1341–9. DOI:10.1089/thy.2010.0178; Durante C., Attard M., Torlontano M. et al. Identification and optimal postsurgical follow-up of patients with very low-risk papillary thyroid microcarcinomas. J Clin Endocrinol Metab 2010;95(11):4882–8. DOI:10.1210/jc.2010-0762; Tuttle R., Tala H., Shah J. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010; 20(12):1341–9. DOI:10.1089/thy.2010.0178; Jeon M., Kim W., Park W. et al. Modified dynamic risk stratification for predicting recurrence using the response to initial therapy in patients with differentiated thyroid carcinoma. Eur J Endocrinol 2014;170:23–30. DOI:10.1530/EJE-13-0524; Han J., Kim W., Yim J. et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid 2012;22(8):784–90. DOI:10.1089/thy.2011.0322; Scheffel R., Zanella A., Antunes D. et al. Low recurrence rates in a cohort of differentiated thyroid carcinoma patients: a referral center experience. Thyroid 2015;25(8):883–9. DOI:10.1089/thy.2015.0077; Llamas-Olier A., Cuéllar D., Buitrago G. Intermediate-risk papillary thyroid cancer: risk factors for early recurrence in patients with excellent response to initial therapy. Thyroid 2018;28(10):1311–7. DOI:10.1089/thy.2017.0578; Ganly I., Nixon I., Wang L. et al. Survival from differentiated thyroid cancer: what has age got to do with it? Thyroid 2015;25(10):1106–14. DOI:10.1089/thy.2015.0104; Comtois R., Theriault C., Del Vecchio P. Assessment of the efficacy of iodine-131 for thyroid ablation. J Nucl Med 1993;34(11):1927–30.; Schlumberger M., Berg G., Cohen O. et al. Follow-up of low-risk patients with differentiated thyroid carcinoma. Eur J Endocrinol 2004;150(2):105–12. DOI:10.1530/eje.0.1500105; Sacks W., Fung C., Chang J. et al. The effectiveness of radioactive iodine for treatment of low-risk thyroid cancer: a systematic analysis of the peer-reviewed literature from 1966 to April 2008. Thyroid 2010;20(11):1235–45. DOI:10.1089/thy.2009.0455; Dietlein M., Eschner W., Grünwald F. et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer. Nuklearmedizin 2016;55:77–89. DOI:10.1055/s-0037-1616478; Gastanga M., Cantara S., Pacini F. Reappraisal of the indication for radioiodine thyroid ablation in differentiated thyroid cancer patients. J Endocrinol Invest 2016;39(10):1087–94. DOI:10.1007/s40618-016-0503-z; Deandreis D., Rubino C., Tala H. et al. Comparison of empiric versus whole-body-blood clearance dosimetry-based approach to radioactive iodine treatment in patients with metastases from differentiated thyroid cancer. J Nucl Med 2017;58(5):717–22. DOI:10.2967/jnumed.116.179606; Verburg F., Schmidt M., Kreissl M. et al. Procedural guideline for Iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma (version 5). Nuklearmedizin 2019;58(3):228–41. DOI:10.1055/a-0891-1839; Giovanella L., Treglia G., Sadeghi R. et al. Unstimulated highly sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab 2014;99(2):440– 7. DOI:10.1210/jc.2013-3156; Francis G., Waguespack S., Bauer A. et al. American Thyroid Association Guidelines Task Force Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid 2015;25(7):716–59. DOI:10.1089/thy.2014.0460; Li J., He Z., Bansal V., Hennessey J. Low iodine diet in differentiated thyroid cancer: a review. Clin Endocrinol (Oxf) 2016;84(1):3–12. DOI:10.1111/cen.12846; Campennì А., Barbaro D., Guzzo M. et al. Personalized management of differentiated thyroid cancer in real life – practical guidance from a multidisciplinary panel of experts. Endocrine 2020;70(2):280–91. DOI:10.1007/s12020-020-02418-x; Feine U., Lietzenmayer R., Hanke J. et al. 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I. [In German]. Nuklearmedizin 1995;34(4):127–34.; Feine U., Lietzenmayer R., Hanke J. et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37(9):1468–72.; Asa S., Aksoy S., Vatankulu B. et al. The role of FDG-PET/CT in differentiated thyroid cancer patients with negative iodine-131 whole-body scan and elevated anti-Tg level. Ann Nucl Med 2014;28(10):970–9. DOI:10.1007/s12149-014-0897-7; Liu Y. The role of 18F-FDG PET/CT in the follow-up of well-differentiated thyroid cancer with negative thyroglobulin but positive and/or elevated antithyroglobulin antibody. Nucl Med Commun 2016;37(6):577–82. DOI:10.1097/MNM.0000000000000480; Ozkan E., Aras G., Kucuk N. Correlation of 18F-FDG PET/CT findings with histopathological results in differentiated thyroid cancer patients who have increased thyroglobulin or antithyroglobulin antibody levels and negative 131I whole-body scan results. Clin Nucl Med 2013;38(5):326–31. DOI:10.1097/RLU.0b013e318286827b; Liu M., Cheng L., Jin Y. et al. Predicting 131I-avidity of metastases from differentiated thyroid cancer using 18F-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 2018;8(1):4352. DOI:10.1038/s41598-018-22656-4; Silberstein E. The problem of the patient with thyroglobulin elevation but negative iodine scintigraphy: the TENIS syndrome. Semin Nucl Med 2011;41(2):113–20. DOI:10.1053/j.semnuclmed.2010.10.002; Bartel C., Magerefteh S., Avram A. et al. Snmmi procedure standard for scintigraphy for differentiated thyroid cancer. J Nucl Med Technol 2020;48(3):202–9. DOI:10.2967/jnmt.120.243626; Avram А., Giovanella L., Greenspan B. et al. SNMMI procedure standard/eanm practice guideline for nuclear medicine evaluation and therapy of differentiated thyroid cancer: abbreviated version. J Nucl Med 2022;63(6):15N–35N.; Petranović P., Kreissl M., Campenni A. et al. SNMMI/EANM practice guideline vs. ETA Consensus Statement: differences and similarities in approaching differentiated thyroid cancer management-the EANM perspective. Eur J Nucl Med Mol Imaging 2022;49(12):3959–63. DOI:10.1007/s00259-022-05935-1; Giovanella L., Treglia G., Ceriani L., Verburg F. Detectable thyroglobulin with negative imaging in differentiated thyroid cancer patients. What to do with negative anatomical imaging and radioiodine scan? Nuklearmedizin 2014;53(1):1–10. DOI:10.3413/Nukmed-0618-13-08; Van Nostrand D. Radioiodine imaging for differentiated thyroid cancer: not all radioiodine images are performed equally. Thyroid 2019;29(7):901–9.; Donohoe K., Aloff J., Avram А. et al. Appropriate use criteria for nuclear medicine in the evaluation and treatment of differentiated thyroid cancer. J Nucl Med 2020;61(3):375–96. DOI:10.2967/jnumed.119.240945; Binse I., Poeppel T., Ruhlmann M. et al. 68Ga-DOTATOC PET/CT in patients with iodine- and 18F-FDG-negative differentiated thyroid carcinoma and elevated serum thyroglobulin. J Nucl Med 2016;57(10):1512–7. DOI:10.2967/jnumed.115.171942; Vrachimis A., Stegger L., Wenning C. et al. 68Ga-DOTATATE PET/ MRI and 18F-FDG PET/CT are complementary and superior to diffusion-weighted MR imaging for radioactive-iodine-refractory differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2016;43(10):1765–72. DOI:10.1007/s00259-016-3378-5; Czepczynski R., Matysiak-Grzes M., Gryczynska M. et al. Peptide receptor radionuclide therapy of differentiated thyroid cancer: efficacy and toxicity. Arch Immunol Ther Exp (Warsz) 2015;63(2):147–54. DOI:10.1007/s00005-014-0318-6; Versari A., Sollini M., Frasoldati A. et al. Differentiated thyroid cancer: A new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 2014;24(4):715–26. DOI:10.1089/thy.2013.0225; Roll W., Riemann B., Schafers M. et al. 177Lu-DOTATATE therapy in radioiodine-refractory differentiated thyroid cancer: a single center experience. Clin Nucl Med 2018;43(10):e346–51. DOI:10.1097/RLU.0000000000002219; Gubbi S., Koch C., Klubo-Gwiezdzinska J. Peptide receptor radionuclide therapy in thyroid cancer. Front endocrinol (Lausanne) 2022;13:896287. DOI:10.3389/fendo.2022.896287; Ryu Y.J., Lim S.Y., Na Y.M. et al. Prostate-specific membrane antigen expression predicts recurrence of papillary thyroid carcinoma after total thyroidectomy. BMC Cancer 2022;22(1):1278. DOI:10.1186/s12885-022-10375-z; Piek M., De Vries L., Donswijk M. et al. Ploeg IMC. Retrospective analysis of PSMA PET/CT thyroid incidental uptake in adults: incidence, diagnosis, and treatment/outcome in a tertiary cancer referral center and University Medical Center. Eur J Nucl Med Mol Imaging 2022;49(7):2392–400. DOI:10.1007/s00259-022-05679-y; https://ogsh.abvpress.ru/jour/article/view/871
-
4Academic Journal
Συγγραφείς: A. A. Odzharova, A. I. Pronin, T. G. Gasparyan, Z. Kh. Kamolova, А. А. Оджарова, А. И. Пронин, Т. Г. Гаспарян, З. Х. Камолова
Πηγή: Head and Neck Tumors (HNT); Том 12, № 2 (2022); 123-131 ; Опухоли головы и шеи; Том 12, № 2 (2022); 123-131 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-2
Θεματικοί όροι: 18 F-фтордезоксиглюкоза, solitary fibrous tumor, hepatocellular carcinoma, 18 F-сholine, 18 F-fluorodeoxyglucose, совмещенная с компьютерной томографией, солитарная фиброзная опухоль, 18 F-холин
Περιγραφή αρχείου: application/pdf
Relation: https://ogsh.abvpress.ru/jour/article/view/783/537; Stout A.P., Murray M.R. Hemangiopericytoma. A vascular tumor featuring Zimmerman's pericytes. Ann Surg 1942;116(1):26-33. DOI:10.1097/00000658-194207000-00004.; Louis D.N., Perry A., Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica 2016;131(6):803-20. DOI:10.1007/s00401-016-1545-1.; Ouladan Sh., Trautmann M., Orouji E. et al. Differential diagnosis of solitary fibrous tumors: A study of 454 soft tissue tumors indicating the diagnostic value of nuclear STAT6 relocation and ALDH1 expression combined with in situ proximity ligation assay. Int J Oncol 2015;46(6):2595-605. DOI:10.3892/ijo.2015.2975.; Gold J.S., Antonescu C.R., Hajdu C. et al. Clinicopathologic correlates of solitary fibrous tumors. Cancer 2002;15;94(4):1057-68. DOI:10.1002/cncr.10328.; Bruzzone A., Varaldo M., Ferrarazzo C. et al. Solitary fibrous tumor. Rare Tumors 2010;2(4):e64. DOI:10.4081/rt.2010.e64.; Enzinger F.M., Smith B.H. Hemangiopericytoma. An analysis of 106 cases. Hum Pathol 1976;7(1):61-82. DOI:10.1016/s0046-8177(76)80006-8.; Cardoso B.B., Moreira D.P., de Assis Fernandes Tavares F. Management of patients with hemangiopericytoma: case report and literature review. Am J Health Res 2019;7(2):24-30. DOI:10.11648/j.ajhr.20190702.12.; Hayenga H.N., Bishop A.J., Wardak Z. et al. Intraspinal dissemination and local recurrence of an intracranial hemangiopericytoma. World Neurosurg 2019;123:6'-75. DOI:10.1016/j. wneu.2018.11.173.; Феденко А.А., Бохян А.Ю., Горбунова В.А. и др. Практические рекомендации по лекарственному лечению сарком мягких тканей. Рекомендации Восточно-Европейской группы по изучению сарком. Злокачественные опухоли. 2020;10(3s2-1):296-305. DOI:10.18027/2224-5057-2017-7-3s2-216-224.; Abd-Ellah M.K., Awad A.I., Ashraf A.M. et al. A review on brain tumor diagnosis from MRI images: practical implications, key achievements, and lessons learned. Magn Reson Imaging2019;61:300-18. DOI:10.1016/j.mri.2019.05.028.; Horska A., Barker P.B. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin North Am 2010;20(3):293-310. DOI:10.1016/j.nic.2010.04.003.; Sawlani V., Patel M.D., Davies N. et al. Multiparametric MRI: practical approach and pictorial review of a useful tool in the evaluation of brain tumours and tumourlike lesions. Insights Imaging 2020;11(89):19. DOI:10.1186/s13244-020-00888-1.; Пронин И.Н. Фадеева Л.М., Захарова Н.Е. и др. Перфузионная КТ: исследование мозговой гемодинамики в норме. Медицинская визуализация 2007;3:8-14.; Lovblad K-O., Bouchez L., Altrichter S. PET-CT in neuroradiology. Clin Transl Neurosci 2019;3(2):13. DOI:10.1177/2514183X19868147.; Lasocki A., Hicks R.J. How we read: the combined use of MRI and novel PET tracers for the characterisation and treatment planning of masses in neurooncology. Cancer Imaging 2019;19:57. DOI:10.1186/s40644-019-0241-5.; Albert N.L., Weller M., Suchorska B. et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 2016;18(9):1199-208. DOI:10.1093/neuonc/now058.; Hara T., Kosaka N., Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med1998;39(6):990-5.; Gibellini F., Smith T.K. The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 2010;62(6): 414-428. DOI:10.1002/iub.337.; https://ogsh.abvpress.ru/jour/article/view/783
-
5Academic Journal
Συγγραφείς: K. Yu. Slashchuk, M. V. Degtyarev, P. O. Rumyantsev, A. K. Eremkina, N. V. Tarbaeva, D. G. Beltsevich, I. V. Kim, G. A. Melnicthhenko, N. G. Mokrysheva, К. Ю. Слащук, М. В. Дегтярев, П. О. Румянцев, А. К. Еремкина, Н. В. Тарбаева, Д. Г. Бельцевич, И. В. Ким, Г. А. Мельниченко, Н. Г. Мокрышева
Συνεισφορές: This study was performed as a part of the clinical program “Providing medical care to patients with primary and secondary hyperparathyroidism using hybrid technologies of radionuclide imaging and gamma-navigation surgery” at the Research Medical Center of Endocrinology, Ministry of Health of Russia between 2018 and 2020 (No. 2018-4-1)., Работа проведена в рамках клинической апробации Минздрава России «Оказание медицинской помощи пациентам с первичным и вторичным гиперпаратиреозом на основе гибридных технологий радионуклидной визуализации и гамма-навигационной хирургии», выполняемой на базе ФГБУ «Научного медицинского исследовательского центра эндокринологии» Минздрава России в период с 2018 по 2020 г. (№ 2018-4-1).
Πηγή: Head and Neck Tumors (HNT); Том 11, № 4 (2021); 10-21 ; Опухоли головы и шеи; Том 11, № 4 (2021); 10-21 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2017-0-4
Θεματικοί όροι: совмещенная с компьютерной томографией, visualization of parathyroid glands, medical imaging, ultrasound, sestamibi scintigraphy, single-photon emission computed tomography, combined with computed tomography, визуализация околощитовидных желез, медицинская визуализация, ультразвуковое исследование, планарная сцинтиграфия, однофотонная эмиссионная компьютерная томография
Περιγραφή αρχείου: application/pdf
Relation: https://ogsh.abvpress.ru/jour/article/view/710/497; Мокрышева Н.Г., Мирная С.С., Добрева Е.А. и др. Первичный гиперпаратиреоз в России по данным регистра. Проблемы эндокринологии 2019;65(50):300–10. DOI:10.14341/probl10126.; Yeh M.W., Ituarte P.H.G., Zhou H.C. et al. Incidence and prevalence of primary hyperparathyroidism in a racially mixed population. J Clin Endocrin Metab 2013;98(3):1122–9. DOI:10.1210/jc.2012-4022.; Sudhaker D. Epidemiology of parathyroid disorders. Best Pract Res Clin Endocrinol Metab 2018;32(6):773–80. DOI:10.1016/j.beem.2018.12.003.; Слащук К.Ю., Дегтярев М.В., Румянцев П.О. и др. Методы визуализации околощитовидных желез при первичном гиперпаратиреозе. Обзор литературы. Эндокринная хирургия 2019;13(4):153–74. DOI:10.14341/serg12241.; Cheung K., Wang T.S., Farrokhyar F. et al. A meta-analysis of preoperative localization techniques for patients with primary hyperparathyroidism. Ann Surg Oncol 2012;19(2):577–83.; Kluijfhout W.P., Pasternak J.D., Beninato T. et al. Diagnostic performance of computed tomography for parathyroid adenoma localization; a systematic review and meta-analysis. Eur J Radiol 2017;88:117–28. DOI:10.1016/j.ejrad.2017.01.004.; Baj J., Sitarz R., Łokaj M. et al. Preoperative and intraoperative methods of parathyroid gland localization and the diagnosis of parathyroid adenomas. Molecules 2020;25(7):1724. DOI:10.3390/molecules25071724.; Lombardi C.P., Raffaelli M., Traini E. et al. Video-assisted minimally invasive parathyroidectomy: benefits and long-term results. World J Surg 2009;33(11):2266. DOI:10.1007/s00268-009-9931-7.; Suliburk J.W., Sywak M.S., Sidhu S.B., Delbridge L.W. 1000 minimally invasive parathyroidectomies without intra-operative parathyroid hormone measurement: lessons learned. ANZ J Surg 2011;81(5):362–5. DOI:10.1111/j.1445-2197.2010.05488.x.; Udelsman R., Lin Z., Donovan P. et al. The superiority of minimally invasive parathyroidectomy based on 1650 consecutive patients with primary hyperparathyroidism. Ann Surg 2011;253(3):585–91. DOI:10.1097/SLA.0b013e318208fed9.; Venkat R., Kouniavsky G., Tufano R.P. et al. Long-term outcome in patients with primary hyperparathyroidism who underwent minimally invasive parathyroidectomy. World J Surg 2012;36(1):55–60. DOI:10.1007/s00268-011-1344-8.; Wilhelm S.M., Wang T.S., Ruan D.T. et al. The American Association of Endocrine Surgeons Guidelines for Definitive Management of Primary Hyperparathyroidism. JAMA Surg 2016;151(10):959–68. DOI:10.1001/jamasurg.2016.2310.; Lorberboym M., Ezri T., Schachter P.P. Preoperative technetium Tc 99m sestamibi SPECT imaging in the management of primary hyperparathyroidism in patients with concomitant multinodular goiter. Arch Surg 2005;140(7):656–60. DOI:10.1001/archsurg.140.7.656.; Shafiei B., Hoseinzadeh S., Fotouhi F. et al. Preoperative99m Tc-sestamibi scintigraphy in patients with primary hyperparathyroidism and concomitant nodular goiter: comparison of SPECT-CT, SPECT, and planar imaging. Nucl Med Commun 2012;33(10):1070–6. DOI:10.1097/MNM.0b013e32835710b6.; https://ogsh.abvpress.ru/jour/article/view/710
-
6Academic Journal
Συγγραφείς: V. S. Ilyakov, Artem Pronin, A. I. Mikhaylov, A. V. Parnas, Nadezhda Meshcheriakova, Z. H. Kamolova, В. С. Ильяков, А. И. Пронин, А. И. Михайлов, А. В. Парнас, Н. А. Мещерякова, З. Х. Камолова
Πηγή: Cancer Urology; Том 16, № 4 (2020); 160-169 ; Онкоурология; Том 16, № 4 (2020); 160-169 ; 1996-1812 ; 1726-9776
Θεματικοί όροι: метаболическая активность, fluorodeoxyglucose, 18F-FDG, renal cell carcinoma, diagnostics, metabolic activity, совмещенная с компьютерной томографией, фтордезоксиглюкоза, 18Р-ФДГ, почечно-клеточный рак, диагностика
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1372/1227; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424. DOI:10.3322/caac.21492.; Motzer R.J., Jonasch E., Michaelson M.D. et al. NCCN Guidelines Insights: Kidney Cancer, Version 2.2020. J Natl Compr Canc Netw 2019;17(11):1278-85. DOI:10.6004/jnccn.2019.0054.; Кушлинский Н.Е., Фридман М.В., Морозов А.А. и др. Современные подходы к иммунотерапии рака почки. Онкоурология 2018;14(2):54-67. DOI:10.17650/1726-9776-2018-14-2-54-67.; Ricketts C.J., De Cubas A.A., Fan H. et al. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep 2018;23(1):313-26.e5. DOI:10.1016/j.celrep.2018.03.075.; Gray R.E., Harris G.T. Renal cell carcinoma: diagnosis and management. Am Fam Physician 2019;99(3):179-84.; Escudier B., Porta C., Schmidinger M. et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27(suppl 5):v58-68. DOI:10.1093/annonc/mdw328.; Win A.Z., Aparici C.M. Clinical effectiveness of (18)f-fluorodeoxyglucose positron emission tomography/computed tomography in management of renal cell carcinoma: a single institution experience. World J Nucl Med 2015;14(1):36-40. DOI:10.4103/1450-1147.150535.; Wiechno P., Kucharz J., Sadowska M. et al. Contemporary treatment of metastatic renal cell carcinoma. Med Oncol 2018;35(12):156. DOI:10.1007/s12032-018-1217-1.; Bianchi M., Sun M., Jeldres C. et al. Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann Oncol 2012;23(4):973-80. DOI:10.1093/annonc/mdr362.; Gupta K., Miller J.D., Li J.Z. et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 2008;34(3):193-205. DOI:10.1016/j.ctrv.2007.12.001.; Murphy G., Jhaveri K. The expanding role of imaging in the management of renal cell carcinoma. Expert Rev Anticancer Ther 2011;11(12):1871-88. DOI:10.1586/era.11.122.; Kuusk T., Grivas N., de Bruijn R., Bex A. The current management of renal cell carcinoma. Minerva Med 2017;108(4):357-69. DOI:10.23736/S0026-4806.17.05058-3.; Fletcher J.W., Djulbegovic B., Soares H. et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008;49:480-508. DOI:10.2967/jnumed.107.047787.; Sai K.K.S., Zachar Z., Bingham P.M., Mintz A. Metabolic PET Imaging in Oncology. AJR Am J Roentgenol 2017;209(2):270-6. DOI:10.2214/AJR.17.18112.; Verma V., Choi J.I., Sawant A. et al. Use of PET and other functional imaging to guide target delineation in radiation oncology. Semin Radiat Oncol 2018;28(3):171-7. DOI:10.1016/j.semradonc.2018.02.001.; Zhu A., Lee D., Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol 2011;38(1):55-69. DOI:10.1053/j.seminoncol.2010.11.012.; Apostolova I., Wedel F., Brenner W. Imaging of tumor metabolism using positron emission tomography (PET). Recent Results Cancer Res 2016;207:177-205. DOI:10.1007/978-3-319-42118-6_8.; Liu Y., Ghesani N.V., Zuckier L.S. Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy. Semin Nucl Med 2010;40:294-315. DOI:10.1053/j.semnuclmed.2010.02.002.; Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324(5930):1029-33. DOI:10.1126/science.1160809.; Kim J.W., Dang C.V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 2006;66(18):8927-30. DOI:10.1158/0008-5472.CAN-06-1501.; Wang H.Y., Ding H.J., Chen J.H. et al. Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging 2012;12(3):464-74. DOI:10.1102/1470-7330.2012.0042.; Ma H., Shen G., Liu B. et al. Diagnostic performance of 18F-FDG PET or PET/CT in restaging renal cell carcinoma: a systematic review and meta-analysis. Nucl Med Commun 2017;38(2):156-63. DOI:10.1097/MNM.0000000000000618.; Ozulker T., Ozulker E, Ozbek E., OzpaSaci T. A prospective diagnostic accuracy study of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun 2011;32(4):265-72. DOI:10.1097/MNM.0b013e3283442e3b.; Kamel E.M., Jichlinski P., Prior J.O. et al. Forced diuresis improves the diagnostic accuracy of 18F-FDG PET in abdominopelvic malignancies. J Nucl Med 2006;47(11):1803-7.; Karivedu V., Jain A.L., Eluvathingal T.J., Sidana A. Role of positron emission tomography imaging in metabolically active renal cell carcinoma. Curr Urol Rep 2019;20(10):56. DOI:10.1007/s11934-019-0932-2.; Tabei T., Nakaigawa N., Kaneta T. et al. Early assessment with 18F-2-fluoro-2-deoxyglucose positron emission tomography/ computed tomography to predict shortterm outcome in clear cell renal carcinoma treated with nivolumab. BMC Cancer 2019;19(1):298. DOI:10.1186/s12885-019-5510-y.; Nakaigawa N., Kondo K., Kaneta T. et al. FDG PET/CT after first molecular targeted therapy predicts survival of patients with renal cell carcinoma. Cancer Chemother Pharmacol 2018;81(4):739-44. DOI:10.1007/s00280-018-3542-7.; Kayani I., Avril N., Bomanji J. et al. Sequential FDG-PET/CT as a biomarker of response to sunitinib in metastatic clear cell renal cancer. Clin Cancer Res 2011;17(18):6021-8. DOI:10.1158/1078-0432.CCR-10-3309.; Elahmadawy M.A., Elazab M.S.S., Ahmed S., Salama M. Diagnostic value of F-18 FDG PET/CT for local and distant disease relapse surveillance in surgically treated RCC patients: can it aid in establishing consensus follow up strategy? Nucl Med Rev Cent East Eur 2018;21(2):85-91. DOI:10.5603/NMR.2018.0024.; Chen J.L., Appelbaum D.E., Kocherginsky M. et al. FDG-PET as a predictive biomarker for therapy with everolimus in metastatic renal cell cancer. Cancer Med 2013;2(4):545-52. DOI:10.1002/cam4.102.; Rakheja R., Makis W., Skamene S. et al. Correlating metabolic activity on 18F-FDG PET/CT with histopathologic characteristics of osseous and soft-tissue sarcomas: a retrospective review of 136 patients. AJR Am J Roentgenol 2012;198(6):1409-16. DOI:10.2214/AJR.11.7560.; Watanabe Y., Suefuji H., Hirose Y. et al. 18F-FDG uptake in primary gastric malignant lymphoma correlates with glucose transporter 1 expression and histologic malignant potential. Int J Hematol 2013;97(1):43-9. DOI:10.1007/s12185-012-1225-4.; Kadota K., Colovos C., Suzuki K. et al. FDG-PET SUVmax combined with IASLC/ATS/ERS histologic classification improves the prognostic stratification of patients with stage I lung adenocarcinoma. Ann Surg Oncol 2012;19(11):3598-605. DOI:10.1245/s10434-012-2414-3.; Kubota K., Okasaki M., Minamimoto R. et al. Lesion-based analysis of (18)F-FDG uptake and (111)In-Pentetreotide uptake by neuroendocrine tumors. Ann Nucl Med 2014;28(10):1004-10. DOI:10.1007/s12149-014-0900-3.; Heudel P., Cimarelli S., Montella A. et al. Value of PET-FDG in primary breast cancer based on histopathological and immunohistochemical prognostic factors. Int J Clin Oncol 2010;15(6):588-93. DOI:10.1007/s10147-010-0120-3.; Endo M., Nakagawa K., Ohde Y. et al. Utility of 18FDG-PET for differentiating the grade of malignancy in thymic epithelial tumors. Lung Cancer 2008;61(3):350-5. DOI:10.1016/j.lungcan.2008.01.003.; Takahashi M., Kume H., Koyama K. et al. Preoperative evaluation of renal cell carcinoma by using 18F-FDG PET/CT. Clin Nucl Med 2015;40(12):936-40. DOI:10.1097/RLU.0000000000000875.; Nakajima R., Nozaki S., Kondo T. et al. Evaluation of renal cell carcinoma histological subtype and fuhrman grade using 18F-fluorodeoxyglucose-positron emission tomography/computed tomography. Eur Radiol 2017;27(11):4866-73. DOI:10.1007/s00330-017-4875-z.; Nakajima R., Abe K., Kondo T. et al. Clinical role of early dynamic FDG-PET/CT for the evaluation of renal cell carcinoma. Eur Radiol 2016;26(6):1852-62. DOI:10.1007/s00330-015-4026-3.; Nakhoda Z., Torigian D.A., Saboury B. et al. Assessment of the diagnostic performance of (18)F-FDG-PET/CT for detection and characterization of solid renal malignancies. Hell J Nucl Med 2013;16(1):19-24. DOI:10.1967/s002449910067.; Song M. Recent developments in small molecule therapies for renal cell carcinoma. Eur J Med Chem 2017;142:383-92. DOI:10.1016/j.ejmech.2017.08.007.; European Association of Urology: The compilation of the complete Guidelines should be referenced as: EAU Guidelines. Edn. presented at the EAU Annual Congress Copenhagen 2018. Available at: http://uroweb.org/guideline/renal-cell-carcinoma/.; Namura K., Minamimoto R., Yao M. et al. Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-d glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer 2010:10:667. DOI:10.1186/1471-2407-10-667.; Pankowska V., Malkowski B., Wedrowski M. et al. FDG PET/CT as a survival prognostic factor in patients with advanced renal cell carcinoma. Clin Exp Med 2019;19(1):143-8. DOI:10.1007/s10238-018-0539-9.; Nakaigawa N., Kondo K., Tateishi U. et al. FDG PET/CT as a prognostic biomarker in the era of molecular-targeting therapies: max SUVmax predicts survival of patients with advanced renal cell carcinoma. BMC Cancer 2016;16:67. DOI:10.1186/s12885-016-2097-4.; Ferda J., Ferdova E., Hora M. et al. 18F-FDG-PET/CT in potentially advanced renal cell carcinoma: a role in treatment decisions and prognosis estimation. Anticancer Res 2013;33(6):2665-72.; Lee H., Hwang K.H., Kim S.G. et al. Can initial (18)F-FDG PET-CT imaging give information on metastasis in patients with primary renal cell carcinoma? Nucl Med Mol Imaging 2014;48(2):144-52. DOI:10.1007/s13139-013-0245-1.; Alongi P., Picchio M., Zattoni F. et al. Recurrent renal cell carcinoma: clinical and prognostic value of FDG PET/CT. Eur J Nucl Med Mol Imaging 2016;43(3):464-73. DOI:10.1007/s00259-015-3159-6.; Fuccio C., Ceci F., Castellucci P. et al. Restaging clear cell renal carcinoma with 18F-FDG PET/CT. Clin Nucl Med 2014;39(6):e320-4. DOI:10.1097/RLU.0000000000000382.; Ljungberg B., Albiges L., Abu-Ghanem Y. et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur Urol 2019;75(5):799-810. DOI:10.1016/j.eururo.2019.02.011.; Escudier B., Sharma P., McDermott D.F. et al. CheckMate 025 randomized phase 3 study: outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol 2017;72(6):962-71. DOI:10.1016/j.eururo.2017.02.010.; Motzer R.J., Tannir N.M., McDermott D.F. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018;378(14):1277-90. DOI:10.1056/NEJMoa1712126.; Ito H., Kondo K., Kawahara T. et al. One-month assessment of renal cell carcinoma treated by everolimus using FDG PET/CT predicts progression-free and overall survival. Cancer Chemother Pharmacol 2017;79(5):855-61. DOI:10.1007/s00280-017-3275-z.; Avril N., Sassen S., Schmalfeldt B. et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol 2005;23(30):7445-53. DOI:10.1200/JCO.2005.06.965.; Lordick F. Optimizing neoadjuvant chemotherapy through the use of early response evaluation by positron emission tomography. Recent Results Cancer Res 2012;196:201-11. DOI:10.1007/978-3-642-31629-6_14.; Ueda S., Tsuda H., Saeki T. et al. Early metabolic response to neoadjuvant letrozole, measured by FDG PET/CT, is correlated with a decrease in the Ki67 labeling index in patients with hormone receptor-positive primary breast cancer: a pilot study. Breast Cancer 2011;18(4):299-308. DOI:10.1007/s12282-010-0212-y.; Benz M.R., Czernin J., Allen-Auerbach M.S. et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res 2009;15(8):2856-63. DOI:10.1158/1078-0432.CCR-08-2537.; Nakaigawa N., Kondo K., Ueno D. et al. The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy. BMC Cancer 2017;17(1):39. DOI:10.1186/s12885-016-3044-0.; Ueno D., Yao M., Tateishi U. et al. Early assessment by FDG-PET/CT of patients with advanced renal cell carcinoma treated with tyrosine kinase inhibitors is predictive of disease course. BMC Cancer 2012;12:162. DOI:10.1186/1471-240712-162.; Caldarella C., Muoio B., Isgro M.A. et al. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to tyrosine-kinase inhibitors in patients with metastatic primary renal cell carcinoma. Radiol Oncol 2014;48(3):219-27. DOI:10.2478/raon-2013-0067.; Kakizoe M., Yao M., Tateishi U. et al. The early response of renal cell carcinoma to tyrosine kinase inhibitors evaluated by FDG PET/CT was not influenced by metastatic organ. BMC Cancer 2014;14:390. DOI:10.1186/1471-2407-14-390.; https://oncourology.abvpress.ru/oncur/article/view/1372
-
7Academic Journal
Συγγραφείς: Aretinskiy, A. V., Zhilyakov, A. V., Aretinskiy, V. B., Shershever, A. S., Isupov, A. B., Shorikov, E. V., Аретинский, А. В., Жиляков, А. В., Аретинский, В. Б., Шершевер, А. С., Исупов, А. Б., Шориков, Е. В.
Θεματικοί όροι: EPILEPSY, POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY, 18F-FLUORO-2-DEOXY-D-GLUCOSE, MAGNETIC RESONANCE IMAGING (MRI), ELECTROENCEPHALOGRAPHY (EEG), ЭПИЛЕПСИЯ, ПОЗИТРОННО ЭМИССИОННАЯ ТОМОГРАФИЯ, СОВМЕЩЕННАЯ С КОМПЬЮТЕРНОЙ ТОМОГРАФИЕЙ, 18-ФТОРДЕЗОКСИГЛЮКОЗА, МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ (МРТ), ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ (ЭЭГ)
Περιγραφή αρχείου: application/pdf
Relation: Уральский медицинский журнал. 2019. Т. 171, № 3.; http://elib.usma.ru/handle/usma/12519
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/12519
-
8Academic Journal
Συγγραφείς: M. B. Dolgushin, A. I. Mikhaylov, S. S. Gordeev, М. Б. Долгушин, А. И. Михайлов, С. С. Гордеев
Πηγή: Surgery and Oncology; Том 9, № 2 (2019); 11-15 ; Хирургия и онкология; Том 9, № 2 (2019); 11-15 ; 2949-5857 ; 10.17650/2220-3478-2019-9-2
Θεματικοί όροι: совмещенная с компьютерной томографией, сarcinoembryonic antigen, 18F-fluorodeoxyglucose, positron emission tomography combined with computed tomography, раково-эмбриональный антиген, 18F-фтордезоксиглюкоза, позитронно-эмиссионная томография
Περιγραφή αρχείου: application/pdf
Relation: https://www.onco-surgery.info/jour/article/view/286/239; Kitajima K., Murakami K., Yamasaki E. et al. Performance of integrated FDG PET/contrast-enhanced CT in the diagnosis of recurrent colorectal cancer: comparison with integrated FDG PET/non-contrast-enhanced CT and enhanced CT. Eur J Nucl Med Mol Imaging 2009;36(9):1388—96. PMID: 19370346. DOI:10.1007/s00259-009-1081-5.; Hammond K., Margolin D.A. The role of postoperative surveillance in colorectal cancer. Clin Colon Rectal Surg 2007;20(3):249-54. PMID: 20011206. DOI:10.1055/s-2007-984869.; Adam R., Pascal G., Azoulay D. et al. Liver resection for colorectal metastases: the third hepatectomy. Ann Surg 2003;238(6):871—84. PMID: 14631224. DOI:10.1097/01sla.0000098112.04758.4e.; Simmonds P.C., Primrose J.N., Colquitt J.L. et al. Surgical resection of hepatic metas-tases from colorectal cancer: a systematic review of published studies. Br J Cancer 2006;94:982-99. DOI:10.1038/sj.bjc.6603033. PMID: 16538219.; Berger K.L., Nicholson S.A., Dehdashti F., Siegel B.A. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am J Roentgenol 2000;174(4):1005—8. PMID: 10749239. DOI:10.2214/ajr.174.4.1741005.; Zhu A., Lee D., Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol 2011;38(1):55—69. PMID: 21362516. DOI:10.1053/j.semi-noncol.2010.11.012.; Cipe G., Ergul N., Hasbahceci M. et al. Routine use of positron-emission tomog-raphy/computed tomography for staging of primary colorectal cancer: does it affect clinical management? World J Surg Oncol 2013;11(1):49. PMID: 23445625. DOI:10.1186/1477-7819-11-49.; Lee J.H., Lee M.R. Positron emission to-mography/computed tomography in the staging of colon cancer. Ann Coloproctol 2014;30(1):23—7. PMID: 24639967. DOI:10.3393/ac.2014.30.1.23.; Orlacchio A., Schillaci O., Fusco N. et al. Role of PET/CT in the detection of liver metastases from colorectal cancer. Radiol Med 2009;114(4):571—85. PMID: 19444590. DOI:10.1007/s11547-009-0393-7.; Travaini L.L., Trifiro G., Ravasi L. et al. Role of [18F]FDG-PET/CT after radiofrequency ablation of liver metastases: preliminary results Eur J Nucl Med Mol Imaging 2008;35(7):1316—22. PMID: 18338164. DOI:10.1007/s00259-008-0748-7.; Benson A.B., Venook A.P., Al-Hawary M.M. et al. NCCN Guidelines Insights: Colon Cancer, version 2.2018. J Natl Compr Canc Netw 2018;16(4):359—69. PMID: 29632055. DOI:10.6004/jnccn.2018.0021.; Benson A.B., Venook A.P., Al-Hawary M.M. et al. Rectal Cancer, version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2018;16(7):874—901. PMID: 30006429. DOI:10.6004/jnccn.2018.0061.; Steele S.R., Chang G.J., Hendren S. et al. Practice guideline for the surveillance of patients after curative treatment of colon and rectal cancer. Dis Colon Rectum 2015;58(8):713—25. PMID: 26163950. DOI:10.1097/DCR.0000000000000410.; Kuker R.A., Mesoloras G., Gulec S.A. Optimization of FDG-PET/CT imaging protocol for evaluation of patients with primary and metastatic liver disease. Int Semin Surg Oncol 2007;4(1):17. PMID: 17623095. DOI:10.1186/1477-7800-4-17.; De Bruyne S., Van Damme N., Smeets P. et al. Value of DCE-MRI and FDG-PET/ CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer 2012;106(12):1926—33. PMID: 22596235. DOI:10.1038/bjc.2012.184.; Werner M.K., Brechtel K., Beyer T. et al. PET/CT for the assessment and quantification of 90 Y biodistribution after selective internal radiotherapy (SIRT) of liver metastases. Eur J Nucl Med Mol Imaging 2010;37(2):407—8. PMID: 19997914. DOI:10.1007/s00259-009-1317-4.; Bienert M., McCook B., Carr B.I. et al. 90Y microsphere treatment of unresectable liver metastases: changes in 18F-FDG uptake and tumour size on PET/CT. Eur J Nucl Med Mol Imaging 2005;32(7):778—87. PMID: 15772860. DOI:10.1007/s00259-004-1752-1.; Petersen R.K., Hess S., Alavi A. et al. Clinical impact of FDG-PET/CT on colorectal cancer staging and treatment strategy. Am J Nucl Med Mol Imaging 2014;4(5):471—82. PMID: 25143865.; Laurens S.T., Oyen WJ. Impact of Fluoro-deoxyglucose PET/Computed Tomography on the Management of Patients with Colorectal Cancer. PET Clin 2015;10(3):345—60. PMID: 26099671. DOI:10.1016/j.cpet.2015.03.007.; Lu Y.Y., Chen J.H., Chien C.R. et al. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis 2013;28(8):1039-47. PMID: 23407908. DOI:10.1007/s00384-013-1659-z.; Flamen P., Hoekstra O.S., Homans F. et al. Unexplained rising carcinoembry-onic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur J Cancer 2001;37(7):862-9. PMID: 11313174. DOI:10.1016/S0959-8049(01)00049-1.; Khan K., Athauda A., Aitken K. et al. Survival outcomes in asymptomatic patients with normal conventional imaging but raised carcinoembryonic antigen levels in colorectal cancer following positron emission tomography-computed tomography imaging. Oncologist 2016;21(12):1502—08. PMID: 27742904. DOI:10.1634/theoncologist.2016-0222.; Goldstein M.J., Mitchell E.P. Carcinoem-bryonic antigen in the staging and followup of patients with colorectal cancer. Cancer Invest 2005;23(4):338— 51. PMID: 16100946. DOI:10.1081/CNV-58878.; Graham R.A., Wang S., Catalano PJ., Haller D.G. Postsurgical surveillance of colon cancer. Preliminary cost analysis of physician examination, carcinoembry-onic antigen testing, chest X-ray, and colonoscopy. Ann Surg 1998;228(1): 59-63. PMID: 9671067.; Van Cutsem E., Cervantes A., Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27(8):1386—422. PMID: 27380959. DOI:10.1093/annonc/mdw235.; Fong Y., Fortner J., Sun R.L. et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999;230: 309-18. PMID: 10493478.; Simmonds P.C., Primrose J.N., Colquitt J.L. et al. Surgical resection of hepatic metas-tases from colorectal cancer: A systematic review of published studies. Br J Cancer 2006;94:982-99. PMID: 16538219. DOI:10.1038/sj.bjc.6603033.; Huebner R.H., Park K.C., Shepherd J.E. et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000;41(7):1177—89. PMID: 10914907.; Заривчацкий М.Ф., Мугатаров И.Н., Каменских Е.Д. Хирургическое лечение метастазов колоректального рака в печень. Анналы хирургической гепатологии 2018;23(1):80—7. DOI:10.16931/1995-5464.2018-1-80-87.; Bipat S., van Leeuwen M.S., Comans E.F. et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis — metaanalysis. Radiology 2005;237:123-31. PMID: 16100087. DOI:10.1148/ra-diol.2371042060.; Ackland S.P., Jones M., Tu D. et al. A meta-analysis of two randomised trials of early chemotherapy in asymptomatic metastatic colorectal cancer. Br J Cancer 2005;93(11):1236—43. PMID: 16265352. DOI:10.1038/sj.bjc.6602841.; Gade M., Kubik M., Fisker R.V. et al. Diagnostic value of 18F-FDG PET/CT as first choice in the detection of recurrent colorectal cancer due to rising CEA. Cancer Imaging 2015;15:11. PMID: 26263901. DOI:10.1186/s40644-015-0048-y.; Moulton C., Levine M.N., Law C. et al. An Ontario Clinical Oncology Group (OCOG) randomized controlled trial (RCT) assessing FDG PET/CT in resectable liver colorectal adenocarcinoma me-tastases (CAM). J Clin Oncol 2011;29(suppl):abstr. 3520. DOI:10.1200/jco.2011.29.15_suppl.3520.; Maffione A.M., Lopci E., Bluemel C. et al. Diagnostic accuracy and impact on management of 18F-FDG PET and PET/ CT in colorectal liver metastasis: a metaanalysis and systematic review. Eur J Nucl Med Mol Imaging 2015;42(1):152-63. PMID: 25319712. DOI:10.1007/s00259-014-2930-4.
-
9Academic Journal
Θεματικοί όροι: 18-фтордезоксиглюкоза, magnetic resonance imaging (MRI), эпилепсия, магнитно-резонансная томография (МРТ), 18F-fluoro-2-deoxy-D-glucose, epilepsy, positron emission tomography/computed tomography, позитронно эмиссионная томография, совмещенная с компьютерной томографией, electroencephalography (EEG), электроэнцефалография (ЭЭГ), 3. Good health
-
10Academic Journal
Συγγραφείς: M. B. Dolgushin, N. A. Meshcheryakova, A. A. Odzharova, V. B. Matveev, D. I. Nevzorov, O. E. Platonova, P. V. Kochergin, М. Б. Долгушин, Н. А. Мещерякова, А. А. Оджарова, В. Б. Матвеев, Д. И. Невзоров, О. Е. Платонова, П. В. Кочергин
Πηγή: Cancer Urology; Том 14, № 3 (2018); 134-138 ; Онкоурология; Том 14, № 3 (2018); 134-138 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2018-14-3
Θεματικοί όροι: рецидив, 18F-PSMA-1007, prostate cancer, recurrence, совмещенная с компьютерной томографией, 18F-ПСМА-1007, рак предстательной железы
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/823/795; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/823/566; Rajasekaran A.K., Anilkumar G., Christiansen J.J. Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol 2005;288(5):C975–81. DOI:10.1152/ajpcell.00506.2004. PMID: 15840561.; Wright G.L. Jr, Haley C., Beckett M.L., Schellhammer P.F. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol 1995;1(1):18–28. PMID: 21224086.; Liu H., Rajasekaran A.K., Moy P. et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res 1998;58(18):4055–60. PMID: 9751609.; Giesel F.L., Hadaschik B., Cardinale J. et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 2017;44(4):678–88. DOI:10.1007/s00259-016-3573-4. PMID: 27889802.; Cho S.Y., Gage K.L., Mease R.C. et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 2012;53(12):1883–91. DOI:10.2967/jnumed.112.104661. PMID: 23203246.; Szabo Z., Mena E., Rowe S.P. et al. Initial evaluation of [(18)F]DCFPyL for Prostate-Specific Membrane Antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol 2015;17(4):565–74. DOI:10.1007/s11307-015-0850-8. PMID: 25896814.; Kratochwil C., Giesel F.L., Stefanova M. et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with Lu-177 labeled PSMA-617. J Nucl Med 2016;57(8):1170–6. DOI:10.2967/jnumed.115.171397.; Ahmadzadehfar H., Eppard E., Kürpig S. et al. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget 2016;7(11):12477–88. DOI:10.18632/oncotarget.7245. PMID: 26871285.; Kratochwil C, Bruchertseifer F., Giesel F.L. et al. 225Ac-PSMA-617 for PSMA targeting alpha-radiation therapy of patients with metastatic castration-resistant prostate cancer. J Nucl Med. 2016.; Cardinale J., Schäfer M., Benesová M. et al. Preclinical evaluation of [18F] PSMA1007: a new PSMA-ligand for prostate cancer imaging. J Nucl Med 2016.; Giesel F.L., Hadaschik B., Cardinale J. et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer. Eur J Nucl Med Mol Imaging 2017.; Zaman M.U., Fatima N., Zaman A. et al. Diagnostic challenges in prostate cancer and 68Ga-PSMA PET imaging: a game changer? Asian Pacific J Cancer Prev 2017;18(10):2625–8. DOI:10.22034/APJCP.2017.18.10.2625. PMID: 29072055.; https://oncourology.abvpress.ru/oncur/article/view/823
-
11Academic Journal
Συγγραφείς: T. M. Geliashvili, A. V. Vazhenin, N. G. Afanas’eva, Т. М. Гелиашвили, А. В. Важенин, Н. Г. Афанасьева
Πηγή: Head and Neck Tumors (HNT); Том 7, № 1 (2017); 12-21 ; Опухоли головы и шеи; Том 7, № 1 (2017); 12-21 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2017-7-1
Θεματικοί όροι: тиреоглобулин, differentiated thyroid cancer, 131I whole body scintigraphy, radioiodine ablation, thyroglobulin, совмещенная с компьютерной томографией, дифференцированный рак щитовидной железы, сцинтиграфия всего тела с радиоактивным йодом-131, радиойодабляция
Περιγραφή αρχείου: application/pdf
Relation: https://ogsh.abvpress.ru/jour/article/view/229/250; Чиссов В.И., Дарьялова С.Л. Онкология. М.: ГЭОТАР-Медиа, 2007. [Chissov V.I., Daryalova S.L. Oncology. Moscow: GEOTAR-Media, 2007. (In Russ.)].; Злокачественные новообразования в России в 2013 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М., 2015. [Malignant neoplasms in Russia in 2013 (morbidity and mortality). Eds. A.D. Kaprin, V.V. Starinsky, G.V. Petrova.Moscow, 2015. (In Russ.)].; Sherman S.I. Thyroid carcinoma. Lancet 2003;361(9356):501–11. DOI:10.1016/S0140- 6736(03)12488-9. PMID: 12583960; Sipos J.A., Mazzaferri E.L. Thyroid Cancer Epidemiology and Prognostic Variables. Clin Oncol (R Coll Radiol) 2010;22(6):395–404. DOI:10.1016/j.clon.2010.05.004. PMID: 20627675; Eustatia-Rutten C.F., Corssmit E.P., Biermasz N.R. et al. Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab 2006;91(1):313–9. DOI:10.1210/jc.2005-1322. PMID: 16263822; Davies L., Welch H.G. Increasing incidence of thyroid cancer in the United States, 1973– 2002. JAMA 2006;295(18):2164–7. DOI:10.1001/jama.295.18.2164. PMID: 16684987; Schonberger J., Ruschoff J., Grimm D. et al. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 2002;12(9):747–54. DOI:10.1089/105072502760339307. PMID: 12481939; Grabellus F., Nagarajah J., Bockisch A. et al. Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin Nucl Med 2012;37(2):121–7. DOI:10.1097/RLU.0b013e3182393599. PMID: 22228332; Bongiovanni M., Paone G., Ceriani L. et al. Cellular and molecular basis for thyroid cancer imaging in nuclear medicine. Clin Transl Im 2013;1(3):149–61. DOI:10.1007/s40336-013-0025-z.; Заплатников К., Менцель К., Диль М. и др. Позитронно-эмиссионная томография с 18F-фтордезоксиглюкозой в ракурсе современной диагностики, диспансерного наблюдения и лечения дифференцированного рака щитовидной железы. Проблемы эндокринологии 2004;(1–2):46–50. [Zaplatnikov K., Mentsel’ K., Dil’ M. et al. Positron emission tomography with 18F-fluorodepxyglucose in current diagnostics, out-patient observation, and treatment of thyroid cancer. Problems of Endocrinology 2004; (1–2):46–50. (In Russ.)].; Wadsak W., Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol 2010;73(3):461–9. DOI:10.1016/j.ejrad.2009.12.022. PMID: 20181453; Joensuu H., Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987;28(5):910–4. PMID: 3572549.; Feine U., Lietzenmayer R., Hanke J.P. et al. Fluorine-18-FDG and iodine-131- iodide uptake in thyroid cancer. J Nucl Med 1996;37(9):1468–72. PMID: 8790195; Seo Y.L., Yoon D.Y., Baek S. et al. Detection of neck recurrence in patients with differentiated thyroid cancer: comparison of ultrasound, contrastenhanced CT and (18)F- FDG PET/CT using surgical pathology as a reference standard: (ultrasound vs. CT vs. (18) F- FDG PET/CT in recurrent thyroid cancer). Eur Radiol 2012;22(10):2246–54. DOI:10.1007/s00330-012-2470-x. PMID: 22562091; Seo J.H., Lee S.W., Ahn B.C., Lee J. Recurrence detection in differentiated thyroid cancer patients with elevated serum level of antithyroglobulin antibody: special emphasis on using (18)F-FDG PET/CT. Clin Endocrinol (Oxf) 2010;72(4):558–63. DOI:10.1111/j.1365- 2265.2009.03693.x. PMID: 19744107; Hall N.C., Kloos R.T. PET imaging in differentiated thyroid cancer: where does it fit and how do we use it? Arq Bras Endocrinol Metabol 2007;51(5):793–805. DOI:10.1590/S0004- 27302007000500017. PMID: 17891243; O’Neill C.J., Oucharek J., Learoyd D., Sidhu S.B. Standard and emerging therapies for metastatic differentiated thyroid cancer. Oncologist 2010;15(2):146–56. DOI:10.1634/theoncologist.2009-0190. PMID: 20142332; Durante C., Haddy N., Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91(8):2892–9. DOI:10.1210/jc.2005-2838. PMID: 16684830; Валдина Е.А. Заболевания щитовидной железы: Руководство. СПб.: Питер, 2006. [Valdina E.A. Thyroid disorders. Guidelines. Saint-Petersburg: Piter, 2006. (In Russ.)].; Schlumberger M.J. Diagnostic follow-up of well-differentiated thyroid carcinoma: Historical perspective and current status. J Endocrinol Invest 1999;22(11 suppl): 3–7. PMID: 10726999; Casara D., Rubello D., Saladini G. et al. Different features of pulmonary metastases in differentiated thyroid cancer: natural history and multivariate analysis of prognostic variables. J Nucl Med 1993;34(10):1626–31. PMID: 8410272; Schlumberger M.J., Arcangioli O., Piekarski J.D. et al. Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays. J Nucl Med 1988;29(11):1790–4. PMID: 3183748; King A.D. Imaging for staging and management of thyroid cancer. Cancer Imaging 2008;8:57–69. DOI:10.1102/1470-7330.2008.0007. PMID: 18390389; Kucuk O.N., Gultekin S.S., Aras G., Ibis E. Radioiodine whole-body scans, thyroglobulin levels, 99mTc-MIBI scans and computed tomography: results in patients with lung metastases from differentiated thyroid cancer. Nucl Med Commun 2006;27(3):261–6. PMID: 16479246; Dietlein M., Scheidhauer K., Voth E. et al. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24(11):1342–8. PMID: 9371865; Salvatori M., Biondi B., Rufini V. Imaging in endocrinology: 2-[18F]-fluoro-2- deoxy-D- glucose positron emission tomography/computed tomography in differentiated thyroid carcinoma: clinical indications and controversies in diagnosis and follow-up. Eur J Endocrinol 2015;173(3):R115–30. DOI:10.1530/EJE-15-0066. PMID: 25947140; Leboulleux S., Schroeder P.R., Busaidy N.L. et al. Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab 2009;94(4):1310–6. DOI:10.1210/jc.2008-1747. PMID: 19158200; Padovani R.P., Robenshtok E., Brokhin M., Tuttle R.M. Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid 2012;22(8):778–83. DOI:10.1089/thy.2011.0522. PMID: 22780333; Tuttle R.M., Tala H., Shah J. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010;20(12):1341–9. DOI:10.1089/thy.2010.0178.; Cooper D.S., Doherty G.M., Haugen B.R. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19(11):1167–214. DOI:10.1089/thy.2009.0110. PMID: 19860577; Treglia G., Bertagna F., Piccardo A., Giovanella L. 131-I- whole-body scan or 18-FDG- PET/CT for patients with elevated thyroglobulin and negative ultrasound? Clin Translat Im 2013;1(3):175–83. DOI:10.1007/s40336-013-0024-0.; Leboulleux S., El Bez I., Borget I. et al. Postradioiodine treatment whole body scan in the era of fluorodesoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid 2012;22(8):832–8. DOI:10.1089/thy.2012.0081.; Dong M.J., Liu Z.F., Zhao K. et al. Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan. Meta-analysis. Nucl Med Commun 2009;30(8):639–50. DOI:10.1097/MNM.0b013e32832dcfa7. PMID: 19512954; Kim W.G., Ryu J.S., Kim E.Y. et al. Empiric high-dose 131-Iodine therapy lacks efficacy for treated papillary thyroid cancer patients with detectable serum thyroglobulin, but negative cervical sonography and 18-F-Fluorodeoxyglucose positron emission tomography scan. J Clin Endocrinol Metab 2010;95(3):1169–73. DOI:10.1210/jc.2009-1567.; Giovanella L. Positron emission tomography/computed tomography in patients treated for differentiated thyroid carcinomas. Exp Rev Endocrinol Metab 2012;7(1):35–43. DOI:10.1586/eem.11.83.; Pacak K., Eisenhofer G., Goldstein D.S. Functional imaging of endocrine tumors: role of positron emission tomography. Endocr Rev 2004;25(4):568–80. DOI:10.1210/er.2003-0032. PMID: 15294882; Robbins R.J., Wan Q., Grewal R.K. et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2- deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006;91(2):498–505. DOI:10.1210/jc.2005-1534. PMID: 16303836; Deandreis D., Al Ghuzlan A., Leboulleux S. et al. Do histological, immunohistochemical and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer 2011;18(1):159–69. DOI:10.1677/ERC-10-0233.; Wang W., Larson S.M., Fazzari M. et al. Prognostic value of [18F] fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocr Metab 2000;85(3):1107–13. DOI:10.1210/jcem.85.3.6458. PMID: 10720047; Pryma D.A., Schoder H., Gonen M. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hürthle cell thyroid cancer patients. J Nucl Med 2006;47(8):1260–6. PMID: 16883003; Rosenbaum-Krumme S.J., Gorges R., Bockisch A., Binse I. 18F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging 2012;39(9):1373–80. DOI:10.1007/s00259-012-2065-4. PMID: 22718304; Gaertner F.C., Okamoto S., Shiga T. et al. FDG PET performed at thyroid remnant ablation has a higher predictive value for long-term survival of high-risk patients with well- differentiated thyroid cancer than radioiodine uptake. Clin Nucl Med 2015;40(5):378–83. DOI:10.1097/RLU.0000000000000699. PMID: 25608175; Sisson J.C., Ackermann R.J., Meyer M.A., Wahl R.L. Uptake of 18-fluoro-2-deoxy- D- glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab 1993;77(4):1090–4. DOI:10.1210/jcem.77.4.8408458. PMID: 8408458; van Tol K.M., Jager P.L., Piers D.A. et al. Better yield of (18)fluorodeoxyglucosepositron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation. Thyroid 2002;12(5):381–7. DOI:10.1089/105072502760043459. PMID: 12097198; Grunwald F., Biersack H.J. FDG PET in thyroid cancer: thyroxine or not? J Nucl Med 2000;41(12):1996–8. PMID: 11138684; Marcus C., Whitworth P.W., Surasi D.S. et al. PET/CT in the management of thyroid cancers. AJR Am J Roentgenol 2014;202(6):1316–29. DOI:10.2214/AJR.13.11673.; Vural G.U., Akkas B.E., Ercakmak N. et al. Prognostic significance of FDG PET/CT on the follow-up of patients of differentiated thyroid carcinoma with negative 131I whole-body scan and elevated thyroglobulin levels: correlation with clinical and histopathologic characteristics and long-term follow-up data. Clin Nucl Med 2012;37:953–9. DOI:10.1097/RLU.0b013e31825b2057. PMID: 22899202; Zoller M., Kohlfuerst S., Igerc I. et al. Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality? Eur J Nucl Med Mol Imaging 2007;34(4):487–95. DOI:10.1007/s00259-006-0276-2. PMID: 17103166; Bertagna F., Bosio G., Biasiotto G. et al. F-18 FDGPET/CT evaluation of patients with differentiated thyroid cancer with negative I-131 total body scan and high thyroglobulin level. Clin Nucl Med 2009; 34:756–61. DOI:10.1097/RLU.0b013e3181b7d95c. PMID: 19851169; Schluter B., Bohuslavizki K.H., Beyer W. et al. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 2001;42(1):71–6. PMID: 11197983; Shammas A., Degirmenci B., Mountz J.M. et al. 18F-FDG PET/CT in patients with suspected recurrent or metastatic welldifferentiated thyroid cancer. J Nucl Med 2007;48(2):221–6. PMID: 17268018; Bertagna F., Biasiotto G., Orlando E. et al. Role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients affected by differentiated thyroid carcinoma, high thyroglobulin level, and negative 131I scan: review of the literature. Jpn J Radiol 2010;28(9):629–36. DOI:10.1007/s11604-010-0488-z.; Zimmer L.A., McCook B., Meltzer C. et al. Combined positron emission tomography/computed tomography imaging of recurrent thyroid cancer. Otolaryngol Head Neck Surg 2003;128(2):178–84. DOI:10.1067/mhn.2003.74. PMID: 12601311; Giovanella L., Trimboli P., Verburg F.A. et al. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2013;40(6):874–80. DOI:10.1007/s00259-013-2370-6. PMID: 2346330; Nanni C., Rubello D., Fanti S. et al. Role of 18F-FDG-PET and PET/CT imaging in thyroid cancer. Biomed Pharmacother 2006;60(8):409–13. DOI:10.1016/j.biopha.2006.07.008. PMID: 16891093; Palmedo H., Bucerius J., Joe A. et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006;47(4):616–24. PMID: 16595495; https://ogsh.abvpress.ru/jour/article/view/229
-
12Academic Journal
Συγγραφείς: Antonina Yurievna Kolesnik, Maria Andreevna Sherhneva, Elena Valerievna Meskih, Vladimir Davidovich Chkhikvadze, Nikolai Vasilyevich Nudnov, Антонина Юрьевна Колесник, Мария Андреевна Шершнева, Елена Валерьевна Меских, Владимир Давыдович Чхиквадзе, Николай Васильевич Нуднов
Πηγή: Medical Visualization; № 5 (2014); 124-129 ; Медицинская визуализация; № 5 (2014); 124-129 ; 2408-9516 ; 1607-0763
Θεματικοί όροι: positron emission tomography combined with computed tomography, маммография, ультразвуковое исследование, магнитно-резонансная томография, позитронно-эмиссионная томография, совмещенная с компьютерной томографией, inflammatory breast cancer, mammography, ultrasound, magnetic resonance imaging
Περιγραφή αρχείου: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/104/105; Robertson F.M., Bondy М., Yang W. et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J. Clin. 2010; 60 (6): 351-375.; Dawood S., Merajver S.D., Viens P. et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann. Oncol. 2011; 22 (3): 515-523.; Sunil R. Lakhani, Ian O. Ellis, Stuart J. Schnittet et al. WHO Classification of Tumors of the Breast 4th Edition. Geneva: World Health Organization, 2012. 67-68.; Schairer C., Soliman A.S., Omar S. Assessment of diagnosis of inflammatory breast cancer cases at two cancer centers in Egypt and Tunisia. Cancer Med. 2013; 2 (2): 178-184.; Портной С.М. Возможности лечения отечно-инфильтративной формы рака молочной железы: Материалы VIII Российского онкологического конгресса. М., 2004. 31-35.; Lee K.W., Chung S.Y., Yang I. et al. Inflammatory breast cancer: imaging findings. Clin. Imaging. 2005; 29: 22-25.; Alunni J.P. Imaging inflammatory breast cancer. Diagn. Interv. Imaging. 2012; 93 (2): 95-103.; Маммология: Национальное руководство; Под ред. Харченко В.П., Рожкова Н.И. М.: ГЭОТАР-Медиа, 2009. 60 с.; Yang W.T., Le-Petross H.T., Macapinlac H. et al. Inflammatory breast cancer: PET/CT, MRI, mammography, and sonography findings. Breast Cancer Res. Treat. 2008; 109: 417-426.; GQnhan-Bilgen I., Ustun E.E., Memis A. Inflammatory breast carcinoma: mammographic, ultrasonographic, clinical, and pathologic findings in 142 cases. Radiology. 2002; 223: 829-838.; Tardivon A.A., Viala J., Corvellec R.A. et al. Mammographic patterns of inflammatory breast carcinoma: a retrospective study of 92 cases. Eur. J. Radiol. 1997; 24: 124-130.; Kushwaha A.C., Whitman G.J., Stelling C.B. et al. Primary inflammatory carcinoma of the breast: retrospective review of mammographic findings. Am. J. Roentgenol. 2000; 174: 535-538.; Клиническая маммология. Тематический сборник. 1-е изд; Под ред. Харченко В.П., Рожкова Н.И. М.: Стром, 2005. 74 с.; Le-Petross H., Uppendahl L., Stafford J. et al. Sonographic Features of Inflammatory Breast Cancer. Seminars Roentgenol. 2011; 46 (4): 275-279; Vlastos G., Fornage B.D., Mirza N.Q. et al. The correlation of axillary ultrasonography with histologic breast cancer downstaging after induction chemotherapy. Am. J. Surg. 2000; 179: 446-452.; Amant F., Loibl S., Neven P. et al. Breast cancer in pregnancy. Lancet. 2012; 379 (9815): 570-579.; Rosen E.L., Blackwell K.L., Baker J.A. et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. Am. J. Roentgenol. 2003; 181: 1275-1282.; Cheung Y.C., Chen S.C., Su M.Y. et al. Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res. Treat. 2003; 78: 51-58.; Hylton N. MR imaging for assessment of breast cancer response to neoadjuvant chemotherapy. Magn. Reson. Imaging Clin. N. Am. 2006; 14: 383-389.; Thukral A., Thomasson D.M., Chow C.K. et al. Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab-initial experience. Radiology. 2007; 244: 727-735.; Chen J.H., Mehta R.S., Nalcioglu O. et al. Inflammatory breast cancer after neoadjuvant chemotherapy: can magnetic resonance imaging precisely diagnose the final pathological response? Ann. Surg. Oncol. 2008; 15: 3609-3613.; Le-Petross C.H., Luc B., Yang W.T. Evolving Role of Imaging Modalities in Inflammatory Breast Cancer. Seminars Oncol. 2008; 35 (1): 51-63.; Carbognin G., Calciolari C., Girardi V. et al. Inflammatory breast cancer: MR imaging findings. Radiol. Med. 2010; 115: 70-82.; Thomassin-Naggara I., De Bazelaire C., Chopier J. et al. Diffusion-weighted MR imaging of the breast: advantages and pitfalls. Eur. J. Radiol. 2013; 82: 435-443.; Alikhassi A., Omranipour R., Alikhassy Z. et al. Congestive Heart Failure versus Inflammatory Carcinoma in Breast. Case Rep. Radiol. 2014: 815-896.; Wang L., Wang D., Fei X. et al. A Rim-Enhanced Mass with Central Cystic Changes on MR Imaging: How to Distinguish Breast Cancer from Inflammatory Breast Diseases? PLoS One. 2014; 9 (3): 90355.; Le-Petross H.T., Cristofanilli M., Carkaci S. et al. MRI features of inflammatory breast cancer. Am. J. Roentgenol. 2011; 197: 769-776.; Yamauchi H., Woodward W.A., Valero V. et al. Inflammatory breast cancer: what we know and what we need to learn. Oncologist. 2012; 17 (7): 891-899.; Groheux D., Giacchetti S., Delord M. et al. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J. Nucl. Med. 2013; 54 (1): 5-11.; Walker G.V., Niikura N., Yang W. et al. Pretreatment Staging Positron Emission Tomography/Computed Tomography in Patients With Inflammatory Breast Cancer Influences Radiation Treatment Field Designs. Int. J. Radiat. Oncol., Biology, Physics. 2012; 83 (5): 1381-1386.; Schelling M., Avril N., Nahrig J. et al. Positron emission tomography using Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J. Clin. Oncol. 2000; 18: 1689-1695.; Mankoff D.A., Dunnwald L.K., Gralow J.R. et al. Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J. Nucl. Med. 2003; 44: 1806-1814.; Berg W.A., Weinberg I.N., Narayanan D. et al. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J. 2006; 12: 309-323.; Carkaci S., Macapinlac H.A., Cristofanilli M. et al. Retrospective study of 18F-FDG PET/CT in the diagnosis of inflammatory breast cancer: preliminary data. J. Nucl. Med. 2010; 50: 231-238.; Shigematsu H., Kadoya T., Masumoto N. et al. Role of FDG-PET/CT in Prediction of Underestimation of Invasive Breast Cancer in Cases of Ductal Carcinoma In Situ Diagnosed at Needle Biopsy. Clin. Breast Cancer. 2014; 14 (5): 358-364.; Ibusuki M., Yamamoto Y., Kawasoe T. et al. Potential advantage of preoperative three-dimensional mapping of sentinel nodes in breast cancer by a hybrid single photon emission CT (SPECT)/CT system. Surg. Oncol. 2010; 19(2): 88-94.; Uren R.F., Howman-Giles R., Chung D.K.V. et al. SPECT/CT scans allow precise anatomical location of sentinel lymph nodes in breast cancer and redefine lymphatic drainage from the breast to the axilla. Breast J. 2012; 21 (4): 480-486.; https://medvis.vidar.ru/jour/article/view/104
Διαθεσιμότητα: https://medvis.vidar.ru/jour/article/view/104
-
13Academic Journal
Συγγραφείς: Важенин, А., Афанасьева, Н., Важенина, Д., Зотова, А., Чащухин, Д., Ваганов, Н., Калантаев, Д., Трофимов, Д., Варенникова, А., Озеров, Е.
Θεματικοί όροι: ПОЗИТРОННАЯ ЭМИССИОННАЯ ТОМОГРАФИЯ, СОВМЕЩЕННАЯ С КОМПЬЮТЕРНОЙ ТОМОГРАФИЕЙ, 18F-ФТОРДЕЗОКСИГЛЮКОЗА, ЗЛОКАЧЕСТВЕННАЯ ОПУХОЛЬ, МЕТАСТАЗЫ
Περιγραφή αρχείου: text/html
-
14Academic Journal
Συγγραφείς: Важенин, Андрей, Афанасьева, Надежда, Важенина, Дарья, Зотова, Анна, Супрончук, Наталья, Ваганов, Николай, Калантаев, Дмитрий, Чащухин, Даниил, Трофимов, Дмитрий, Варенникова, Анастасия, Озеров, Евгений
Θεματικοί όροι: позитронная эмиссионная томография, совмещенная с компьютерной томографией, 18F-фтордезоксиглюкоза, злокачественная опухоль, МЕТАСТАЗЫ
Περιγραφή αρχείου: text/html
-
15Academic Journal
Πηγή: Российский онкологический журнал.
Θεματικοί όροι: 03 medical and health sciences, 0302 clinical medicine, ПОЗИТРОННАЯ ЭМИССИОННАЯ ТОМОГРАФИЯ, СОВМЕЩЕННАЯ С КОМПЬЮТЕРНОЙ ТОМОГРАФИЕЙ, 18F-ФТОРДЕЗОКСИГЛЮКОЗА, ЗЛОКАЧЕСТВЕННАЯ ОПУХОЛЬ, МЕТАСТАЗЫ, 3. Good health
Περιγραφή αρχείου: text/html
-
16Academic Journal
Πηγή: Вестник Российского научного центра рентгенорадиологии Минздрава России.
Θεματικοί όροι: позитронная эмиссионная томография, совмещенная с компьютерной томографией, 18F-фтордезоксиглюкоза, злокачественная опухоль, МЕТАСТАЗЫ, 3. Good health
Περιγραφή αρχείου: text/html
-
17