Εμφανίζονται 1 - 20 Αποτελέσματα από 36 για την αναζήτηση '"СКАНИРУЮЩАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ (СЭМ)"', χρόνος αναζήτησης: 0,77δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 19, № 4 (2022); 898-905 ; Офтальмология; Том 19, № 4 (2022); 898-905 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2022-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2003/1059; Каспарова Евг.А. Гнойные язвы роговицы: этиология, патогенез, классификация. Вестник офтальмологии. 2015;131(5):87–97. DOI:10.17116/oftalma2015131587-97; Kaufman H.E., Barron B.A., McDonald M.B. Parasitic infections. The Cornea 2 nd Edition. Butterworth Heinemann; 1998. 333 p.; Hsu C.C. Dendrite like anterior stromal keratitis coinfected with Acanthamoeba and Pseudomonas in an orthokeratology contact lens wearer. Taiwan journal of ophthalmology. 2019;9(2):131–133. DOI:10.4103/tjo.tjo_114_17; Sharma R., Jhanji V., Satpathy G., Sharma N., Khokhar S., Agarwal T. Coinfection with Acanthamoeba and Pseudomonas in contact lens associated keratitis. Optometry and vision science: official publication of the American Academy of Optometry. 2013 Feb;90(2):e53–55. DOI:10.1097/OPX.0b013e31827f15b4. PMID: 23334312; Agi J., Rocchetti T.T., Yu M.C.Z., Farah M.L., Ramos F., Freitas D., Höfling Lima A.L. Three Decades of Contact Lens associated Microbial Keratitis in a Referral Hospital in São Paulo, Brazil. Arquivos brasileiros de oftalmologia. 2021 Jul 14;84(5):474–480. DOI:10.5935/0004-2749.20210079; Ting D.S.J., Ho C.S., Deshmukh R., Said D.G., Dua H.S. Infectious keratitis: an update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye (London, England). 2021 Apr;35(4):1084–1101. DOI:10.1038/s41433-020-01339-3. Epub 2021 Jan 7. Erratum in: Eye (Lond). 2021 Oct;35(10):2908.; Ян Бяо, Каспарова Е.А., Собкова О.И. Модифицированный кросслинкинг в лечении гнойных кератитов. Современные технологии хирургического лечения роговицы. 2020,35(4):108. DOI:10.25276/2312-4911-2020-4-86-87; Марченко Н.Р., Каспарова Е.А., Будникова Е.А., Макарова М.А. Поражение переднего сегмента глаза при коронавирусной инфекции (COVID 19). Вестник офтальмологии. 2021;137(6):142–148. DOI:10.17116/oftalma2021137061142; Каспарова Евг.А. Гнойные язвы роговицы: клиника, диагностика, консервативное лечение. Вестник офтальмологии. 2015;131(6):106–121. DOI:10.17116/oftalma20151316106-119; Каспарова Евг.А., Каспаров А.А., Каспарова Е.А., Зайцев А.В. Развитой двусторонний синегнойный склерокератит у пациентки в коме (клинический случай). Вестник офтальмологии. 2017;133(4):68–73. DOI:10.17116/oftalma2017133468-73; Termote K., Joe A.W., Butler A.L., McCarthy M., Blondeau J.M., Iovieno A., Holland S.P., Yeung S.N. Epidemiology of bacterial corneal ulcers at tertiary centres in Vancouver, B.C. Canadian journal of ophthalmology. Journal canadien d’ophtalmologie. 2018 Aug;53(4):330–336. DOI:10.1016/j.jcjo.2017.11.001; Каспаров А.А., Садыхов А.К., Маложен С.А. Лечение гнойных язв роговицы. Вестник офтальмологии. 1987;103(6):67–71.; Каспарова Е.А., Марченко Н.Р., Сурнина З.В., Митичкина Т.С. Возможности конфокальной микроскопии в диагностике акантамебного кератита. Вестник офтальмологии. 2021;137(5-2):201–208. DOI:10.17116/oftalma2021137052201; Ung L., Bispo P.J.M., Shanbhag S.S., Gilmore M.S., Chodosh J. The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Survey of ophthalmology. 2019 May Jun;64(3):255–271. DOI:10.1016/j.survophthal.2018.12.003; Yugay N.M., Novikov I.A., Subbot A.M., Khalatyan K.S. Fast and easy visualization method of impression cytology probe with microbiota detection on the ocular surface. 26th International Student Congress Of (bio)Medical Sciences, Groningen (Netherlands). 2019. 412 p.; Khan M., Stapleton F., Summers S., Rice S.A., Willcox M.D.P. Antibiotic Resistance Characteristics of Pseudomonas aeruginosa Isolated from Keratitis in Australia and India. Antibiotics (Basel, Switzerland). 2020;9(9):600. Published 2020 Sep 14. DOI:10.3390/antibiotics9090600; Schulte A.J., Agan B.K., Wang H.C., McGann P.T., Davies B.W., Legault G.L., Justin G.A. Multidrug Resistant Organisms from Ophthalmic Cultures: Antibiotic Resistance and Visual Acuity. Military medicine. 2020 Aug 14;185(7–8):e1002–e1007. DOI:10.1093/milmed/usaa111. PMID: 32588895; Jhanji V., Sharma N., Satpathy G., Titiyal J. Fourth generation fluoroquinolone-resistant bacterial keratitis. Journal of cataract and refractive surgery. 2007 Aug;33(8):1488–1489. DOI:10.1016/j.jcrs.2007.04.015; Каспарова Евг.А., Ян Бяо, Собкова О.И. Модифицированный кросслинкинг в лечении гнойной язвы роговицы. Клинический случай. Офтальмология. 2017;14(3):274–277. DOI:10.18008/1816-5095-2017-3-274-277; Makdoumi K., Bäckman A., Mortensen J., Crafoord S. Evaluation of antibacterial efficacy of photo activated riboflavin using ultraviolet light (UVA). Graefe’s archive for clinical and experimental ophthalmology. 2010;248:207–212. DOI:10.1007/s00417-009-1231-2; Kymionis G.D., Kouroupaki A.I., Liakopoulos D.A., Arandjelovic I.R., Tsoulnaras K.I. Multiorganism, drug resistant keratitis treated by corneal crosslinking. European journal of ophthalmology. 2016 Jul 1;26(4):e67–e70. DOI:10.5301/ejo.5000755; Richoz O., Moore J., Hafezi F., Moore T. Corneal cross linking as an adjuvant therapy in the management of recalcitrant deep stromal fungal keratitis: a randomized trial. Am J Ophthalmol. 2015;160(3):616–617. DOI:10.1016/j.ajo.2015.06.014; Said D.G., Elalfy M.S., Gatzioufas Z., El Zakzouk E.S., Hassan M.A., Saif M.Y., Zaki A.A., Dua H.S., Hafezi F. Collagen cross linking with photoactivated riboflavin (PACK CXL) for the treatment of advanced infectious keratitis with corneal melting. Ophthalmology. 2014 Jul;121(7):1377–1382. DOI:10.1016/j.ophtha.2014.01.011; Каспарова Е.А., Каспаров А.А., Левицкий Ю.В., Ципурская О.И. Взаимосвязь фокальных одонтогенных очагов инфекции и воспалительных заболеваний глаза. Стоматология. 2019;98(6):124–130. DOI:10.17116/oftalma201913506112412; Марченко Н.Р., Каспарова Евг.А. Лечение акантамебного кератита. Вестник офтальмологии. 2016;132(5):110–116. DOI:10.17116/oftalma20161325110-116; Marquart M.E, O’Callaghan R.J. Infectious keratitis: secreted bacterial proteins that mediate corneal damage. Journal of ophthalmology. 2013;2013:369094. DOI:10.1155/2013/369094; Xu S., Liu X., Liu X., Shi Y., Jin X., Zhang N., Li X., Zhang H. Wedelolactone ameliorates Pseudomonas aeruginosa induced inflammation and corneal injury by suppressing caspase 4/5/11/GSDMD mediated non canonical pyroptosis. Experimental eye research. 2021 Oct;211:108750. DOI:10.1016/j.exer.2021.108750. Epub 2021 Sep 2. PMID: 34481822; Руднов В.А. Антибиотикотерапия госпитальных инфекций вызванных P. Aeruginosa. Российский медицинский журнал. Клиническая офтальмология, 2005;13(7):485–490.; Ковалевская М.А. Майчук Д.Ю. Бржеский В.В. Майчук Ю.Ф. Околов И.Н. Синдром «красного глаза». Практическое руководство для врачей офтальмологов. Под ред. Майчука Д.Ю. М., 2010.; McLeod S.D., LaBree L.D., Tayyanipour R., Flowers C.W., Lee P.P., McDonnell P.J. The importance of initial management in the treatment of severe infectious corneal ulcers. Ophthalmology. 1995;102(12):1943–1948 DOI:10.1016/s0161-6420(95)30771-3; Al Mujaini A., Al Kharusi, Wali U.K. Bacterial Keratitis: Perspective on Epidemiology, Clinico Pathogenesis, Diagnosis and Treatment. Sultan Qaboos University medical journal. 2009;9(2):184–195. Epub 2009 Jun 30.; Baum J., Barra M. Topical V.S. Subconjunctival treatment of bacterial corneal ulcers. Ophthalmology. 1983;90(2):162–168. DOI:10.1016/s0161-6420(83)34583-8; Baum J. Treatment of bacterial ulcers of the cornea in the rabbit: a comparison of administration by eyedrops and subconjunctival injections. Transactions of the American Ophthalmological Society. 1982;80:369–390.; Assil K.K., Frucht Perry J., Ziegler E., Schanzlin D.J., Schneiderman T., Weinreb R.N. Tobramycin Liposomes, Single Subconjuncrival Therapy of Pseudomonal Keratins. Investigative ophthalmology & visual science. 1991;32(13):3216-3220.; Bharathi M.J., Ramakrishnan R., Meenakshi R., Shivakumar C., Lional R.L. Analysis of the risk factors predisposing to fungal, bacterial & Acanthamoeba keratitis in South India. Indian Journal of Medical Research. 2009;130(6):749-757.; Каспарова Е.А., Федоров А.А., Собкова О.И. Влияние форсированных инстилляций растворов противоинфекционных средств на ткани глаза (экспериментальное исследование). Вестник офтальмологии. 2019;135(5):160–170. DOI:10.17116/oftalma2019135052160; Darusman K.R., Sitompul R., Susiyanti M., Sudarmono P., Estuningtyas A. Efficacy of Topical Levofloxacin 0.5% in Treating Levofloxacin Resistant Pseudomonas aeruginosa Induced Keratitis. Asia-Pacific journal of ophthalmology (Philadelphia, Pa.). 2012;1(2):120–125. DOI:10.1097/APO.0b013e31824a6589; Tsubota K. New approaches in dry eye management. Supplying missing tear components to the ocular surface epithelium. In: Kinoshita S, Ohashi Y, eds. Current Opinions in the Kyoto Cornea Club. Vol. 1. Amsterdam: Kugler Publications; 1997. P. 27-32.; https://www.ophthalmojournal.com/opht/article/view/2003

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 2 (2016); 57-67 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 2 (2016); 57-67 ; 2524-2415 ; 1561-2430 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/176/264; Environmental applications of semiconductor photocatalysis / M. R. Hoffmann [et al.] // Chem. Rev. – 1995. – Vol. 95, N 1. – P. 69–96.; Recent developments of zinc oxide based photocatalyst in water treatment technology: A review / K. M. Lee [et al.] // Water Research. – 2016. – Vol. 88, N 1. – P. 428–448.; Kansal, S. K. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts / S. K. Kansal, M. Singh, D. Sud // J. of Hazardous Materials. – 2007. – Vol. 141, N 3. – P. 581–590.; Amadelli, R. Photoelectrocatalysis for water purification, in photocatalysis and water purification : From Fundamentals to Recent Applications / R. Amadelli, L. Samiolo; ed. P. Pichat. – Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2013.; Meng, Z. Wastewater treatment by photocatalytic oxidation of nano-ZnO [Electronic resource] / Z. Meng, Zh. Juan // Global Environmental Policy in Japan. – 2008. – N 12. – P. 1–9. – Mode of access: http://c-faculty.chuo-u.ac.jp/~hiroshig/ GEPJ12_ZhaoandZhang.pdf. – Date of access: 04.01.2016.; Moore, C. J. Photocatalytic activity and stability of porous polycrystalline ZnO thin-films grown via a two-step thermal oxidation process / C. J. Moore, R. Louder, V. C. Thompson // Coatings. – 2014. – Vol. 4, N 3. – P. 651–669.; Min Guo. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions / Min Guo, Peng Diao, Shengmin Cai. // J. Solid State Chem. – 2005. – Vol. 178. – P. 1864-18.; Comparative study of the effect of RF and dbd рlasma treatment on a photocatalytic activity of ZnO-based catalysts / I. I. Filatova [et al.] // High Temp. Mater. Processes. – 2015. – N 3/4. – P. 221–230; He, H. Y. Photo-catalytic degradation of Methyl Orange In water on CuS-Cu2S Powders / H. Y. He // Int. J. Environ. Res. – 2008. – Vol. 2. – P. 23–26.; Absorption and fluorescence spectra of methyl orange in aqueous solutions / M. Giri [et al.] // Atti della “Fondazione Giorgio Ronchi”. – 2012. – Vol. 67. – P. 255–261.; Fujishima, A. Titanium dioxide photocatalysis / A. Fujishima, T. N. Rao, D. A. Tryk // J. Photochem. Photobiol., C: Photochem. Rev. – 2000. – Vol. 1, N 1. – P. 1–21.; Carp, O. Photoinduced reactivity of titanium dioxide / O. Carp, C. L. Huisman, A. Reller // Prog. Solid State Chem. – 2004. – Vol. 32, N 1. – P. 33–177.; Photocatalytic discoloration of methyl orange and Indigo carmine on TiO2 (P25) deposited on conducting substrates: effect of H2O2 and S2O8 2– / T. Kodom [et al.] // Int. J. Chem. Technol. – 2012. – Vol. 4, N 2. – P. 45–56.; Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles/ J. Liqiang [et al.] // Sci. China, Ser. B: Chemistry. – 2005. – Vol. 48, N 1. – P. 25–28.; The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. / Yu. Jia-Guo [et al.] // J. Phys. Chem. B. – 2003. – Vol. 107, N 50. – P. 13871–13879.; Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity / J. Liqiang [et al.] // Sol. Energy Mater. Sol. Cells. – 2006. – Vol. 90. – P. 1773–1787.; Photocatalytic activity of WOx-TiO2 under visible light irradiation / X. Z. Li [et al.] // J. Photochem. Photobiol., A: Chemistry. – 2001. – Vol. 141. – P. 209–217.; The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity / J. Liqiang [et al.] // J. Solid State Chem. – 2004. – Vol. 177, N 10. – P. 3375–3382.; Морфологические и оптические особенности нанотетраподов ZnO / С. А. Аль Рифаи [и др.] // Конденсир. среды и межфаз. границы. – 2013. – Т. 15, № 3. – С. 317–321.; Effect of hydrogen plasma treatment on the luminescence and photoconductive properties of ZnO nanowires / Y. Li [et al.] // Mater. Res. Soc. Symp. Proc. – 2010. – Vol. 1206. – P. 1206-M13-03P1–1206–M13–03P6.; Djurišić, A. B. ZnO nanostructures for optoelectronics: material properties and device applications / A. B. Djurišić, A. M. C. Ng, X. Y. Chen // Prog. Quant. Electron. – 2010. – Vol. 34. – P. 191–259.; Optical properties of thin films of ZnO prepared by pulsed laser deposition / J. A. Sans [et al.] // Thin Solid Films. – 2004. – Vol. 453. – P. 251–255.; Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition / X. Liu [et al.] // J. Appl. Phys. – 2004. – Vol. 95. – P. 3141–3147.; Shalish, I. Size-dependent surface luminescence in ZnO nanowires / I. Shalish, H. Temkin, V. Narayanamurti // Phys. Rev. B. – 2004. – Vol. 69. – P. 1–4.; Optical properties of ZnO nanoparticles capped with polymers / Sh. Tachikawa [et al.] // Materials. – 2011. – Vol. 4. – P. 1132–1143.; Оптические свойства исходных и облученных пленок оксида цинка / А. В. Мудрый [и др.] // Взаимодействие излучений с твердым телом: материалы 7-й междунар. конф., Минск, 26–28 сент. 2007 г. / Изд. центр БГУ; редкол. В. М. Анищик (отв. ред.) [и др.]. – Минск, 2007. – C. 137–139.; https://vestifm.belnauka.by/jour/article/view/176; undefined

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20