-
1Academic Journal
Source: Вестник интенсивной терапии, Iss 2 (2024)
-
2Academic Journal
Source: Вестник интенсивной терапии, Iss 2 (2024)
-
3Academic Journal
Authors: Ирина Владимировна Медянникова, Ирина Вячеславовна Савельева, Галина Борисовна Безнощенко, Андрей Васильевич Чаунин, Евгений Гариславович Проданчук, Ольга Юрьевна Цыганкова, Елена Георгиевна Галянская, Наталья Владимировна Носова, Елена Анатольевна Бухарова, Павел Васильевич Давыдов
Source: Мать и дитя в Кузбассе, Vol 24, Iss 2, Pp 17-25 (2023)
Subject Terms: воспалительные заболевания придатков матки, синдром системного воспалительного ответа, индекс интоксикации, система гемостаза, тромбоэластография, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
File Description: electronic resource
-
4Academic Journal
Authors: Petrushenko, V.V., Stolyarchuk, A.V.
Source: EMERGENCY MEDICINE; № 5.76 (2016); 105-109
МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 5.76 (2016); 105-109
МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 5.76 (2016); 105-109Subject Terms: гострий панкреатит, оксидативний стрес, синдром системної запальної відповіді, органна дисфункція, 03 medical and health sciences, 0302 clinical medicine, acute pancreatitis, oxidative stress, systemic inflammatory response syndrome, organ dysfunction, острый панкреатит, оксидативный стресс, синдром системного воспалительного ответа, органная дисфункция, 6. Clean water, 3. Good health
File Description: application/pdf
-
5Academic Journal
Authors: O. A. Kudelich, G. G. Kondratenko, M. P. Potapnev, O. V. Klimenkova, О. А. Куделич, Г. Г. Кондратенко, М. П. Потапнев, О. В. Клименкова
Contributors: The study was carried out thanks to the financial support of the Ministry of Health of the Republic of Belarus (State Registration No. 2020363), Исследование выполнено благодаря финансовой поддержке Министерства здравоохранения Республики Беларусь (государственная регистрация № 2020363)
Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 1 (2024); 74-87 ; Трансплантология; Том 16, № 1 (2024); 74-87 ; 2542-0909 ; 2074-0506
Subject Terms: поджелудочная железа, mesenchymal stem cells, systemic inflammatory response syndrome, necrosis, pancreas, мезенхимальные стромальные клетки, синдром системного воспалительного ответа, некроз
File Description: application/pdf
Relation: https://www.jtransplantologiya.ru/jour/article/view/857/844; https://www.jtransplantologiya.ru/jour/article/view/857/854; Kiss S, Pintér J, Molontay R, Nagy M, Farkas N, Sipos Z, et al. Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases. Sci Rep. 2022;12(1):7827. PMID: 35552440 https://doi.org/10.1038/s41598-022-11517-w; Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med. 2014;20(1):466– 477. PMID: 25105302 https://doi.org/10.2119/molmed.2014.00117; Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–390. PMID: 5336210; Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Jeng HC, et al. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci. 2021;28(1):28. PMID: 33849537 https://doi.org/10.1186/s12929-021-00725-7; Jung KH, Song SU, Yi T, Jeon M, Hong S, Zheng H, et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology. 2011;140(3):998–1008.e4. PMID: 21130088 https://doi.org/10.1053/j.gastro.2010.11.047; Patel ML, Shyam R, Atam V, Bharti H, Sachan R, Parihar A. Clinical profile, etiology, and outcome of acute pancreatitis: experience at a tertiary care center. Ann Afr Med. 2022;21(2):118–123. PMID: 35848642 https://doi.org/10.4103/aam.aam_83_20; Куделич О.А., Кондратенко Г.Г., Потапнев М.П. Клеточные технологии в лечении острого экспериментального панкреатита. Военная медицина. 2022;3(64):90–99. https://rep.bsmu.by/handle/BSMU/35963; Ahmed SM, Morsi M, Ghoneim NI, Abdel-Daim MM, El-Badri N. Mesenchymal stromal cell therapy for pancreatitis: a systematic review. Oxid Med Cell Longev. 2018;2018:3250864. PMID: 29743979 https://doi.org/10.1155/2018/3250864; Ma Z, Zhou J, Yang T, Xie W, Song G, Song Z, Chen J. Mesenchymal stromal cell therapy for pancreatitis: Progress and challenges. Med Res Rev. 2021;41(4):2474–2488. PMID: 33840113 https://doi.org/10.1002/med.21801; Куделич О.А., Кондратенко Г.Г., Потапнев М.П. Применение плазмы, обогащенной растворимыми факторами тромбоцитов, при тяжелом остром экспериментальном панкреатите. Новости хирургии. 2023;31(1):5–15. https://www.surgery.by/pdf/full_text/2023_1_1_ft.pdf; Asakawa T, Matsushita S. Coloring condition of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids . 1980;15(3):137–140. https://doi.org/10.1007/BF02540959; Куделич О.А., Кондратенко Г.Г., Летковская Т.А., Потапнев М.П., Неровня А.М., Степуро О.А. Патоморфологическое обоснование модели тяжелого острого панкреатита. Хирургия. Восточная Европа. 2022;11(4):490–502. https://doi.org/10.34883/PI.2022.11.4.014; Куделич О.А., Кондратенко Г.Г., Метелица Т.Г., Колесникова Т.С., Ходосовская Е.В. Обоснование выбора модели тяжелого острого панкреатита, пригодной для изучения новых подходов к его лечению. Хирургия. Восточная Европа. 2023;12(1):66–79.https://doi. org/10.34883/PI.2023.12.1.017; Pădureanu V, Florescu DN, Pădureanu R, Ghenea AE, Gheonea DI, Oancea CN. Role of antioxidants and oxidative stress in the evolution of acute pancreatitis (Review). Exp Ther Med. 2022;23(3):197. PMID: 35126700 https://doi.org/10.3892/etm.2022.11120 15. Abdelhafez D, Aboelkomsan E, El Sadik A, Lasheen N, Ashur S, Elshimy A, et al. The role of mesenchymal stem cells with ascorbic acid and N-acetylcysteine on TNF-α, IL 1β, and NF-κβ expressions in acute pancreatitis in albino rats. J Diabetes Res. 2021;2021:6229460. PMID: 34697592 https://doi.org/10.1155/2021/6229460; He Z, Hua J, Qian D, Gong J, Lin S, Xu C, et al. Intravenous hMSCs ameliorate acute pancreatitis in mice via secretion of tumor necrosis factor-α stimulated gene/protein 6. Sci Rep. 2016;6:38438. PMID: 27917949 https://doi.org/10.1038/srep38438; Jung KH, Yi T, Son MK, Song SU, Hong SS. Therapeutic effect of human clonal bone marrow-derived mesenchymal stem cells in severe acute pancreatitis. Arch Pharm Res. 2015;38(5):742– 751. PMID: 25142942 https://doi.org/10.1007/s12272-014-0465-7; Tu XH, Song JX, Xue XJ, Guo XW, Ma YX, Chen ZY, et al. Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis. World J Gastroenterol. 2012;18(18):2270–2279. PMID: 22611322 https://doi.org/10.3748/wjg.v18.i18.2270; Андреева С.Д., Мамедова С.М., Распутин П.Г. Ультраструктурные нарушения микроциркуляторного русла поджелудочной железы при экспериментальном остром деструктивном панкреатите. Вятский медицинский вестник. 2019;3(63):18–22. https://doi.org/10.24411/2220-7880-2019-10004; Порядин Г.В., Власов А.П., Анаскин С.Г., Власова Т.И., Потянова И.В., Турыгина С.А. Системные факторы прогрессирования острого панкреатита. Патологическая физиология и экспериментальная терапия. 2015;59(2):46–50. Available at: https://pfiet.ru/article/view/854; Загородских Е.Б., Черкасов В.А., Щёкотова А.П. Маркеры эндотелиальной дисфункции и их прогностическое значение при остром панкреатите тяжелого течения. Фундаментальные исследования. 2013;9(3):355–361.; Maeda K, Hirota M, Ichihara A, Ohmuraya M, Hashimoto D, Sugita H, et al. Applicability of disseminated intravascular coagulation parameters in the assessment of the severity of acute pancreatitis. Pancreas. 2006;32(1):87–92. PMID: 16340749 https://doi.org/10.1097/01.mpa.0000186248.89081.44; Akbal E, Demirci S, Koçak E, Köklü S, Başar O, Tuna Y. Alterations of platelet function and coagulation parameters during acute pancreatitis. Blood Coagul Fibrinolysis. 2013;24(3):243–246. PMID: 23425662 https://doi.org/10.1097/MBC.0b013e32835aef51; Tu J, Yang Y, Zhang J, Yang Q, Lu G, Li B, et al. Effect of the disease severity on the risk of developing new-onset diabetes after acute pancreatitis. Medicine (Baltimore). 2018;97(22):e10713. PMID: 29851776 https://doi.org/10.1097/MD.0000000000010713; Bishehsari F, Sharma A, Stello K, Toth C, O'Connell MR, Evans AC, et al. TNF-alpha gene (TNFA) variants increase risk for multi-organ dysfunction syndrome (MODS) in acute pancreatitis. Pancreatology. 2012;12(2):113–118. PMID: 22487520 https://doi.org/10.1016/j.pan.2012.02.014; Liu LR, Xia SH. Role of plateletactivating factor in the pathogenesis of acute pancreatitis. World J Gastroenterol. 200628;12(4):539–545. PMID: 16489665 https://doi.org/10.3748/wjg.v12.i4.539; Sakai Y, Masamune A, Satoh A, Nishihira J, Yamagiwa T, Shimosegawa T. Macrophage migration inhibitory factor is a critical mediator of severe acute pancreatitis. Gastroenterology. 2003;124(3):725–736. PMID: 12612911 https://doi.org/10.1053/gast.2003.50099; Goodman RR, Jong MK, Davies JE. Concise review: The challenges and opportunities of employing mesenchymal stromal cells in the treatment of acute pancreatitis. Biotechnol Adv. 2020;42:107338. PMID: 30639517 https://doi.org/10.1016/j.biotechadv.2019.01.005; Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep. 2016;6:38308. PMID: 27910911 https://doi.org/10.1038/srep38308; Qian D, Wei G, Xu C, He Z, Hua J, Li J, et al. Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/ p50 gene in rats. Sci Rep. 2017;7(1):581. PMID: 28373667 https://doi.org/10.1038/s41598-017-00629-3; Hegyi P, Rakonczay Z Jr. The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas. Antioxid Redox Signal. 2011;15(10):2723–2741. PMID: 21777142 https://doi.org/10.1089/ars.2011.4063; https://www.jtransplantologiya.ru/jour/article/view/857
-
6Academic Journal
Authors: O. A. Kudelich, G. G. Kondratenko, M. P. Potapnev, O. V. Klimenkova, N. V. Goncharova, О. А. Куделич, Г. Г. Кондратенко, М. П. Потапнев, О. В. Клименкова, Н. В. Гончарова
Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 3 (2024); 313-327 ; Трансплантология; Том 16, № 3 (2024); 313-327 ; 2542-0909 ; 2074-0506
Subject Terms: поджелудочная железа, mesenchymal stem cells, acute pancreatitis, systemic inflammatory response syndrome, pancreas, мезенхимальные стромальные клетки, острый панкреатит, синдром системного воспалительного ответа
File Description: application/pdf
Relation: https://www.jtransplantologiya.ru/jour/article/view/913/882; https://www.jtransplantologiya.ru/jour/article/view/913/893; Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16(3):175–184. PMID: 30482911 https://doi.org/10.1038/s41575-018-0087-5; Kiss S, Pintér J, Molontay R, Nagy M, Farkas N, Sipos Z, et al. Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases. Sci Rep. 2022;12(1):7827. PMID: 35552440 https://doi.org/10.1038/s41598-022-11517-w; Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Jeng HC, et al. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci. 2021;28(1):28. PMID: 33849537 https://doi.org/10.1186/s12929-021-00725-7; Jung KH, Song SU, Yi T, Jeon M, Hong S, Zheng H, et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology. 2011;140(3):998–1008.e4. PMID: 21130088 https://doi.org/10.1053/j.gas-tro.2010.11.047; Куделич О.А., Кондратенко Г.Г., Потапнев М.П. Клеточные технологии в лечении острого экспериментального панкреатита. Военная медицина. 2022;3(64):90–99. https://doi.org/10.51922/2074-5044.2022.3.90; Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci. 2016;158:137–60. PMID: 27208651 https://doi.org/10.1016/j.lfs.2016.05.027; Cheng J, Sun Y, Ma Y, Ao Y, Hu X, Meng Q. Engineering of MSC-derived exosomes: a promising cell-free therapy for osteoarthritis. Membranes (Basel). 2022;12(8):739. PMID: 36005656 https://doi.org/10.3390/membranes12080739; Mohammadi MR, Riazifar M, Pone EJ, Yeri A, Van Keuren-Jensen K, Lässer C, et al. Isolation and characterization of microvesicles from mesenchymal stem cells. Methods. 2020;177:50–57. PMID: 31669353 https://doi.org/10.1016/j.ymeth.2019.10.010; Cha H, Hong S, Park JH, Park HH. Stem cell-derived exosomes and nanovesicles: promotion of cell proliferation, migration, and anti-senescence for treatment of wound damage and skin ageing. Pharmaceutics. 2020;12(12):1135. PMID: 33255430 https://doi.org/10.3390/phar-maceutics12121135; Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017;7(1):180–195. PMID: 28042326 https://doi.org/10.7150/thno.17133; Zhang N, He F, Li T, Chen J, Jiang L, Ouyang XP, et al. Role of exosomes in brain diseases. Front Cell Neurosci. 2021;15:743353. PMID: 34588957 https://doi.org/10.3389/fncel.2021.743353; Xiao M, Zeng W, Wang J, Yao F, Peng Z, Liu G, et al. Exosomes protect against acute myocardial infarction in rats by regulating the renin-angiotensin system. Stem Cells Dev. 2021;30(12):622– 631. PMID: 33765842 https://doi.org/10.1089/scd.2020.0132; De Castro LL, Xisto DG, Kitoko JZ, Cruz FF, Olsen PC, Redondo PAG, et al. Human adipose tissue mesenchymal stromal cells and their extracellular ve sicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther. 2017;8(1):151. PMID: 28646903 https://doi.org/10.1186/s13287-017-0600-8; Chen JY, An R, Liu ZJ, Wang JJ, Chen SZ, Hong MM, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin. 2014;35(9):1121–8. PMID: 25088001 https://doi.org/10.1038/aps.2014.61; Sabry D, Mohamed A, Monir M, Ibrahim HA. The effect of mesenchymal stem cells derived microvesicles on the treatment of experimental CCL4 induced liver fibrosis in rats. Int J Stem Cells. 2019;12(3):400–409. PMID: 31474025 https://doi.org/10.15283/ijsc18143; Zhang R, Zhu Y, Li Y, Liu W, Yin L, Yin S, et al. Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression. Biotechnol Lett. 2020;42(4):669– 679. PMID: 32048128 https://doi.org/10.1007/s10529-020-02831-2; Yan Y, Wu R, Bo Y, Zhang M, Chen Y, Wang X, et al. Induced pluripotent stem cells-derived microvesicles accelerate deep second-degree burn wound healing in mice through miR-16-5p-mediated promotion of keratinocytes migration. Theranostics. 2020;10(22):9970–9983. PMID:32929328 https://doi.org/10.7150/thno.46639; Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. PMID: 30637094 https://doi.org/10.1080/20013078.2018.1535750; Asakawa T, Matsushita S. Coloring condition of thiobarbituric acid test for detecting lipid hydroperoxides. Li pids. 1980;15(3):137–140. https://doi.org/10.1007/BF02540959; Куделич О.А., Кондратенко Г.Г., Летковская Т.А., Потапнев М.П., Неровня А.М., Степуро О.А. Патоморфологическое обоснование модели тяжелого острого панкреатита. Хирургия. Восточная Европа. 2022;11(4):490–502. https://doi.org/10.34883/PI.2022.11.4.014; Куделич О.А., Кондратенко Г.Г., Метелица Т.Г., Колесникова Т.С., Ходосовская Е.В. Обоснование выбора модели тяжелого острого панкреатита, пригодной для изучения новых подходов к его лечению. Хирургия. Восточная Европа. 2023;12(1):66–79. https://doi.org/10.34883/PI.2023.12.1.017; Власов А.П., Анаскин С.Г., Власова Т.И., Рубцов О.Ю., Лещанкина Н.Ю., Муратова Т.А. и др. Синдром системного воспалительного ответа при панкрео-некрозе: триггерные агенты, органные повреждения. Хирургия. Журнал им. Н.И. Пирогова. 2021;(4):21–28. https://doi.org/10.17116/hirurgia202104121; Потапнев М.П. Цитокиновый шторм: причины и последствия. Иммунология. 2021;42(2):175–188. https://doi.org/10.33029/0206-4952-2021-42-2-175-188; Никитина Е.В., Илюкевич Г.В. Клинико-лабораторная оценка синдрома системного воспалительного ответа у пациентов с острым тяжелым панкреатитом. Вестник ВГМУ. 2023;22(3):55– 62. https://doi.org/10.22263/2312-4156.2023.3.55; Bishehsari F, Sharma A, Stello K, Toth C, O'Connell MR, Evans AC, et al. TNF-alpha gene (TNFA) variants increase risk for multi-organ dysfunction syndrome (MODS) in acute pancreatitis. Pancreatology. 2012;12(2):113– 118. PMID: 22487520 https://doi.org/10.1016/j.pan.2012.02.014; Liu LR, Xia SH. Role of plateletactivating factor in the pathogenesis of acute pancreatitis. World J Gastroenterol. 200628;12(4):539–545. PMID: 16489665 https://doi.org/10.3748/wjg.v12.i4.539; Sakai Y, Masamune A, Satoh A, Nishihira J, Yamagiwa T, Shimosegawa T. Macrophage migration inhibitory factor is a critical mediator of severe acute pancreatitis. Gastroenterology. 2003;124(3):725–736. PMID: 12612911 https://doi.org/10.1053/gast.2003.50099; Singh P, Garg PK. Pathophysiological mechanisms in acute pancreatitis: current understanding. Indian J Gastroenterol. 2016;35(3):153–66. PMID: 27206712 https://doi.org/10.1007/s12664-016-0647-y; De Beaux AC, Fearon KC. Circulating endotoxin, tumour necrosis factoralpha, and their natural antagonists in the pathophysiology of acute pancreatitis. Scand J Gastroenterol Suppl. 1996;219:43–6. PMID: 8865471 https://doi.org/10.3109/00365529609104999; Тарасенко В.С., Кубышкин В.А., Демин Д.Б., Волков Д.В., Смолягин А.И., Чукина О.В. Иммунологические нарушения при панкреонекрозе и их коррекция. Хирургия. Журнал им. Н.И. Пирогова. 2013;(1):88–95.; Dambrauskas Z, Giese N, Gulbinas A, Giese T, Berberat PO, Pundzius J, et al. Different profiles of cytokine expression during mild and severe acute pancreatitis. World J Gastroenterol. 2010;16(15):1845–53. PMID: 20397261 https://doi.org/10.3748/wjg.v16.i15.1845; Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, et al. Endothelial cells are central orchestrators of cytokine amplifi cation during influenza virus infection. Cell. 2011;146(6):980–91. PMID: 21925319 https://doi.org/10.1016/j.cell.2011.08.015; Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med. 2014;20(1):466– 77. PMID: 25105302 https://doi.org/10.2119/molmed.2014.00117; Стародубцева М.Н. Двойственная роль пероксинитрита в организме. Проблемы здоровья и экологии. 2004;1(1):35–41. https://doi.org/10.51523/2708-6011.2004-1-1-6; Hegyi P, Rakonczay Z Jr. The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas. Antioxid Redox Signal. 2011;15(10):2723–2741. PMID: 21777142 https://doi.org/10.1089/ars.2011.4063; Pădureanu V, Florescu DN, Pădureanu R, Ghenea AE, Gheonea DI, Oancea CN. Role of antioxidants and oxidative stress in the evolution of acute pancreatitis (Review). Exp Ther Med. 2022;23(3):197. PMID: 35126700 https://doi.org/10.3892/etm.2022.11120; Booth DM, Murphy JA, Mukherjee R, Awais M, Neoptolemos JP, Gerasimenko OV, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology. 2011;140(7):2116–25. PMID: 21354148 https://doi.org/10.1053/j.gastro.2011.02.054; https://www.jtransplantologiya.ru/jour/article/view/913
-
7Academic Journal
Authors: V. V. Kiselev, M. S. Zhigalova, S. S. Petrikov, E. V. Klychnikova, P. A. Yartsev, В. В. Киселев, М. С. Жигалова, С. С. Петриков, Е. В. Клычникова, П. А. Ярцев
Contributors: The study has no sponsorship, Исследование не имеет спонсорской поддержки
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 4 (2023); 538-545 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 4 (2023); 538-545 ; 2541-8017 ; 2223-9022
Subject Terms: активация коагуляции, endothelial dysfunction, systemic inflammatory response syndrome, coagulation activation, эндотелиальная дисфункция, синдром системного воспалительного ответа
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1715/1351; https://www.jnmp.ru/jour/article/view/1715/1411; Киселев В.В., Жигалова М.С., Клычникова Е.В. Применение препаратов низкомолекулярного гепарина у пациентов с острым панкреатитом. Госпитальная медицина: наука и практика. 2021;4(2):9–12. doi:10.34852/GM3CVKG.2021.35.47.003; Багненко С.Ф., Краснорогов В.Б., Гольцов В.Р. Возможности использования плазмафереза при остром тяжелом панкреатите. Анналы хирургической гепатологии. 2007;12(1):15–22.; Киселев В.В., Жигалова М.С., Клычникова Е.В. Взаимодействие между воспалительным процессом и нарушениями в системе гемостаза у больных с острым тяжелым панкреатитом. Госпитальная медицина: наука и практика. 2021;4(1):10–16. URL: https://www.elibrary.ru/item.asp?edn=fulbci&ysclid=lrlsuphcdj523348691; Колотильщиков А.А. Выбор способа секвестрэктомии в лечении больных панкреонекрозом : автореф. дисс … канд. мед. наук. Москва; 2021. URL: https://search.rsl.ru/ru/record/01010970175 [Дата обращения 24 ноября 2023]; Марухов А.В., Хорошилов С.Е., Захаров М.В., Никулин А.В., Чубченко Н.В. Применение экстракорпоральной детоксикации в комплексном лечении тяжелого острого панкреатита. Анестезиология и реаниматология. 2020;(5):23–29. doi:10.17116/anaesthesiology202005123; Новиков С.В., Рогаль М.Л. Эволюция классификации тяжести острого панкреатита (обзор литературы). Вестник хирургической гастроэнтерологии. 2021;(2):3–11.; Ревишвили А.Ш., Кубышкин В.А., Затевахин И.И., Багненко С.Ф., Полушин Ю.С., Майстренко Н.А. и др. (рабочая группа). Клинические рекомендации. Острый панкреатит. 2020. URL: https://www.elibrary.ru/epwodt [Дата обращения 24 ноября 2023]; Ahmed S, Zimba O, Gasparyan AY. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clin Rheumatol. 2020;39(9):2529–2543. PMID: 32654082 doi:10.1007/s10067-020-05275-1; Alberts C, Alsfasser G. Severe Acute Pancreatitis – How Conservative Can We Be? Visceral Medicine. 2018;34(6):432–434. PMID: 30675488 doi:10.1159/000494097; Baron TH, DiMaio CJ, Wang AY, Morgan KA. American Gastroenterological Association Clinical Practice Update: Management of Pancreatic Necrosis. Gastroenterology. 2020;158(1):67–75. PMID: 31479658 doi:10.1053/j.gastro.2019.07.064; Birkbeck R, Humm K, Cortellini S. A review of hyperfibrinolysis in cats and dogs. J Small Anim Pract. 2019;60(11):641–655. PMID: 31608455 doi:10.1111/jsap.13068; Branchford BR, Carpenter SL. The Role of Inflammation in Venous Thromboembolism. Front Pediatr. 2018;6:142. PMID: 29876337 doi:10.3389/fped.2018.00142; Dumnicka P, Maduzia D, Ceranowicz P, Olszanecki R, Drożdż R, Kuśnierz-Cabala B. The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications. Int J Mol Sci. 2017;18(2):354. PMID: 28208708 doi:10.3390/ijms18020354; Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res. 2016;118(9):1392–1408. PMID: 27126649 doi:10.1161/CIRCRESAHA.116.306853; Iba T, Levy JH, Levi M, Connors JM, Thachil J. Coagulopathy of Coronavirus Disease 2019. Crit Care Med. 2020;48(9):1358–1364. PMID: 32467443 doi:10.1097/CCM.0000000000004458; Mukhopadhyay S, Johnson TA, Duru N, Buzza MS, Pawar NR, Sarkar R, et al. Fibrinolysis and Inflammation in Venous Thrombus Resolution. Front Immunol. 2019;10:1348. eCollection 2019. PMID: 31258531 doi:10.3389/fimmu.2019.01348; Papageorgiou C, Jourdi G, Adjambri E, Walborn A, Patel P, Fareed J, et al. Disseminated Intravascular Coagulation: An Update on Pathogenesis, Diagnosis, and Therapeutic Strategies. Clin Appl Thromb Hemost. 2018;24(9 suppl):8S–28S. PMID: 30296833 doi:10.1177/1076029618806424; Patel P, Walborn A, Rondina M, Fareed J, Hoppensteadt D. Markers of Inflammation and Infection in Sepsis and Disseminated Intravascular Coagulation. Clin Appl Thromb Hemost. 2019;25:1076029619843338. PMID: 30991817 doi:10.1177/1076029619843338; https://www.jnmp.ru/jour/article/view/1715
-
8Academic Journal
Authors: A. V. Vorobev, S. E. Einullaeva, A. S. Borodulin, M. A. Shikina, S. A. Aliev, A. G. Solopova, V. N. Galkin, A. E. Ivanov, V. O. Bitsadze, J. Kh. Khizroeva, D. V. Blinov, J.-C. Gris, I. Elalamy, A. D. Makatsariya, А. В. Воробьев, С. Э. Эйнуллаева, А. С. Бородулин, М. А. Шикина, С. А. Алиев, А. Г. Солопова, В. Н. Галкин, А. Е. Иванов, В. О. Бицадзе, Д. Х. Хизроева, Д. В. Блинов, Ж.-К. Гри, И. Элалами, А. Д. Макацария
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 3 (2024); 286-299 ; Акушерство, Гинекология и Репродукция; Vol 18, No 3 (2024); 286-299 ; 2500-3194 ; 2313-7347
Subject Terms: ССВО, thrombotic complications, oncological diseases, vWF/ADAMTS-13 axis, pulmonary embolism, PE, deep vein thrombosis, DVT, systemic inflammatory response syndrome, SIRS, тромботические осложнения, онкологические заболевания, ось vWF/ADAMTS-13, тромбоэмболия легочной артерии, ТЭЛА, тромбоз глубоких вен, ТГВ, синдром системного воспалительного ответа
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2088/1216; Thachil J., Khorana A., Carrier M. Similarities and perspectives on the two C’s – Cancer and COVID-19. J Thromb Haemost. 2021;19(5):1161–7. https://doi.org/10.1111/jth.15294.; Sciaudone A., Corkrey H., Humphries F., Koupenova M. Platelets and SARS-CoV-2 during COVID-19: immunity, thrombosis, and beyond. Circ Res. 2023;132(10):1272–89. https://doi.org/10.1161/CIRCRESAHA.122.321930.; Vassiliou A.G., Vrettou C.S., Keskinidou C. et al. Endotheliopathy in acute COVID-19 and long COVID. Int J Mol Sci. 2023;24(9):8237. https://doi.org/10.3390/ijms24098237.; Falanga A., Marchetti M. Cancer-associated thrombosis: enhanced awareness and pathophysiologic complexity. J Thromb Haemost. 2023;21(6):1397–408. https://doi.org/10.1016/j.jtha.2023.02.029.; Chandra A., Chakraborty U., Ghosh S., Dasgupta S. Anticoagulation in COVID-19: current concepts and controversies. Postgrad Med J. 2022;98(1159):395–402. https://doi.org/10.1136/postgradmedj-2021-139923.; Farge D., Frere C., Connors J.M. et al. International Initiative on Thrombosis and Cancer (ITAC) advisory panel. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 2022;23(7):e334–e347. https://doi.org/10.1016/S1470-2045(22)00160-7.; Lecumberri R., Marcos-Jubilar M., Guillén C. Thromboprophylaxis in patients with cancer and COVID-19. Arch Bronconeumol. 2022;58(11):744–5. https://doi.org/10.1016/j.arbres.2022.08.006.; Gulati S., Hsu C.Y., Shah S. et al. COVID-19 and Cancer Consortium. Systemic anticancer therapy and thromboembolic outcomes in hospitalized patients with cancer and COVID-19. JAMA Oncol. 2023;9(10):1390–400. https://doi.org/10.1001/jamaoncol.2023.2934.; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 7 (03.06.2020). М.: Министерство здравоохранения Российской Федерации, 2020, 166 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/050/584/original/03062020_МR_COVID-19_v7.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 8 (03.09.2020). М.: Министерство здравоохранения Российской Федерации, 2020. 227 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/051/777/original/030902020_COVID-19_v8.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). М.: Министерство здравоохранения Российской Федерации, 2020. 236 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/550/original/MP_COVID-19_%28v9%29.pdf?1603788097. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 10 (08.02.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 262 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/662/original/Временные_МР_COVID-19_%28v.10%29.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 11 (07.05.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 225 с. Режим доступа: https://rmapo.ru/uploads/korona/МР_COVID-19-v11.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 12 (21.09.2021). М.: Мистерство здравоохранения Российской Федерации, 2021. 232 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/075/original/ВМР_COVID-19_V12.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 13 (14.10.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 237 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 14 (27.12.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 233 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/041/original/ВМР_COVID-19_V14_27-12-2021.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 15 (22.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 245 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/ВМР_COVID-19_V15.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 16 (18.08.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 249 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/193/original/ВМР_COVID-19_V16.pdf. [Дата обращения: 15.04.2024].; Léonard-Lorant I., Delabranche X., Séverac F. et al. Acute pulmonary embolism in patients with COVID-19 at CT angiography and relationship to d-Dimer levels. Radiology. 2020;296(3):E189–E191. https://doi.org/10.1148/radiol.2020201561.; Brito-Dellan N., Tsoukalas N., Font C. Thrombosis, cancer, and COVID-19. Support Care Cancer. 2022;30(10):8491–500. https://doi.org/10.1007/s00520-022-07098-z.; Yang F., Shi S., Zhu J. et al. Clinical characteristics and outcomes of cancer patients with COVID-19. J Med Virol. 2020;92(10):2067–73. https://doi.org/10.1002/jmv.25972.; Rüthrich M.M., Giessen-Jung C., Borgmann S. et al.; LEOSS Study Group. COVID-19 in cancer patients: clinical characteristics and outcome-an analysis of the LEOSS registry. Ann Hematol. 2021;100(2):383–93. https://doi.org/10.1007/s00277-020-04328-4.; Nopp S., Moik F., Jilma B. et al. Risk of venous thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Res Pract Thromb Haemost. 2020;4(7):1178–91. https://doi.org/10.1002/rth2.12439.; Kuderer N.M., Choueiri T.K., Shah D.P. et al. COVID-19 and Cancer Consortium. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395(10241):1907–18. https://doi.org/10.1016/S0140-6736(20)31187-9.; Oken M.M., Creech R.H., Tormey D.C. et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649–55.; Patell R., Bogue T., Bindal P. et al. Incidence of thrombosis and hemorrhage in hospitalized cancer patients with COVID-19. J Thromb Haemost. 2020;18(9):2349–57. https://doi.org/10.1111/jth.15018.; Fenioux C., Allenbach Y., Vozy A. et al. Differences of characteristics and outcomes between cancer patients and patients with no active cancer hospitalised for a SARS-CoV-2 infection. Bull Cancer. 2021;108(6):581–8. (In French). https://doi.org/10.1016/j.bulcan.2021.03.004.; Obispo B., Rogado J., Muñoz-Rivas N. et al.; Infanta Leonor Thrombosis Research Group. Prevalence of thrombosis in patients with cancer and SARS-CoV-2 infection. Med Clin (Barc). 2022;159(5):234–7. https://doi.org/10.1016/j.medcli.2021.08.002.; Li A., Kuderer N.M., Hsu C.Y. et al.; CCC19 consortium. The CoVID-TE risk assessment model for venous thromboembolism in hospitalized patients with cancer and COVID-19. J Thromb Haemost. 2021;19(10):2522–32. https://doi.org/10.1111/jth.15463.; https://www.gynecology.su/jour/article/view/2088
-
9Academic Journal
Source: Мать и дитя в Кузбассе, Vol 24, Iss 2, Pp 17-25 (2023)
-
10Academic Journal
Source: Интегративная физиология, Vol 1, Iss 1 (2020)
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, Physiology, синдром системного воспалительного ответа, крыса, QP1-981, нейтрофилы, бактериальный липополисахарид, лейкоциты, 3. Good health
Access URL: https://intphysiology.ru/index.php/main/article/download/12/8
https://doaj.org/article/d43f88541e81480f853d62b317e2b08d
https://cyberleninka.ru/article/n/modelirovanie-sindroma-sistemnogo-vospalitelnogo-otveta-na-anestezirovannyh-krysah
https://intphysiology.ru/index.php/main/article/view/12 -
11Academic Journal
Source: Вестник интенсивной терапии, Iss 1 (2023)
-
12Academic Journal
Authors: Медянникова, Ирина Владимировна, Савельева, Ирина Вячеславовна, Безнощенко, Галина Борисовна, Чаунин, Андрей Васильевич, Проданчук, Евгений Гариславович, Цыганкова, Ольга Юрьевна, Галянская, Елена Георгиевна, Носова, Наталья Владимировна, Бухарова, Елена Анатольевна, Давыдов, Павел Васильевич
Source: Mother and Baby in Kuzbass; № 2 (2023): июнь; 17-25 ; Мать и Дитя в Кузбассе; № 2 (2023): июнь; 17-25 ; 2542-0968 ; 1991-010X
Subject Terms: inflammatory diseases of the uterine appendages, systemic inflammatory response syndrome, intoxication index, hemostasis system, thromboelastography, воспалительные заболевания придатков матки, синдром системного воспалительного ответа, индекс интоксикации, система гемостаза, тромбоэластография
File Description: text/html; application/pdf
Relation: http://mednauki.ru/index.php/MD/article/view/841/1566; http://mednauki.ru/index.php/MD/article/view/841/1582; http://mednauki.ru/index.php/MD/article/downloadSuppFile/841/1215; http://mednauki.ru/index.php/MD/article/downloadSuppFile/841/1216; http://mednauki.ru/index.php/MD/article/view/841
Availability: http://mednauki.ru/index.php/MD/article/view/841
-
13Academic Journal
Authors: V. V. Kiselev, M. S. Zhigalova, E. V. Klychnikova, P. A. Yartsev, В. В. Киселев, М. С. Жигалова, Е. В. Клычникова, П. А. Ярцев
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 1 (2023); 45-50 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 1 (2023); 45-50 ; 2541-8017 ; 2223-9022
Subject Terms: препараты низкомолекулярного гепарина, hemostasis, systemic inflammatory response syndrome, endothelial dysfunction, low molecular weight heparin preparations, гемостаз, синдром системного воспалительного ответа, эндотелиальная дисфункция
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1568/1273; https://www.jnmp.ru/jour/article/view/1568/1294; Колотильщиков А.А. Выбор способа секвестрэктомии в лечении больных панкреонекрозом: автореф. дисс… канд. мед. наук. Москва; 2021. URL: https://viewer.rusneb.ru/ru/rsl01010970174?page=1&rotate =0&theme=white [Дата обращения 1 марта 2022]; Baron TH, DiMaio CJ, Wang AY, Morgan KA. American Gastroenterological Association Clinical Practice Update: Management of Pancreatic Necrosis. Gastroenterology. 2020;158(1):67–75. PMID: 31479658 https:// doi.org/10.1053/j.gastro.2019.07.064; Глушков Н.И., Сафин М.Г., Лобанов М.Ю., Пахмутова Ю.А., Андрусенко А.В., Бельский И.И., и др. Оптимизация хирургической тактики при остром панкреатите. Вестник Северо-Западного государственного медицинского университета им И.И. Мечникова. 2016;8(2):7–13.; Umapathy C, Raina A, Saligram S, Tang G, Papachristou GI, Rabinovitz M, et al. Natural history after acute necrotizing pancreatitis: a large US tertiary care experience. J Gastrointest Surg. 2016;20(11):1844–1853. PMID: 27619808 https://doi.org/10.1007/s11605-016-3264-2; Bendersky VA, Mallipeddi MK, Perez A, Pappas TN. Necrotizing pancreatitis: challenges and solutions. Clin Exp Gastroenterol. 2016;9:345–350. PMID: 27826206 https://doi.org/ 10.2147/CEG.S99824; Cimmino G, Cirillo P. Tissue factor: newer concepts in thrombosis and its role beyond thrombosis and hemostasis. Cardiovasc Diagn Ther. 2018;8(5):581–593. PMID: 30498683 https://doi.org/10.21037/ cdt.2018.10.14; Fahey E, Doyle SL. Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front Immunol. 2019;10:1426. PMID: 31293586 https://doi.org/10.3389/fimmu.2019.01426; Mukhopadhyay S, Johnson TA, Duru N, Buzza MS, Pawar NR, Sarkar R, et al. Fibrinolysis and Inflammation in Venous Thrombus Resolution. Front Immunol. 2019;10:1348. PMID: 31258531 https://doi.org/10.3389/ fimmu.2019.01348; Sato T, Shibata W, Maeda S. Adhesion molecules and pancreatitis. J Gastroenterol. 2019;54(2):99–107. PMID: 30140950 https://doi.org/ 10.1007/s00535-018-1500-0; Wan J, Yang X, He W, Zhu Y, Zhu Y, Zeng H, et al. Serum D-dimer levels at admission for prediction of outcomes in acute pancreatitis. BMC Gastroenterol. 2019;19(1):67. PMID: 31046705 https://doi.org/ 10.1186/ s12876-019-0989-x; Киселев В.В., Жигалова М.С., Клычникова Е.В. Взаимодействие между системной воспалительной реакцией и нарушениями в системе гемостаза у больных с острым тяжелым панкреатитом. Госпитальная медицина: наука и практика. 2021;4(1):10–16. https://doi. org/10.34852/GM3CVKG.2021.50.48.002; Винник Ю.С., Дунаевская С.С., Антюфриева Д.А. Проспективное исследование гемостазиологических нарушений в I фазе тяжелого острого панкреатита. Вестник РАМН. 2018;73(2):122–129. https:// doi.org/10.15690/vramn906; Киселев В.В., Жигалова М.С., Клычникова Е.В. Применение препаратов низкомолекулярного гепарина у пациентов с острым панкреатитом. Госпитальная медицина: наука и практика. 2021;4(2):9–12. https://doi.org/10.34852/GM3CVKG.2021.85.75.002; Dumnicka P, Maduzia D, Ceranowicz P, Olszanecki R, Drożdż R, Kuśnierz-Cabala B. The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications. Int J Mol Sci. 2017;18(2):354. https://doi.org/ 10.3390/ ijms18020354; Самигулина Г.Р., Спиридонова Е.А., Ройтман Е.В., Самсонова Н.Н., Климович Л.Г., Варнавин О.А., и др. Различия в состоянии системы гемостаза у выживших и умерших от острого деструктивного панкреатита на ранней стадии заболевания. Гематология и трансфузиология. 2016;61(2):92–96. https://doi.org/10.18821/0234-5730-2016-61- 2-92-96; Tozlu M, Kayar Y, İnce AT, Baysal B, Şentürk H. Low molecular weight heparin treatment of acute moderate and severe pancreatitis: A randomized, controlled, open-label study. Turk J Gastroenterol. 2019;30(1):81–87. PMID: 30289392 https://doi.org/10.5152/ tjg.2018.18583; Qiu Qiu, Li Guo Jun, Liang Tang, Yan Guo, Liang Zhi Wen, Bin Warg, et al. The efficacy of low molecular weight heparin in severe acute pancreatitis: A systematic review and meta-analysis of randomized controlled trials. J Dig Dis. 2019;20:512–522. https://doi.org/10.1111/1751-2980.12815; https://www.jnmp.ru/jour/article/view/1568
-
14Academic Journal
Source: Мать и дитя в Кузбассе, Vol 24, Iss 2, Pp 17-25 (2023)
Subject Terms: воспалительные заболевания придатков матки, синдром системного воспалительного ответа, индекс интоксикации, система гемостаза, тромбоэластография, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
-
15Academic Journal
Authors: G. V. Bulava, Г. В. Булава
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 11, № 3 (2022); 484-492 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 11, № 3 (2022); 484-492 ; 2541-8017 ; 2223-9022
Subject Terms: цитокины, systemic inflammatory response syndrome (SIRS), innate and adaptive immune cells, cytokines, синдром системного воспалительного ответа ( SIRS ), клетки врожденного и адаптивного иммунитета
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1451/1205; https://www.jnmp.ru/jour/article/view/1451/1223; Абакумов М.М., Багненко С.Ф., Белобородов В.Б., Белоцерковский Б.З., Беляев А.М., Бурневич С.З., и др. Абдоминальная хирургическая инфекция. Москва; 2011.; Watanabe T, Kudo M, Strober W. Immunopathogenesis of pancreatitis. Mucosal Immunol. 2017;10(2):283–298. PMID:27848953 https://doi.org/10.1038/mi.2016.101; van Till JWO, van Veen SQ, van Ruler O, Lamme B, Gouma DJ, Boermeester MA. The innate immune response to secondary peritonitis. Shock. 2007;28(5):504–517. PMID:17589378 https://doi.org/10.1097/shk.0b013e318063e6ca; Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol. 2021;109(4):717–729. PMID:32881077 https://doi.org/10.1002/JLB.5MIR0720-271RR; Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6):1199–209. PMID:23622129 https://doi.org/10.1053/j.gastro.2013.02.007; Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology. 2019;156(7):1951–1968. PMID:30660731 https://doi.org/10.1053/j.gastro.2018.11.081; Hoque R, Malik AF, Gorelick F, Mehal WZ. Sterile inflammatory response in acute pancreatitis. Pancreas. 2012;41(3):353–357. PMID:22415665 https://doi.org/10.1097/MPA.0b013e3182321500; Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology. 2014;146(4):1097–1107. PMID:24361123 https://doi.org/10.1053/j.gastro.2013.12.015; Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev. 2018;98(2):727–780. PMID:29465288 https://doi.org/10.1152/physrev.00041.2016; Peng C, Li Z, Yu X. The Role of Pancreatic Infiltrating Innate Immune Cells in Acute Pancreatitis. Int J Med Sci. 2021;18(2):534–545. PMID:33390823 https://doi.org/10.7150/ijms.51618; Xue J, Sharma V, Habtezion A. Immune cells and immune-based therapy in pancreatitis. Immunol Res. 2014;58(2–3):378–386. PMID:24710635 https://doi.org/10.1007/s12026-014-8504-5; Antonucci L, Fagman JB, Kim JY, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci USA. 2015;112(45):E6166–6174. PMID:26512112 https://doi.org/10.1073/pnas.1519384112; Wan J, Yang X, Ren Y, Li X, Zhu Y, Haddock AN, et al. Inhibition of miR-155 reduces impaired autophagy and improves prognosis in an experimental pancreatitis mouse model. Cell Death Dis. 2019;10(4):303. PMID:30944299 https://doi.org/10.1038/s41419-019-1545-x; Bedrosian AS, Nguyen AH, Hackman M, Connolly MK, Malhotra A, Ibrahim J, et al. Dendritic cells promote pancreatic viability in mice with acute pancreatitis. Gastroenterology. 2011;141(5):1915–1926. PMID:21801698 https://doi.org/10.1053/j.gastro.2011.07.033; Lopez-Font I, Gea-Sorlí S, de-Madaria E, Gutiérrez LM, PérezMateo M, Closa D. Pancreatic and pulmonary mast cells activation during experimental acute pancreatitis. World J Gastroenterol. 2010;16(27):3411–3417. PMID:20632444 https://doi.org/10.3748/wjg.v16.i27.3411; Shifrin AL, Chirmule N, Gao GP, Wilson JM, Raper SE. Innate immune responses to adenoviral vector-mediated acute pancreatitis. Pancreas. 2005;30(2):122–129. PMID:15714134 https://doi.org/10.1097/01.mpa.0000151578.99413.88; Son A, Ahuja M, Schwartz DM, Varga A, Swaim W, Kang N, et al. Ca(2+) Influx Channel Inhibitor SARAF Protects Mice From Acute Pancreatitis. Gastroenterology. 2019;157(6):1660–1672. PMID:31493399 https://doi.org/10.1053/j.gastro.2019.08.042; Sendler M, Dummer A, Weiss FU, Krüger B, Wartmann T, ScharffetterKochanek K, et al. Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut. 2013;62(3):430–439. PMID:22490516 https://doi.org/10.1136/gutjnl-2011-300771; Sendler M, Weiss FU, Golchert J, Homuth G, van den Brandt C, Mahajan UM, et al. Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology. 2018;154(3):704–718. PMID: 29079517 https://doi.org/10.1053/j.gastro.2017.10.018; van Dijk SM, Hallensleben NDL, van Santvoort HC, Fockens P, van Goor H, Bruno MJ, et al. Acute pancreatitis: recent advances through randomised trials. Gut. 2017;66(11):2024–2032. PMID:28838972 https://doi.org/10.1136/gutjnl-2016-313595; Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102–111. PMID:23100216 https://doi.org/10.1136/gutjnl2012-302779; Tan C, Yang L, Shi F, Hu J, Zhang X, Wang Y, et al. Early Systemic Inflammatory Response Syndrome Duration Predicts Infected Pancreatic Necrosis. J Gastrointest Surg. 2020;24(3):590–597. PMID:30891659 https://doi.org/10.1007/s11605-019-04149-5; Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178–2; Sônego F, Castanheira FV, Ferreira RG, Kanashiro A, Leite CA, Nascimento DC, et al. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious. Front Immunol. 2016;7:155. PMID:27199981 https://doi.org/10.3389/fimmu.2016.00155; Jorch SK and Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–287. PMID:28267716 https://doi.org/10.1038/nm.4294; Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015;62(2):600–614. PMID:25855125 https://doi.org/10.1002/hep.27841; Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. PMID:15001782 https://doi.org/10.1126/science.1092385; Zha C, Meng X, Li L, Mi S, Qian D, Li Z, et al. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med. 2020;17(1):154–168. PMID:32296583 https://doi.org/10.20892/j.issn.2095-3941.2019.0353; Rada B. Neutrophil Extracellular Traps. Methods Mol Biol. 2019;1982:517–528. PMID:31172493 https://doi.org/10.1007/978-1-4939-9424-3_31; Воробьева Н.В., Пинегин Б.В. Внеклеточные ловушки нейтрофильных клеток: механизмы формирования и роль в здоровье и болезнях. Биохимия. 2014;79(12):1580–1591.; Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci STKE. 2007;2007(379): pe11. PMID:17392241 https://doi.org/10.1126/stke.3792007pe11; Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, HenriquesNormark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol. 2006;16(4):401–407. PMID:16488875 https://doi.org/10.1016/j.cub.2006.01.056; Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun. 2010;2(6):576–586. PMID:20829609 https://doi.org/10.1159/000319909; Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013;342(6160):863–866. PMID:24233725 https://doi.org/10.1126/science.1242255; Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol. 2020;108(1):377–396. PMID:32202340 https://doi.org/10.1002/JLB.4MIR0220-574RR; Hines OJ, Pandol SJ. Management of severe acute pancreatitis. BMJ. 2019;367:l6227. PMID:31791953 https://doi.org/10.1136/bmj.l6227; Gukovskaya AS, Gukovsky I, Algül H, Habtezion A. Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis. Gastroenterology. 2017;153(5):1212–1226. PMID:28918190 https://doi.org/10.1053/j.gastro.2017.08.071; Kovtun A, Messerer DAC, Scharffetter-Kochanek K, Huber-Lang M, Ignatius A. Neutrophils in Tissue Trauma of the Skin, Bone, and Lung: Two Sides of the Same Coin. J Immunol Res. 2018;2018:8173983. PMID:29850639 https://doi.org/10.1155/2018/8173983; Han X, Ni J, Wu Z, Wu J, Li B, Ye X, et al. Myeloid-specific dopamine D2 receptor signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br J Pharmacol. 2020;177(13):2991–3008. PMID:32060901 https://doi.org/10.1111/bph.15026; Zhao Q, Wei Y, Pandol SJ, Li L, Habtezion A. STING Signaling Promotes Inflammation in Experimental Acute Pancreatitis. Gastroenterology. 2018;154(6):1822–1835. PMID:29425920 https://doi.org/10.1053/j.gastro.2018.01.065; Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg. 2002;9(4):401–410. PMID:12483260 https://doi.org/10.1007/s005340200049; Roch AM, Maatman TK, Cook TG, Wu HH, Merfeld-Clauss S, Traktuev DO, et al. Therapeutic Use of Adipose-Derived Stromal Cells in a Murine Model of Acute Pancreatitis. J Gastrointest Surg. 2020;24(1):67–75. PMID:31745900 https://doi.org/10.1007/s11605-019-04411-w; Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019;26(1):99–114. PMID:30341423 https://doi.org/10.1038/s41418-018-0212-6; Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42(4):245–254. PMID:27932073 https://doi.org/10.1016/j.tibs.2016.10.004; Gordon S, Martinez-Pomares L. Physiological roles of macrophages. Pflugers Arch. 2017;469(3–4):365–374. PMID:28185068 https://doi.org/10.1007/s00424-017-1945-7; Arango Duque G and Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. PMID:25339958 https://doi.org/10.3389/fimmu.2014.00491; Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–6440. PMID:29319160 https://doi.org/10.1002/jcp.26429; Murray PJ. Macrophage Polarization. Annu Rev Physiol. 2017;79:541–566. PMID:27813830 https://doi.org/10.1146/annurev-physiol-022516-034339; Su Z, Zhang P, Yu Y, Lu H, Liu Y, Ni P, et al. HMGB1 Facilitated Macrophage Reprogramming towards a Proinflammatory M1-like Phenotype in Experimental Autoimmune Myocarditis Development. Sci Rep. 2016;6:21884. PMID:26899795 https://doi.org/10.1038/srep21884; Yang J, Zhao Y, Zhang L, Fan H, Qi C, Zhang K, et al. RIPK3/MLKLMediated Neuronal Necroptosis Modulates the M1/M2 Polarization of Microglia/Macrophages in the Ischemic Cortex. Cereb Cortex. 2018;28(7):2622–2635. PMID:29746630 https://doi.org/10.1093/cercor/bhy089; Wang J, Li R, Peng Z, Zhou W, Hu B, Rao X, et al. GTS-21 Reduces Inflammation in Acute Lung Injury by Regulating M1 Polarization and Function of Alveolar Macrophages. Shock. 2019;51(3):389–400. PMID:29608552 https://doi.org/10.1097/SHK.0000000000001144; Wen S, Li X, Ling Y, Chen S, Deng Q, Yang L, et al. HMGB1- associated necroptosis and Kupffer cells M1 polarization underlies remote liver injury induced by intestinal ischemia/reperfusion in rats. Faseb J. 2020;34: 4384–4402. PMID:31961020 https://doi.org/10.1096/fj.201900817R; Liu RH, Wen Y, Sun HY, Liu CY, Zhang YF, Yang Y, et al. Abdominal paracentesis drainage ameliorates severe acute pancreatitis in rats by regulating the polarization of peritoneal macrophages. World J Gastroenterol. 2018;24(1):5131–5143. PMID:30568390 https://doi.org/10.3748/wjg.v24.i45.5131; Wu XB, Sun HY, Luo ZL, Cheng L, Duan XM, Ren JD. Plasma-derived exosomes contribute to pancreatitis-associated lung injury by triggering NLRP3-dependent pyroptosis in alveolar macrophages. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165685. PMID:31953217 https://doi.org/10.1016/j.bbadis.2020.165685; Puhr S, Lee J, Zvezdova E, Zhou YJ and Liu K. Dendritic cell developmentHistory, advances, and open questions. Semin Immunol. 2015;27(6):388–396. PMID:27040276 https://doi.org/10.1016/j.smim.2016.03.012; Françozo MCS, Costa FRC, Guerra-Gomes IC, Silva JS and SestiCosta R. Dendritic cells and regulatory T cells expressing CCR4 provide resistance to coxsackievirus B5-induced pancreatitis. Sci Rep. 2019;9(1):14766. PMID:31611578 https://doi.org/10.1038/s41598-019-51311-9; Del Fresno C, Saz-Leal P, Enamorado M, Wculek SK, Martínez-Cano S, Blanco-Menéndez N, et al. DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science. 2018;362(6412):351–356. PMID:30337411 https://doi.org/10.1126/science.aan8423; Xu D, Xie R, Xu Z, Zhao Z, Ding M, Chen W, et al. mTOR-Myc axis drives acinar-to-dendritic cell transition and the CD4(+) T cell immune response in acute pancreatitis. Cell Death Dis. 2020;11(6):416. PMID:32488108 https://doi.org/10.1038/s41419-020-2517-x; Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209(9):1671–1687. PMID:22908323 https://doi.org/10.1084/jem.20111706; Pan LL, Niu W, Fang X, Liang W, Li H, Chen W, et al. Clostridium butyricum Strains Suppress Experimental Acute Pancreatitis by Maintaining Intestinal Homeostasis. Mol Nutr Food Res. 2019;e1801419. PMID:31034143 https://doi.org/10.1002/mnfr.201801419; González-de-Olano D, Álvarez-Twose I. Mast Cells as Key Players in Allergy and Inflammation. J Investig Allergol Clin Immunol. 2018;28(6):365–378. PMID:30530385 https://doi.org/10.18176/jiaci.0327; Yönetçi N, Oruç N, Ozütemiz AO, Celik HA, Yüce G. Effects of mast-cell stabilization in cerulein-induced acute pancreatitis in rats. Int J Pancreatol. 2001;29(3):163–171. PMID:12067220 https://doi.org/10.1385/IJGC:29:3:163; Dib M, Zhao X, Wang XD, Andersson R. Role of mast cells in the development of pancreatitis-induced multiple organ dysfunction. Br J Surg. 2002;89(2):172–178. PMID:11856129 https://doi.org/10.1046/j.0007-1323.2001.01991.x; Kempuraj D, Twait EC, Williard DE, Yuan Z, Meyerholz DK, Samuel I. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice. PLoS One. 2013;8(2):e56866. PMID:23418608 https://doi.org/10.1371/journal.pone.0056866; Leema G, Tamizhselvi R. Protective Effect of Scopoletin Against Cerulein-Induced Acute Pancreatitis and Associated Lung Injury in Mice. Pancreas. 2018;47:577–585. PMID:29595543 https://doi.org/10.1097/MPA.0000000000001034; Zitti B and Bryceson YT. Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev. 2018;42:37–46. PMID:30122459 https://doi.org/10.1016/j.cytogfr.2018.08.001; Mylona V, Koussoulas V, Tzivras D, Makrygiannis E, Georgopoulou P, Koratzanis G, et al. Changes in adaptive and innate immunity in patients with acute pancreatitis and systemic inflammatory response syndrome. Pancreatology. 2011; 11(5):475–481. PMID:21997439 https://doi.org/10.1159/000329460; Wei X, Yao W, Li H, Qian J, Xie Y, Zhang Z, et al. B and NK Cells Closely Correlate with the Condition of Patients with Acute Pancreatitis. Gastroenterol Res Pract. 2019;2019:7568410. PMID:30881449 https://doi.org/10.1155/2019/7568410; Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Sawa H, Nakajima T, et al. Immunosuppression in patients with severe acute pancreatitis. J Gastroenterol. 2006;41(8):779–784. PMID:16988767 https://doi.org/10.1007/s00535-006-1852-8; Dabrowski A, Osada J, Dabrowska MI, Wereszczynska-Siemiatkowska U. Monocyte subsets and natural killer cells in acute pancreatitis. Pancreatology. 2008;8(2):126–134. PMID:18382098 https://doi.org/10.1159/000123605; Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Yaseen MM, et al. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol. 2020;10(9):200111. PMID:32931721 https://doi.org/10.1098/rsob.200111; Goldmann O, Beineke A, Medina E. Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils. J Infect Dis. 2017;216(11):1444–1451. PMID:29029332 https://doi.org/10.1093/infdis/jix494; Heim CE, Vidlak D, Kielian T. Interleukin-10 production by myeloidderived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. J Leukoc Biol. 2015;98(6):1003–1013. PMID:26232453 https://doi.org/10.1189/jlb.4VMA0315-125RR; Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40(3):315–327. PMID:24656045 https://doi.org/10.1016/j.immuni.2014.02.009; Chen H, Qin J, Wei P, Zhang J, Li Q, Fu L, et al. Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+ T regulatory cells and Th17 cells. Prostaglandins Leukot. Essent. Fatty Acids. 2009;80(4):195–200. PMID:19264469 https://doi.org/10.1016/j.plefa.2009.01.006; D’Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH et al. CD4+CD25+Foxp3+ Treg cells resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest. 2009;119(10):2898–2913. PMID:19770521 https://doi.org/10.1172/JCI36498; Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, et al. A distinct function of regulatory T cells in tissue protection. Cell. 2015;162(5):1078–1089. PMID:26317471 https://doi.org/10.1016/j.cell.2015.08.021; Proto JD, Doran AC, Gusarova G, Yurdagul A Jr, Sozen E, Subramanian M, et al. Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity. 2018;49(4):666–677. PMID:30291029 https://doi.org/10.1016/j.immuni.2018.07.015; Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Antiinflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356(6337):513–519. PMID:28473584 https://doi.org/10.1126/science.aal3535; Newson J, Stables M, Karra E, Arce-Vargas F, Quezada S, Motwani M, et al. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood. 2014;124(11):1748–1764. PMID:25006125 https://doi.org/10.1182/blood-2014-03-562710; Sutmuller RP, van Duivenvoorde LM, van EA, Schumacher TN, Wildenberg ME, Allison JP, et al. Synergism of cytotoxic T lymphocyteassociated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med. 2001;194(6):823–832. PMID:11560997 https://doi.org/10.1084/jem.194.6.823; Galdeano CM, Cazorla SI, Lemme-Dumit JM, Vélez E, Perdigón G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab. 2019;74(2):115–124. PMID:30673668 https://doi.org/10.1159/000496426; Lemme-Dumit JM, Polti MA, Perdigón G, Galdeano CM. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Benef Microbes. 2018;9(1):153–164. PMID:29124968 https://doi.org/10.3920/BM2016.0220; https://www.jnmp.ru/jour/article/view/1451
-
16Academic Journal
Authors: A. D. Makatsariya, I. Elalamy, B. Brenner, A. V. Vorobev, L. A. Ashrafyan, E. V. Maslenkova, V. O. Bitsadze, J. Kh. Khizroeva, A. S. Shkoda, A. G. Solopova, V. N. Galkin, J.-C. Gris, А. Д. Макацария, И. Элалами, Б. Бреннер, А. В. Воробьев, Л. А. Ашрафян, Е. В. Маслёнкова, В. О. Бицадзе, Д. Х. Хизроева, А. С. Шкода, А. Г. Солопова, В. Н. Галкин, Ж.-К. Гри
Contributors: The review was funded by RFBR, project number 20-04-60274., Обзор выполнен при финансовой поддержке РФФИ в рамках научного проекта РФФИ №20-04-60274.
Source: Obstetrics, Gynecology and Reproduction; Vol 15, No 6 (2021); 726-737 ; Акушерство, Гинекология и Репродукция; Vol 15, No 6 (2021); 726-737 ; 2500-3194 ; 2313-7347
Subject Terms: синдром системного воспалительного ответа, COVID-19, cancer, hemostasis disorders, systemic inflammatory response syndrome, онкологические заболевания, нарушения гемостаза
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1186/975; https://www.gynecology.su/jour/article/view/1186/980; The Johns Hopkins Coronavirus Resource Center (CRC). Available at: https://coronavirus.jhu.edu.; Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 11 (07.05.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 225 с.; Vaduganathan M., Vardeny O., Michel T. et al. Renin–angiotensin-aldosterone system inhibitors in patients with COVID-19. N Engl J Med. 2020;382(17):1653–9. https://doi.org/10.1056/NEJMsr2005760.; Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052.; Tian L., Yuan X., Xiao J. et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020;21(7):893–903. https://doi.org/10.1016/S1470-2045(20)30309-0.; Gao Y.D., Ding M., Dong X. et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy. 2021;76(2):428–55. https://doi.org/10.1111/all.14657.; Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–43. https://doi.org/10.1001/jamainternmed.2020.0994.; Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.; Guzik T.J., Mohiddin S.A., Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666–87. https://doi.org/10.1093/cvr/cvaa106.; Liu C., Zhao Y., Okwan-Duodu D. et al. COVID-19 in cancer patients: risk, clinical features, and management. Cancer Biol Med. 2020;17(3):519–27. https://doi.org/10.20892/j.issn.2095-3941.2020.0289.; Curigliano G., Banerjee S., Cervantes A. et al.; Panel members. Managing cancer patients during the COVID-19 pandemic: an ESMO multidisciplinary expert consensus. Ann Oncol. 2020;31(10):1320–35. https://doi.org/10.1016/j.annonc.2020.07.010.; Liang W., Guan W., Chen R. et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–7. https://doi.org/10.1016/S1470-2045(20)30096-6.; Rüthrich M.M., Giessen-Jung C., Borgmann S. et al.; LEOSS Study Group. COVID-19 in cancer patients: clinical characteristics and outcome – an analysis of the LEOSS registry. Ann Hematol. 2021;100(2):383–93. https://doi.org/10.1007/s00277-020-04328-4.; Zhang L., Zhu F., Xie L. et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2020;31(7):894–901. https://doi.org/10.1016/j.annonc.2020.03.296.; Mehta V., Goel S., Kabarriti R. et al. Case fatality rate of cancer patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020l;10(7):935–41. https://doi.org/10.1158/2159-8290.CD-20-0516.; Kuderer N.M., Choueiri T.K., Shah D.P. et al.; COVID-19 and Cancer Consortium. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395(10241):1907–18. https://doi.org/10.1016/S0140-6736(20)31187-9.; Anka A.U., Tahir M.I., Abubakar S.D. et al. Coronavirus disease 2019 (COVID-19): an overview of the immunopathology, serological diagnosis and management. Scand J Immunol. 2021;93(4):e12998. https://doi.org/10.1111/sji.12998.; Lazzaroni M.G., Piantoni S., Masneri S. et al. Coagulation dysfunction in COVID-19: the interplay between inflammation, viral infection and the coagulation system. Blood Rev. 2021;46:100745. https://doi.org/10.1016/j.blre.2020.100745.; Zhu Z., Cai T., Fan L. et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020;95:332–9. https://doi.org/10.1016/j.ijid.2020.04.041.; Varga Z., Flammer A.J., Steiger P. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8. https://doi.org/10.1016/S0140-6736(20)30937-5.; Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355–62. https://doi.org/10.1038/s41577-020-0331-4.; Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. https://doi.org/10.1084/jem.20200652.; Henderson L.A., Canna S.W., Schulert G.S. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 2020;72(7):1059–63. https://doi.org/10.1002/art.41285.; Goshua G., Pine A.B., Meizlish M.L. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575–e582. https://doi.org/10.1016/S2352-3026(20)30216-7.; Kowalewski M., Fina D., Słomka A. et al. COVID-19 and ECMO: the interplay between coagulation and inflammation – a narrative review. Crit Care. 2020;24(1):205. https://doi.org/10.1186/s13054-020-02925-3.; Gustine J.N., Jones D. Immunopathology of hyperinflammation in COVID-19. Am J Pathol. 2021;191(1):4–17. https://doi.org/10.1016/j.ajpath.2020.08.009.; Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27(1):28–33. https://doi.org/10.1038/s41591-020-01202-8.; Choudhary S., Sharma K., Silakari O. The interplay between inflammatory pathways and COVID-19: a critical review on pathogenesis and therapeutic options. Microb Pathog. 2021;150:104673. https://doi.org/10.1016/j.micpath.2020.104673.; Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 20211;33(3):127–48. https://doi.org/10.1093/intimm/dxaa078.; Giavridis T., van der Stegen S.J.C., Eyquem J. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8. https://doi.org/10.1038/s41591-018-0041-7.; Asakura H., Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int J Hematol. 2021;113(1):45–57. https://doi.org/10.1007/s12185-020-03029-y.; Moreno G., Carbonell R., Bodí M., Rodríguez A. Systematic review of the prognostic utility of D-dimer, disseminated intravascular coagulation, and anticoagulant therapy in COVID-19 critically ill patients. Med Intensiva (Engl Ed). 2021;45(1):42–55. https://doi.org/10.1016/j.medin.2020.06.006.; Liu Y., Sun W., Guo Y. Association between platelet parameters and mortality in coronavirus disease 2019: retrospective cohort study. Platelets. 2020;31(4):490–6. https://doi.org/10.1080/09537104.2020.1754383.; Levi M., Iba T. COVID-19 coagulopathy: is it disseminated intravascular coagulation? Intern Emerg Med. 2021;16(2):309–12. https://doi.org/10.1007/s11739-020-02601-y.; Yin S., Huang M., Li D., Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARSCoV2. J Thromb Thrombolysis. 2021;51(4):1107–10. https://doi.org/10.1007/s11239-020-02105-8.; Trachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulohathy in COVID-19. J Thromb Haemost. 2020;18(2):1023–6. https://doi.org/10.1111/jth.14810.; Арутюнов Г.П., Козиолова Н.А., Тарловская Е.И. и др. Согласованная позиция экспертов Евразийской ассоциации терапевтов по некоторым новым механизмам патогенеза COVID-19: фокус на гемостаз, вопросы гемотрансфузии и систему транспорта газов крови. Кардиология. 2020;60(5):9–19. https://doi.org/10.18087/cardio.2020.5.n1132.; Debuc B., Smadja D.M. Is COVID-19 a new hematologic disease? Stem Cell Rev Rep. 2021;17(1):4–8. https://doi.org/10.1007/s12015-020-09987-4.; Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–7. https://doi.org/10.1111/jth.14768.; Terpos E., Ntanasis-Stathopoulos I., Elalamy I. et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834–47. https://doi.org/10.1002/ajh.25829.; Zuo Y., Estes S.K., Ali R.A. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876. https://doi.org/10.1126/scitranslmed.abd3876.; El Hasbani G., Taher A.T., Jawad A., Uthman I. COVID-19, antiphospholipid antibodies, and catastrophic antiphospholipid syndrome: a possible association? Clin Med Insights Arthritis Musculoskelet Disord. 2020;13:1179544120978667. https://doi.org/10.1177/1179544120978667.; Qian Y., Xie H., Tian R. et al. Efficacy of low molecular weight heparin in patients with acute exacerbation of chronic obstructive pulmonary disease receiving ventilatory support. COPD J Chronic Obstr Pulm Dis. 2014;11:171–6. https://doi.org/10.3109/15412555.2013.831062.; Tang N., Bai H., Chen X. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9. https://doi.org/10.1111/jth.14817.; Shi C., Wang C., Wang H. et al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective cohort study. Clin Transl Sci. 2020;13(6):1087–95. https://doi.org/10.1111/cts.12880.; Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145–8. https://doi.org/10.1016/j.cca.2020.03.022.; Liu X., Zhang X., Xiao Y. et al. Heparin-induced thrombocytopenia is associated with a high risk of mortality in critical COVID-19 patients receiving heparin-involved treatment. medRxiv. April 28, 2020. https://doi.org/10.1101/2020.04.23.20076851. [Preprint].; Patell R., Khan A., Bogue T. et al. Heparin induced thrombocytopenia antibodies in COVID-19. Am J Hematol. 2020 Jul 13. https://doi.org/10.1002/ajh.25935. [Online ahead of print].; Riker R.R., May T.L., Fraser G.L. et al. Heparin-induced thrombocytopenia with thrombosis in COVID-19 adult respiratory distress syndrome. Res Pract Thromb Haemost. 2020;4(5):936–41. https://doi.org/10.1002/rth2.12390.; Vayne C., May M.A., Bourguignon T. et al. Frequency and clinical impact of platelet factor 4-specific antibodies in patients undergoing extracorporeal membrane oxygenation. Thromb Haemost. 2019;119(7):1138–46. https://doi.org/10.1055/s-0039-1688827.; Bemtgen X., Zotzmann V., Benk C. et al. Thrombotic circuit complications during venovenous extracorporeal membrane oxygenation in COVID-19. J Thromb Thrombolysis. 2021;51(2):301–7. https://doi.org/10.1007/s11239-020-02217-1.; Khandelwal S., Ravi J., Rauova L. et al. Polyreactive IgM initiates complement activation by PF4/heparin complexes through the classical pathway. Blood. 2018;132(23):2431–40. https://doi.org/10.1182/blood-2018-03-834598.; https://www.gynecology.su/jour/article/view/1186
-
17Academic Journal
Authors: Крутько, Є.
Source: Bukovinian Medical Herald; Vol. 14 No. 4 (56) (2010); 51-54 ; Буковинский медицинский вестник; Том 14 № 4 (56) (2010); 51-54 ; Буковинський медичний вісник; Том 14 № 4 (56) (2010); 51-54 ; 2413-0737 ; 1684-7903
Subject Terms: травматична хвороба, синдром системної запальної відповіді, травматическая болезнь, синдром системного воспалительного ответа, wound dystrophy, syndrome of systemic inflammatory response
File Description: application/pdf
Availability: http://e-bmv.bsmu.edu.ua/article/view/240830
-
18Academic Journal
Source: Bukovinian Medical Herald; Vol. 14 No. 4 (56) (2010); 51-54
Буковинский медицинский вестник; Том 14 № 4 (56) (2010); 51-54
Буковинський медичний вісник; Том 14 № 4 (56) (2010); 51-54Subject Terms: wound dystrophy, syndrome of systemic inflammatory response, травматична хвороба, синдром системної запальної відповіді, травматическая болезнь, синдром системного воспалительного ответа
File Description: application/pdf
Access URL: http://e-bmv.bsmu.edu.ua/article/view/240830
-
19Academic Journal
Authors: Slyvka, N. O., Virstyuk, N. G.
Source: Clinical and experimental pathology; Vol. 18 No. 4 (2019) ; Клиническая и экспериментальная патология; Том 18 № 4 (2019) ; Клінічна та експериментальна патологія; Том 18 № 4 (2019) ; 2521-1153 ; 1727-4338
Subject Terms: hepatorenal syndrome, alcoholic liver cirrhosis, systemic inflammatory response syndrome, cytokines, гепаторенальный синдром, алкогольный цирроз печени, синдром системного воспалительного ответа, цитокины, гепаторенальний синдром, алкогольний цироз печінки, синдром системної запальної відповіді, цитокіни
File Description: application/pdf
-
20Academic Journal
Authors: Bitsadze V.O., Khizroeva J.K., Makatsariya A.D., Slukhanchuk E.V., Tretyakova M.V., Rizzo G., Gris J.R., Elalamy I., Serov V.N., Shkoda A.S., Samburova N.V.
Contributors: 1
Source: Annals of the Russian academy of medical sciences; Vol 75, No 2 (2020); 118-128 ; Вестник Российской академии медицинских наук; Vol 75, No 2 (2020); 118-128 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.752
Subject Terms: COVID-19, coronavirus infection, SARS-COV-2, Sanarelli-Schwartzman phenomenon, DIC-syndrome, septic shock, SIRS, ADAMTS-13, NETs, cytokine storm, коронавирусная инфекция, феномен Санарелли−Шварцмана, синдром диссеминированного внутрисосудистого свертывания крови, септический шок, синдром системного воспалительного ответа, цитокиновый шторм
File Description: application/pdf
Relation: https://vestnikramn.spr-journal.ru/jour/article/view/1335/1221; https://vestnikramn.spr-journal.ru/jour/article/view/1335/1231; https://vestnikramn.spr-journal.ru/jour/article/view/1335/1242; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/1335/1430; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/1335/1432; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/1335/1433; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/1335/1444; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/1335/1524; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/1335/1525