-
1Academic Journal
Authors: M. A. Rakina, E. O. Kazakova, T. S. Sudaskikh, N. V. Bezgodova, A. B. Villert, L. A. Kolomiets, I. V. Larionova
Source: Сибирский онкологический журнал, Vol 21, Iss 2, Pp 45-54 (2022)
Сибирский онкологический журнал. 2022. Т. 21, № 2. С. 45-54Subject Terms: tumor-associated macrophages, receptors, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, ovarian neoplasms, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, foam-like cells, рак яичников, скавенджер-рецепторы, клетки с пенистой цитоплазмой, scavenger, опухолеассоциированные макрофаги, RC254-282
-
2Academic Journal
Authors: T. S. Sudarskikh, I. V. Larionova, M. A. Rakina, J. G. Kzhyshkowska, Т. С. Сударских, И. В. Ларионова, М. А. Ракина, Ю. Г. Кжышковска
Contributors: This work was supported by the Russian Science Foundation under research project № 19-15-00151., Работа выполнена при поддержке Российского научного фонда в рамках научного проекта № 19-15-00151.
Source: Siberian journal of oncology; Том 23, № 4 (2024); 54-65 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 54-65 ; 2312-3168 ; 1814-4861
Subject Terms: скавенджер-рецепторы, M1/M2 classification, cytokines, scavenger-receptors, М1/М2 макрофаги, цитоклины
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3192/1251; Malekghasemi S., Majidi J., Baghbanzadeh A., Abdolalizadeh J., Baradaran B., Aghebati-Maleki L. Tumor-Associated Macrophages: Protumoral Macrophages in Inflammatory Tumor Microenvironment. Adv Pharm Bull. 2020; 10(4): 556–65. doi:10.34172/apb.2020.066.; Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.566511.; Munir M.T., Kay M.K., Kang M.H., Rahman M.M., Al-Harrasi A., Choudhury M., Moustaid-Moussa N., Hussain F., Rahman S.M. TumorAssociated Macrophages as Multifaceted Regulators of Breast Tumor Growth. Int J Mol Sci. 2021; 22(12): 6526. doi:10.3390/ijms22126526.; Boutilier A.J., Elsawa S.F. Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci. 2021; 22(13): 6995. doi:10.3390/ijms22136995.; Wu K., Lin K., Li X., Yuan X., Xu P., Ni P., Xu D. Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Front Immunol. 2020; 11. doi:10.3389/fimmu.2020.01731.; Monteiro L.N., Rodrigues M.A., Gomes D.A., Salgado B.S., Cassali G.D. Tumour-associated macrophages: Relation with progression and invasiveness, and assessment of M1/M2 macrophages in canine mammary tumours. Vet J. 2018; 234: 119–25. doi:10.1016/j.tvjl.2018.02.016.; Hwang I., Kim J.W., Ylaya K., Chung E.J., Kitano H., Perry C., Hanaoka J., Fukuoka J., Chung J.Y., Hewitt S.M. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med. 2020; 18(1): 443. doi:10.1186/s12967-020-02618-z.; Zheng X., Weigert A., Reu S., Guenther S., Mansouri S., Bassaly B., Gattenlöhner S., Grimminger F., Pullamsetti S., Seeger W., Winter H., Savai R. Spatial Density and Distribution of Tumor-Associated Macrophages Predict Survival in Non-Small Cell Lung Carcinoma. Cancer Res. 2020; 80(20): 4414–25. doi:10.1158/0008-5472.CAN-20-0069.; Wei C., Yang C., Wang S., Shi D., Zhang C., Lin X., Liu Q., Dou R., Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 2019; 18(1): 64. doi:10.1186/s12943-019-0976-4.; Tan Q., Liu H., Xu J., Mo Y., Dai F. Integrated analysis of tumorassociated macrophage infiltration and prognosis in ovarian cancer. Aging (Albany NY). 2021; 13(19): 23210–32. doi:10.18632/aging.203613.; Genin M., Clement F., Fattaccioli A., Raes M., Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015; 15(1): 577. doi:10.1186/s12885-015-1546-9.; Cassetta L., Pollard J.W. Tumor-associated macrophages. Curr Biol. 2020; 30(6): 246–8. doi:10.1016/j.cub.2020.01.031.; Mulder K., Patel A.A., Kong W.T., Piot C., Halitzki E., Dunsmore G., Khalilnezhad S., Irac S.E., Dubuisson A., Chevrier M., Zhang X.M., Tam J.K.C., Lim T.K.H., Wong R.M.M., Pai R., Khalil A.I.S., Chow P.K.H., Wu S.Z., Al-Eryani G., Roden D., Swarbrick A., Chan J.K.Y., Albani S., Derosa L., Zitvogel L., Sharma A., Chen J., Silvin A., Bertoletti A., Blériot C., Dutertre C.A., Ginhoux F. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity. 2021; 54(8): 1883–900. doi:10.1016/j.immuni.2021.07.007.; Ma R.Y., Black A., Qian B.Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 2022; 43(7): 546–63. doi:10.1016/j.it.2022.04.008.; Dai X., Cheng H., Bai Z., Li J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer. 2017; 8(16): 3131–41. doi:10.7150/jca.18457.; Larionova I., Kiselev A., Kazakova E., Liu T., Patysheva M., Iamshchikov P., Liu Q, Mossel D.M., Riabov V., Rakina M., Sergushichev A., cancer cells. However, in order to achieve the full specificity of TAM phenotypes 3D modelling is needed to create the most physiologically relevant context for macrophage interactions with the extracellular matrix, cancer cells and other cells of tumor microenvironment. In this regard, the rapidly developing field of organoids is highly promising direction which will allow to recreate three-dimensional multicellular composition of tumor tissue, and also to model not only cancerspecific but also patient-specific TAM phenotypes and study their functions. Bezgodova N., Vtorushin S., Litviakov N., Denisov E., Koshkin P., Pyankov D., Tsyganov M., Ibragimova M., Cherdyntseva N., Kzhyshkowska J. Tumor-associated macrophages respond to chemotherapy by detrimental transcriptional reprogramming and suppressing stabilin-1 mediated clearance of EGF. Front Immunol. 2023; 14. doi:10.3389/fimmu.2023.1000497.; Sun N., Gao P., Li Y., Yan Z., Peng Z., Zhang Y., Han F., Qi X. Screening and Identification of Key Common and Specific Genes and Their Prognostic Roles in Different Molecular Subtypes of Breast Cancer. Front Mol Biosci. 2021; 8. doi:10.3389/fmolb.2021.619110.; Hollmén M., Roudnicky F., Karaman S., Detmar M. Characterization of macrophage – cancer cell crosstalk in estrogen receptor positive and triplenegative breast cancer. Sci Rep. 2015; 5(1): 9188. doi:10.1038/srep09188.; Kazakova E., Rakina M., Sudarskikh T., Iamshchikov P., Tarasova A., Tashireva L., Afanasiev S., Dobrodeev A., Zhuikova L., Cherdyntseva N., Kzhyshkowska J., Larionova I. Angiogenesis regulators S100A4, SPARC and SPP1 correlate with macrophage infiltration and are prognostic biomarkers in colon and rectal cancers. Front Oncol. 2023; 13. doi:10.3389/fonc.2023.1058337.; Roblek M., Protsyuk D., Becker P.F., Stefanescu C., Gorzelanny C., Glaus Garzon J.F., Knopfova L., Heikenwalder M., Luckow B., Schneider S.W., Borsig L. CCL2 Is a Vascular Permeability Factor Inducing CCR2- Dependent Endothelial Retraction during Lung Metastasis. Mol Cancer Res. 2019; 17(3): 783–93. doi:10.1158/1541-7786.MCR-18-0530.; Schmall A., Al-Tamari H.M., Herold S., Kampschulte M., Weigert A., Wietelmann A., Vipotnik N., Grimminger F., Seeger W., Pullamsetti S.S., Savai R. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med. 2015; 191(4): 437–47. doi:10.1164/rccm.201406-1137OC.; Kazakova E., Iamshchikov P., Larionova I., Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol. 2023; 12. doi:10.3389/fonc.2022.1096897.; Larionova I., Kazakova E., Patysheva M., Kzhyshkowska J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel). 2020; 12(6): 1411. doi:10.3390/cancers12061411.; Hourani T., Holden J.A., Li W., Lenzo J.C., Hadjigol S., O’BrienSimpson N.M. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.788365.; Li X., Wang C.Y. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. 2021; 13(1): 36. doi:10.1038/s41368-021-00146-0.; Longo S.K., Guo M.G., Ji A.L., Khavari P.A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. 2021; 22(10): 627–44. doi:10.1038/s41576-021-00370-8.; Liu Z., Gao Z., Li B., Li J., Ou Y., Yu X., Zhang Z., Liu S., Fu X., Jin H., Wu J., Sun S., Sun S., Wu Q. Lipid-associated macrophages in the tumor-adipose microenvironment facilitate breast cancer progression. Oncoimmunology. 2022; 11(1). doi:10.1080/2162402X.2022.2085432.; Lin C., Yang H., Zhao W., Wang W. CTSB+ macrophage repress memory immune hub in the liver metastasis site of colorectal cancer patient revealed by multi-omics analysis. Biochem Biophys Res Commun. 2022; 626: 8–14. doi:10.1016/j.bbrc.2022.06.037.; Wu S.Z., Al-Eryani G., Roden D.L., Junankar S., Harvey K., Andersson A., Thennavan A., Wang C., Torpy J.R., Bartonicek N., Wang T., Larsson L., Kaczorowski D., Weisenfeld N.I., Uytingco C.R., Chew J.G., Bent Z.W., Chan C.L., Gnanasambandapillai V., Dutertre C.A., Gluch L., Hui M.N., Beith J., Parker A., Robbins E., Segara D., Cooper C., Mak C., Chan B., Warrier S., Ginhoux F., Millar E., Powell J.E., Williams S.R., Liu X.S., O’Toole S., Lim E., Lundeberg J., Perou C.M., Swarbrick A. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021; 53(9): 1334–47. doi:10.1038/s41588-021-00911-1.; Lee C.Z.W., Kozaki T., Ginhoux F. Studying tissue macrophages in vitro: are iPSC-derived cells the answer? Nat Rev Immunol. 2018; 18(11): 716–25. doi:10.1038/s41577-018-0054-y. Erratum in: Nat Rev Immunol. 2018; 18(11): 726. doi:10.1038/s41577-018-0060-0.; Luque-Martin R., Mander P.K., Leenen P.J.M., Winther M.P.J. Classic and new mediators for in vitro modelling of human macrophages. J Leukoc Biol. 2021; 109(3): 549–60. doi:10.1002/JLB.1RU0620-018R.; Lopez-Yrigoyen M., Cassetta L., Pollard J.W. Macrophage targeting in cancer. Ann N Y Acad Sci. 2021; 1499(1): 18–41. doi:10.1111/nyas.14377.; Wang S., Yang Y., Ma P., Huang H., Tang Q., Miao H., Fang Y., Jiang N., Li Y., Zhu Q., Tao W., Zha Y., Li N. Landscape and perspectives of macrophage-targeted cancer therapy in clinical trials. Mol Ther Oncolytics. 2022; 24: 799–813. doi:10.1016/j.omto.2022.02.019.; Benner B., Scarberry L., Suarez-Kelly L.P., Duggan M.C., Campbell A.R., Smith E., Lapurga G., Jiang K., Butchar J.P., Tridandapani S., Howard J.H., Baiocchi R.A., Mace T.A., Carson W.E. 3rd. Generation of monocyte-derived tumor-associated macrophages using tumor-conditioned media provides a novel method to study tumor-associated macrophages in vitro. J Immunother Cancer. 2019; 7(1): 140. doi:10.1186/s40425-019-0622-0.; Stewart D.A., Yang Y., Makowski L., Troester M.A. Basal-like breast cancer cells induce phenotypic and genomic changes in macrophages. Mol Cancer Res. 2012; 10(6): 727–38. doi:10.1158/1541-7786.MCR11-0604.; Larionova I., Kazakova E., Gerashchenko T., Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel). 2021; 13(13): 3253. doi:10.3390/cancers13133253.; Vogel D.Y., Glim J.E., Stavenuiter A.W., Breur M., Heijnen P., Amor S., Dijkstra C.D., Beelen R.H. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology. 2014; 219(9): 695–703. doi:10.1016/j.imbio.2014.05.002.; Rey-Giraud F., Hafner M., Ries C.H. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One. 2012; 7(8). doi:10.1371/journal.pone.0042656.; Nielsen M.C., Andersen M.N., Møller H.J. Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology. 2020; 159(1): 63–74. doi:10.1111/imm.13125.; Golabek A., Kaczmarek M., Dondajewska E., Sakrajda K., Mackiewicz A., Dams-Kozlowska H. Application of a three-dimensional (3D) breast cancer model to study macrophage polarization. Exp Ther Med. 2021; 21(5): 482. doi:10.3892/etm.2021.9913.; Rebelo S.P., Pinto C., Martins T.R., Harrer N., Estrada M.F., Loza-Alvarez P., Cabeçadas J., Alves P.M., Gualda E.J., Sommergruber W., Brito C. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials. 2018; 163: 185–97. doi:10.1016/j.biomaterials.2018.02.030.; Helleberg Madsen N., Schnack Nielsen B., Larsen J., Gad M. In vitro 2D and 3D cancer models to evaluate compounds that modulate macrophage polarization. Cell Immunol. 2022; 378. doi:10.1016/j.cellimm.2022.104574.; https://www.siboncoj.ru/jour/article/view/3192
-
3Academic Journal
Authors: E. G. Churina, A. V. Popova, O. I. Urazova, M. R. Patysheva, Ju. V. Kolobovnikova, S. P. Chumakova, Е. Г. Чурина, А. В. Попова, О. И. Уразова, М. Р. Патышева, Ю. В. Колобовникова, С. П. Чумакова
Contributors: The reported study was funded by the Council for Grants of the President of the Russian Federation for leading scientific schools (SS-2690.2018.7) and the RFBR grant, project number 19-315-90018, Исследование выполнено при финансовой поддержке Совета по грантам Президента Российской Федерации для ведущих научных школ (НШ-2690.2018.7) и РФФИ в рамках научного проекта № 19-315-90018
Source: Bulletin of Siberian Medicine; Том 21, № 4 (2022); 140-149 ; Бюллетень сибирской медицины; Том 21, № 4 (2022); 140-149 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-4
Subject Terms: CD206, pulmonary tuberculosis, innate immunity, immune response, scavenger receptors, IL-4, IFNγ, CD163, CD204, туберкулез легких, врожденный иммунитет, иммунный ответ, скавенджер-рецепторы
File Description: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5034/3312; https://bulletin.ssmu.ru/jour/article/view/5034/3337; Davies L.C., Taylor P.R. Tissue-resident macrophages: then and now. Immunology. 2015;144(4):541–548. DOI:10.1111/ imm.12451.; Mills C.D. M1 and M2 macrophages: oracles of health and disease. Crit. Rev. Immunol. 2012;32(6):463–488. DOI:10.1615/critrevimmunol.v32.i6.10.; Khan A., Singh V.K., Hunter R.L., Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J. Leukoc. Biol. 2019;106(2):275–282. DOI:10.1002/JLB.MR0318-095RR.; Guilliams M., Svedberg F.R. Does tissue imprinting restrict macrophage plasticity? Review Nat. Immunol. 2021;22(2):118– 127. DOI:10.1038/s41590-020-00849-2.; Cheah F.C., Presicce P., Tan T.L., Carey B.C., Kallapur S.G. Studying the effects of granulocyte-macrophage colony-stimulating factor on fetal lung macrophages during the perinatal period using the mouse model. Front. Pediatr. 2021;9:614209. DOI:10.3389/fped.2021.614209.; Global tuberculosis report. Health Organization Report. Geneva, 2019. URL: https://www.who.int/teams/global-tuberculo-sis-programme/tb-reports/global-report-2019.; Global tuberculosis report World Health Organization Report. Geneva, 2018. URL: https://apps.who.int/iris/handle/10665/274453.; Leopold Wager C.M., Arnett E., Schlesinger L.S. Macrophage nuclear receptors: Emerging key players in infectious diseases. PLoS Pathog. 2019;15(3):e1007585. DOI:10.1371/journal.ppat.1007585.; Santos J.H.A., Bührer-Sékula S., Melo G.C., Cordeiro-Santos M., Pimentel J.P.D., Gomes-Silva A. et al. Ascaris lumbricoides coinfection reduces tissue damage by decreasing IL-6 levels without altering clinical evolution of pulmonary tuberculosis or Th1/Th2/Th17 cytokine profile. Rev. Soc. Bras. Med. Trop. 2019;52:e20190315. DOI:10.1590/0037-8682-0315-2019.; Zhai W., Wu F., Zhang Y., Fu Y., Liu Z. The Immune escape mechanisms of Mycobacterium tuberculosis. Int. J. Mol. Sci. 2019;20(2):340. DOI:10.3390/ijms20020340.; Shim D., Kim H., Shin S.J. Mycobacterium tuberculosis infection-driven foamy macrophages and their implications in tuberculosis control as targets for host-directed therapy. Front. Immunol. 2020;11:910. DOI:10.3389/fimmu.2020.00910.; Maler M.D., Nielsen P.J., Stichling N., Cohen I., Ruzsics Z., Wood C. et al. Role of the scavenger receptor MARCO in mediating adenovirus infection and subsequent innate responses of macrophages. mBio. 2017;8(4):e00670–17. DOI:10.1128/mBio.00670-17.; Gayer F.A., Reichardt S.D., Bohnenberger H., Engelke M., Reichardt H.M. Characterization of testicular macrophage subpopulations in mice. Immunol. Lett. 2022;243:44–52. DOI:10.1016/j.imlet.2022.02.003.; Prabhu Das M.R., Baldwin C.L., Bollyky P.L., Bowdish D.M.E., Drickamer K., Febbraio M. et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. J. Immunol. 2017;198(10):3775–3789. DOI:10.4049/jimmunol.1700373.; Wong C.K., Smith C.A., Sakamoto K., Kaminski N., Koff J.L., Goldstein D.R. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. J. Immunol. 2017;199(3):1060–1068. DOI:10.4049/jimmunol.1700397.; Wolfsberger J., Sakil H.A.M., Zhou L., van Bree N., Baldisseri E., Ferreira S.S. et al. TAp73 represses NF-кB-mediated recruitment of tumor-associated macrophages in breast cancer. Proc. Natl. Acad. Sci. U S A. 2021;118(10):e2017089118. DOI:10.1073/pnas.2017089118.17.; Pisu D., Huang L., Narang V., Theriault M., Lê-Bury G., Lee B. et al. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J. Exp. Med. 2021;218(9):e20210615. DOI:10.1084/jem.20210615.; Rocha D.M.G.C., Magalhães C., Cá B., Ramos A., Carvalho T., Comas I. et al. Heterogeneous streptomycin resistance level among mycobacterium tuberculosis strains from the same transmission cluster. Front. Microbiol. 2021;12:659545. DOI:10.3389/fmicb.2021.659545.; Marino S., Cilfone N.A., Mattila J.T., Linderman J.J., Flynn J.L., Kirschner D.E. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect. Immun. 2015;83(1):324–338. DOI:10.1128/IAI.02494-14.; Weaver L.K., Hintz-Goldstein K.A., Pioli P.A., Wardwell K., Qureshi N., Vogel S.N. et al. Pivotal advance: activation of cell surface Toll-like receptors causes shedding of the hemoglobin scavenger receptor CD163. J. Leukoc. Biol. 2006;80(1):26– 35. DOI:10.1189/jlb.1205756.; Fabriek B.O., van Bruggen R., Deng D.M., Ligtenberg A.J.M., Nazmi K., Schornagel K. et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood. 2009;113(4):887–892. DOI:10.1182/blood-2008-07-167064.; Dieudonné A., Torres D., Blanchard S., Taront S., Jeannin P., Delneste Y. et al. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA. PLoS One. 2012;7(8):e41952. DOI:10.1371/journal.pone.0041952.; Canton J., Neculai D., Grinstein S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 2013;13(9):621– 634. DOI:10.1038/nri3515.; Kubota K., Moriyama M., Furukawa S., Rafiul H.A.S.M., Maruse Y., Jinno T. et al. CD163+CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Sci. Rep. 2017;7(1):1755. DOI:10.1038/s41598-017-01661-z.; Komohara Y., Takemura K., Lei X.F., Sakashita N., Harada M., Suzuki H. et al. Delayed growth of EL4 lymphoma in SR-A-deficient mice is due to upregulation of nitric oxide and interferon-gamma production by tumor-associated macrophages. Cancer Sci. 2009;100(11):2160–2166. DOI:10.1111/j.1349-7006.2009.01296-x.; Barreto-Bergter E., Figueiredo R.T. Fungal glycans and the innate immune recognition. Front. Cell Infect. Microbiol. 2014;4:145. DOI:10.3389/fcimb.2014.00145.; Azad A.K., Rajaram M.V., Schlesinger L.S. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics. J. Cytol. Mol. Biol. 2014;1(1):1000003. DOI:10.13188/2325-4653.1000003.; Kaku Y., Imaoka H., Morimatsu Y., Komohara Y., Ohnishi K., Oda H. et al. Overexpression of CD163, CD204 and CD206 on alveolar macrophages in the lungs of patients with severe chronic obstructive pulmonary disease. PLoS One. 2014;9(1):e87400. DOI:10.1371/journal.pone.0087400.; Weiss G., Schaible U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 2015;264(1):182– 203. DOI:10.1111/imr.12266.; Xu F., Kang Y., Zhang H., Piao Z., Yin H., Diao R. et al. Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. J Infect. Dis. 2013;208(3):528–538. DOI:10.1093/infdis/jit177.; https://bulletin.ssmu.ru/jour/article/view/5034
-
4Academic Journal
Source: Успехи молекулярной онкологии. 2022. Т. 9, № 4, приложение. С. 50
Subject Terms: макрофаги с пенистой морфологией, рак яичников, скавенджер-рецепторы, опухолеассоциированные макрофаги
File Description: application/pdf
-
5Academic Journal
Authors: Ракина, Милица Александровна, Казакова, Елена Олеговна, Сударских, Татьяна Сергеевна, Безгодова, Наталья Владимировна, Ларионова, Ирина Валерьевна
Source: Успехи молекулярной онкологии. 2022. Т. 9, № 4, приложение. С. 50
Subject Terms: опухолеассоциированные макрофаги, рак яичников, скавенджер-рецепторы, макрофаги с пенистой морфологией
File Description: application/pdf
Relation: koha:001015057; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001015057
-
6Academic Journal
Authors: Нозадзе, Д., Рвачёва, А., Казначеева, Е., Сергиенко, И.
Subject Terms: CCR2 +CX3CR1 BW МОНОЦИТЫ, CCR2 -CX3CR1 HIGH МОНОЦИТЫ, АТЕРОСКЛЕРОТИЧЕСКАЯ БЛЯШКА, ИНТЕГРИНЫ, СЕЛЕКТИНЫ, СКАВЕНДЖЕР РЕЦЕПТОРЫ, КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР, CCR2 +CX3CR1 IOW MONOCYTES
File Description: text/html
-
7Academic Journal
Source: Атеросклероз и дислипидемии.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, 05 social sciences, CCR2 +CX3CR1 BW МОНОЦИТЫ, CCR2 -CX3CR1 HIGH МОНОЦИТЫ, АТЕРОСКЛЕРОТИЧЕСКАЯ БЛЯШКА, ИНТЕГРИНЫ, СЕЛЕКТИНЫ, СКАВЕНДЖЕР РЕЦЕПТОРЫ, КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР, CCR2 +CX3CR1 IOW MONOCYTES, 0501 psychology and cognitive sciences, 3. Good health
File Description: text/html