Showing 1 - 20 results of 108 for search '"СИНДРОМ ПОЛИОРГАННОЙ НЕДОСТАТОЧНОСТИ"', query time: 0.80s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: EMERGENCY MEDICINE; № 1.80 (2017); 129-136
    МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 1.80 (2017); 129-136
    МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 1.80 (2017); 129-136

    File Description: application/pdf

  3. 3
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 4 (2024); 78-84 ; Вестник анестезиологии и реаниматологии; Том 21, № 4 (2024); 78-84 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/1037/737; Алимова Х. П., Мустакимов А. А., Алибекова М. Б. Полиорганная недостаточность у детей: критерии диагностики, патофизиология и прогноз // Вестник экстренной медицины. – 2019. – № 6. – С. 92–97.; Бердиярова Г. С., Анохина С. Т., Абентаева Б. А. и др. Анализ мониторинга критических состояний в неонатологии // Наука о жизни и здоровье. – 2018. – № 3. – С. 21–26.; Кирилочев О. К., Китиашвили И. З., Тарасова З. Г. Перинатальные заболевания как ведущая причина летальных исходов у детей // Лечащий врач. – 2019. – № 9. – С. 46–51.; Bagshaw S.M., Stelfox H.T., Mc Dermid R.C. et al. Association between frailty and short- and long-term outcomes among critically ill patients: a multicentre prospective cohort study // CMAJ. – 2014. – Vol. 186, № 2. – P. 95–102. DOI:10.1503/cmaj.130639.; Gorga S. M., Carlton E. F., Kohne J. G. et al. Consensus acute kidney injury criteria integration identifies children at risk for long-term kidney dysfunction after multiple organ dysfunction syndrome // Pediatr. Nephrol. – 2021. – Vol. 36, № 6. – P. 1637–1646. DOI:10.1007/s00467-020-04865-0.; Kahn J. M., Le T., Angus D. C. et al. The epidemiology of chronic critical illness in the United States // Crit. Care Med. – 2015. – Vol. 43, № 2. – P. 282–287. DOI:10.1097/CCM.0000000000000710.; Lone N. I., Walsh T. S. Prolonged mechanical ventilation in critically ill patients: epidemiology, outcomes and modelling the potential cost consequences of establishing a regional weaning unit // Crit. Care. – 2011. – Vol. 15, № 2. – P. 102. DOI:10.1186/cc10117.; Meert K. L., Banks R., Holubkov R. at al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Morbidity and mortality in critically ill children. II. A qualitative patient-level analysis of pathophysiologies and potential therapeutic solutions // CritCareMed. – 2020. – Vol. 48, № 6. – P. 799–807. DOI:10.1097/CCM.0000000000004332.; Poisson K., Lin J. J., Chen A. et al. Case 2: respiratory failure and multiple organ system dysfunction in a 7-day-old infant // Pediatr. Rev. – 2019. – Vol. 40, № 11. – P. 593–595. DOI:10.1542/pir.2017-0102.; Shapiro M. C., Henderson C. M., Hutton N. et al. Defining pediatric chronic critical illness for clinical care, research, and policy // Hosp. Pediatr. – 2017. – Vol. 7, № 4. – P. 236–244. DOI:10.1542/hpeds.2016-0107.; Sison S. M., Sivakumar G. K., Caufield-Noll C. et al. Mortality outcomes of patients on chronic mechanical ventilation in different care settings: A systematic review // Heliyon. – 2021. – Vol. 7, № 2. – 06230. DOI:10.1016/j.heliyon.2021.e06230.; Troch R., Schwartz J., Boss R. Slow and steady: a systematic review of icu care models relevant to pediatric chronic critical illness // J. Pediatr. Intens. Care. – 2020. – Vol. 9, № 4. – P. 233–240. DOI:10.1055/s-0040-1713160.; Watson R. S., Crow S. S., Hartman M. E. at al. Epidemiology and outcomes of pediatric multiple organ dysfunction syndrome // Pediatr Crit Care Med. – 2017. – Vol. 18, № 3, Suppl 1. – S4–S16. DOI:10.1097/PCC.0000000000001047.; Wynn J. L., Polin R. A. A neonatal sequential organ failure assessment scorepredicts mortality to late-onset sepsis in preterm very low birth weight infants // Pediatr. Res. – 2019. – Vol. 88. – P. 85–90. DOI:10.1038/s41390-019-0517-2.

  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: EMERGENCY MEDICINE; № 3.98 (2019); 152-155
    МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 3.98 (2019); 152-155
    МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 3.98 (2019); 152-155

    File Description: application/pdf

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 3 (2023); 84-93 ; Вестник анестезиологии и реаниматологии; Том 20, № 3 (2023); 84-93 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/819/643; Беллетти А., Аццолини М. Л., Балдетти Л. и др. Применение инотропных препаратов и вазопрессоров в реаниматологии и периоперационной медицине: доказательный подход (обзор) // Общая реаниматология. – 2022. – Т.18, № 5. – С. 60–77. Doi:10.15360/1813-9779-2022-5-60-77.; Еременко А. А. Медикаментозное лечение острой сердечной недостаточности: что есть и что нас ждет // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 2. – С. 29–37. Doi:10.21292/2078-5658-2020-17-2-29-3.; Кочкин А. А., Яворовский А. Г., Берикашвили Л. Б. и др. Современная вазопрессорная терапия септического шока (обзор) // Общая реаниматология. – 2020. – Т.16, № 2. – С. 77–93. Doi:10.15360/1813-9779-2020-2-77-93.; Bravo M. C., López P., Cabañas F. et al. Acute effects of levosimendan on cerebral and systemic perfusion and oxygenation in newborns: an observational study // Neonatology – 2011. – Vol. 99, № 3. – P. 217–223. Doi:10.1159/000314955.; Cleland J. G., Freemantle N., Coletta A. P. et al. Clinical trials update from the American Heart Association // REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROAC TIVE // Eur. J. Heart Fail. – 2006. – № 8. – P. 105–110. Doi:10.1016/j.ejheart.2005.12.003.; Colucci W. S, Wright R. F., Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments // N Engl J Med. – 1986. – Vol. 314. – P. 290–299. Doi:10.1056/NEJM198602063140605.; Das B. B., Moskowitz W. B., Butler J. Current and future drug and device therapies for pediatric heart failure patients // Potential Lessons from Adult Trials. – 2021. – Vol. 8, № 5. – Р. 322. Doi:10.3390/children8050322. PMID: 33922085; PMCID: PMC8143500.; Dellinger R. M., Rhodes A. D., Gerlach H. et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012 // Intensive Care Medicine. – 2013. – Vol. 39, № 2. – Р. 165–228. Doi:10.1097/CCM.0b013e31827e83af.; Elsherbini H., Soliman O., Zijderhand C. et al. Intermittent levosimendan infusion in ambulatory patients with end-stage heart failure: a systematic review and meta-analysis of 984 patients // Heart Fail Rev. – 2022. – Vol. 27, № 2. – Р. 493–505. Doi:10.1007/s10741-021-10101-0.; Esch J., Joynt C., Manouchehri N. et al. Differential hemodynamic effects of levosimendan in a porcine model of neonatal hypoxia-reoxygenation // Neonatology. – 2012. – Vol. 101, № 3. – Р. 192–200. Doi:10.1159/000329825.10.; Evans L., Rhodes A., Alhazzani W. at al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021// Intensive Care Med. – 2021. – Vol. 47, № 11. – Р. 1181–1247. Doi:10.1007/s00134-021-06506-y.; Fang M., Cao H., Wang Z. Levosimendan in patients with cardiogenic shock complicating myocardial infarction: A meta-analysis // Med Intensiva (Engl Ed). – 2018. – Vol. 42, № 7. – Р. 409–415. Doi:10.1016/j.medin.2017.08.009.; Feng F., Chen Y., Li M. et al. Levosimendan does not reduce the mortality of critically ill adult patients with sepsis and septic shock: a meta-analysis // Chin Med J (Engl). – 2019. – Vol. 132, № 10. – Р. 1212–1217. Doi:10.1097/CM9.0000000000000197.; Giordano R., Cantinotti M., Mannacio V. A. et al. First Experience WithLevosimendan Therapy After Correction of Congenital Heart Disease // J CardiothoracVascAnesth. – 2017. – Vol. 31, № 1. – Р. 19–21. Doi:10.1053/j.jvca.2016.08.017.; Guarracino F., Heringlake M., Cholley B. et al. Use of Levosimendan in Cardiac Surgery: An Update After the LEVO-CTS, CHEETAH, and LICORN Trials in the Light of Clinical Practice // J Cardiovasc Pharmacol. – 2018. – Vol. 71, № 1. – Р. 1–9. Doi:10.1097/FJC.0000000000000551.; Häberle H. A. Levosimendan – a 20-Year Experience // Anasthesiol Intensivmed Notfallmed Schmerzther. – 2021. – Vol. 56, № 6. – Р. 414–426. Doi:10.1055/a-1214-4485.; Hummel J., Rücker G., Stiller B. Prophylactic levosimendan for the prevention of low cardiac output syndrome and mortality in paediatric patients undergoing surgery for congenital heart disease // Cochrane Database Syst Rev. – 2017. – Vol. 8, № 8. – CD011312. Doi:10.1002/14651858.; Jaguszewski M. J., Gasecka A., Targonski R. et al. Efficacy and safety of levosimendan and dobutamine in heart failure: A systematic review and meta-analysis // Cardiol J. – 2021. – Vol. 28, № 3. – Р. 492–493. Doi:10.5603/CJ.a2021.0037.; Joynt C., Cheung P. Y. Cardiovascular Supportive Therapies for Neonates With Asphyxia – A Literature Review of Pre-clinical and Clinical Studies // Front Pediatr. – 2018. – № 6. – Р. 363. Doi:10.3389/fped.2018.00363.; Karami M., Hemradj V. V., Ouweneel D. M. et al. Vasopressors and inotropes in acute myocardial infarction related cardiogenic shock: a systematic review and meta-analysis // J ClinMed. – 2020. – Vol. 9, № 7. – Р. 2051. Doi:10.3390/jcm9072051.; Lapere M., Rega F., Rex S. Levosimendan in paediatric cardiac anaesthesiology: A systematic review and meta-analysis // Eur J Anaesthesiol. – 2022. – Vol. 39, № 8. – Р. 646–655. Doi:10.1097/EJA.0000000000001711.; Liu K., Wang H., Yu S. J. et al. Inhaled pulmonary vasodilators: a narrative review // AnnTranslMed. – 2021. – Vol. 9, № 7. – Р. 597. Doi:10.21037/atm-20-4895.; Liu D. H., Ning Y. L., Lei Y. Y. et al. Levosimendan versus dobutamine for sepsis-induced cardiac dysfunction: a systematic review and meta-analysis // Sci Rep. – 2021. – Vol. 11, № 1. – Р. 20333. Doi:10.1038/s41598-021-99716-9.; Loss K. L., Shaddy R. E., Kantor P. F. Recent and upcoming drug therapies for pediatric heart failure // Front Pediatr. – 2021. – Vol. 11, № 9. – Р. 681224. Doi:10.3389/fped.2021.681224.; Miller L. E., Laughon M. M., Clark R. H. et al. Vasoactive medications in extremely low gestational age neonates during the first postnatal week // J Perinatol. – 2021. – Vol. 41, № 9. – Р. 2330–2336. Doi:10.1038/s41372-021-01031-8.; Morelli A., De Castro S., Teboul J. L. et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression // Intensive Care Med. – 2005. – № 31. – Р. 638–644. Doi:10.1007/s00134-005-2619-z.; Nieminen M. S., Buerke M., Cohen-Solál A. et al. The role of levosimendan in acute heart failure complicating acute coronary syndrome: A review and expert consensus opinion // Int. J. Cardiol. – 2016. – № 218. – Р. 150–157. Doi:10.1016/j.ijcard.2016.05.009.; Nieminen M. S., Fruhwald S., Heunks L. M. A. et al. Levosimendan: current data, clinical use and future development // Heart Lung Vessel. – 2013. – Vol. 5, № 4. – P. 227–245. PMID: 24364017.; Papp Z., Agostoni P., Alvarez J. et al. Levosimendan efficacy and safety: 20 years of SIMDAX in clinical use // Card Fail Rev. – 2020. – № 6. – Р. e19. Doi:10.15420/cfr.2020.03.; Ponikowski P., Voors A. A., Anker S. D. et al. Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC // Eur Heart J. – 2016. – Vol. 37, № 27. – Р. 2129–2200. Doi:10.1093/eurheartj/ehw128.; Raasmaja A., Talo A., Haikala H. et al. Biochemical properties of OR-1259: a positive inotropic and vasodilatory compound with an antiarrhythmic effect // Adv Exp Med Biol. – 1992. – № 311. – Р. 423. Doi:10.1007/978-14615-3362-7_63.; Rhodes A., Evans L. E., Alhazzani W., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016 // Crit. Care Med. – 2017. – Vol. 45, № 3. – Р. 486–552. Doi:10.1007/s00134-017-4683-6.; Ricci Z., Garisto C., Favia I. et al. Levosimendan infusion in newborns after corrective surgery for congenital heart disease: randomized controlled trial // Intensive Care Med. – 2012. – Vol. 38, № 7. – Р. 1198–1204. Doi:10.1007/s00134-012-2564-6.; Santillo E., Migale M., Massini C., et al. Levosimendan for Perioperative Cardioprotection: Myth or Reality? // Curr. Cardiol Rev. – 2018. – Vol. 14, № 3. – P. 142–152. Doi:10.2174/1573403X14666180322104015.; Schumann J., Henrich E. C., Strobl H. et al. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome // Cochrane Database Syst Rev. – 2018. – Vol. 1, № 1. – CD009669. Doi:10.1002/14651858.; Schwarza C. E., Dempseya E. M. Management of Neonatal Hypotension and Shock // Seminars in Fetal and Neonatal Medicine. – 2020. – № 25. – Р. 1–7. Doi:10.1016/j.siny.2020.101121.; Sharma D. Golden hour of neonatal life: need of the hour // Matern Health Neonatol Perinatol. – 2017. – Vol. 19, № 3. – Р. 16. Doi:10.1186/s40748-017-0057-x.; Silvetti S., Silvani P., Azzolini M. L. et al. A systematic review on Levosimendan in paediatric patients // Curr Vasc Pharmacol. – 2015. – Vol. 13, № 1. – Р. 128–33. Doi:10.2174/1570161112666141127163536.; Silvetti S., Belletti A., Bianzina S. et al. Effect of Levosimendan treatment in pediatric patients with cardiac dysfunction: an update of a systematic review and meta-analysis of randomized controlled trials // J. CardiothoracVasc Anesth. – 2022. – Vol. 36, № 3. – Р. 657–664. Doi:10.1053/j.jvca.2021.09.018.; Singh Y., Katheria A. C., Vora F. Advances in diagnosis and management of hemodynamic instability in neonatal shock // Front Pediatr. – 2018. – Vol. 6, № 2. Doi:10.3389/fped.2018.00002.; Tumminello G., Cereda A., Barbieri L. et al. Meta-analysis of placebo-controlled trials of levosimendan in acute myocardial infarction // J Cardiovasc Dev Dis. – 2021. – Vol. 8, № 10. – Р. 129. Doi:10.3390/jcdd8100129.; Uhlig K., Efremov L., Tongers J., et al. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome // Cochrane Database Syst Rev. – 2020. – Vol. 11, № 11. – CD009669. Doi:10.1002/14651858.; Unverzagt S., Wachsmuth L., Hirsch K. et al. Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome // Cochrane Database Syst Rev. – 2014. – № 1. – CD009669. Doi:10.1002/14651858.; Van Diepen S., Katz J. N., Albert N. M. et al. Contemporary management of cardiogenic shock: a scientific statement from the american heart association // Circulation. – 2017. – Vol. 136, № 16. – Р. e232–e268. Doi:10.1161/CIR.0000000000000525.; Weber C., Esser M., Eghbalzadeh K., et al. Levosimendan reduces mortality and low cardiac output syndrome in cardiac surgery // Thorac Cardiovasc Surg. – 2020. – Vol. 68, № 5. – Р. 401–409. Doi:10.1055/s-0039-3400496.; Weisert M., Su J. A., Menteer J. et al. Drug treatment of heart failure in children: gaps and opportunities // Paediatr Drugs. – 2022. – Vol. 24, № 2. – Р. 121–136. Doi:10.1007/s40272-021-00485-9.; Zhou S., Zhang L., Li J. Effect of levosimendan in patients with acute decompensated heart failure: A meta-analysis // Herz. – 2019. – Vol. 44, № 7. – Р. 630–636. Doi:10.1007/s00059-018-4693-3.

  11. 11
    Academic Journal

    Source: Medical Immunology (Russia); Том 25, № 4 (2023); 881-890 ; Медицинская иммунология; Том 25, № 4 (2023); 881-890 ; 2313-741X ; 1563-0625

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2733/1797; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11262; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11263; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11264; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11265; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11266; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11267; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11268; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11269; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11270; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11271; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11272; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/11333; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/12250; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2733/12251; Gupta D.L., Bhoi S., Mohan T., Galwnkar S., Rao D.N. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis. Cytokine, 2016, Vol. 88, pp. 214-221.; Holloway T.L., Rani M., Cap A.P., Stewart R.M., Schwacha M.G. The association between the Th-17 immune response and pulmonary complications in a trauma ICU population. Cytokine, 2015, Vol. 76, no. 2, pp. 328-333.; Killien E.Y., Zahlan J.M., Lad H., Watson R.S., Vavilala M.S., Huijsmans R.L.N., Rivara F.P. Epidemiology and outcomes of multiple organ dysfunction syndrome following pediatric trauma. J. Trauma Acute Care Surg., 2022, Vol. 93, no. 6, pp. 829-837.; MacConmara M.P., Maung A.A., Fujimi S., McKenna A.M., Delisle A., Lapchak P.H., Rogers S., Lederer J.A., Mannick J.A. Increased CD4+ CD25+ T Regulatory cell activity in trauma patients depresses protective Th1 immunity. Ann. Surg., 2006, vol. 124, pp. 179-188.; Manson J., Cole E., De’Ath H.D., Vulliamy P., Meier U., Pennington D., Brohi K. Early changes within the lymphocyte population are associated with the development of multiple organ dysfunction syndrome in trauma patients. Crit. Care, 2016, Vol. 20, 176. doi:10.1186/s13054-016-1341-2.; Marshall J.C. Measuring organ dysfunction in the intensive care unit: why and how? Can. J. Anaesth., 2005, Vol. 52, no. 3, pp. 224-230.; Mukhametov U., Lyulin S., Borzunov D., Ilyasova T., Gareev I., Sufianov A. Immunologic response in patients with polytrauma. Noncoding RNA Res., 2023, Vol. 8, no. 1, pp. 8-17.; Stoecklein V.M., Osuka A., Lederer J.A. Trauma equals danger – damage control by the immune system. J. Leukoc. Biol., 2012, Vol. 92, no. 3, pp. 539-551.; Sturm R., Xanthopoulos L., Heftrig D., Oppermann E., Vrdoljak T., Dunay I.R., Marzi I., Relja B. Regulatory T cells modulate CD4 proliferation after severe trauma via IL-10. J. Clin. Med., 2020, Vol. 9, no. 4, 1052. doi:10.3390/jcm9041052.; Toptygina A.P., Semikina E.L., Petrichuk S.V., Zakirov R.S., Kurbatova O.V., Kopyltsova E.A., Komakh Yu.А. Age-dependent changes of T-regulatory and Th17 subset levels in peripheral blood from healthy humans. Medical Immunology (Russia), 2017, Vol. 19, no. 4, pp. 409-421. (In Russ.) doi:10.15789/1563-0625-2017-4-409-421.; Wolfson N, Lerner A, Roshal L, eds. Orthopedics in disasters: Orthopedic injuries in natural disasters and mass casualty events. Springer Berlin Heidelberg; 2016. 448 p.; Zhang Y., Li X.F., Wu W., Chen Y. Dynamic changes of circulating T-helper cell subsets following severe thoracic trauma. Int. J. Clin. Exp. Med., 2015, Vol. 8, no. 11, pp. 21106-21113.; https://www.mimmun.ru/mimmun/article/view/2733

  12. 12
  13. 13
  14. 14
    Academic Journal

    Source: Mother and Baby in Kuzbass; № 3 (2022): сентябрь; 48-53 ; Мать и Дитя в Кузбассе; № 3 (2022): сентябрь; 48-53 ; 2542-0968 ; 1991-010X

    File Description: text/html; application/pdf

  15. 15
    Academic Journal

    Source: Wounds and wound infections. The prof. B.M. Kostyuchenok journal; Том 8, № 4 (2021); 30-33 ; Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка; Том 8, № 4 (2021); 30-33 ; 2500-0594 ; 2408-9613

    File Description: application/pdf

    Relation: https://www.riri.su/jour/article/view/265/259; Кузин М. И., Костюченок Б. М. Раны и раневая инфекция. М., 1990. 591 с.; Амирасланов Ю. А., Светухин A. M., Карлов В. А. и др. Реконструктивные и восстановительные операции в гнойной хирургии. Хирургия. 1990; 12; 85–89.; Амирасланов Ю. А., Саркисов Д. С., Колокольчикова Е. Г. и др. Пластика дефектов мягких тканей методом дозированного тканевого растяжения. Врач. 1993; 2: 25–27.; Светухин A. M., Митиш В. А., Амирасланов Ю. А. Реконструктивные и пластические операции в гнойной хирургии: избранный курс лекций по гнойной хирургии / под ред. A. M. Светухина, В. Д. Федорова. М.: Миклош, 2005. 364 с.; Рохас К. Р., Магомедова С. Д., Пасхалова Ю. С. Реконструктивно-пластические операции у пациентов с гнойной хирургической инфекцией. Сборник материалов научно-практической конференции с международным участием, посвященной 55-летию медицинского факультета РУДН. Москва, 01 октября 2016 г. С. 59.; Гостищев В. К., Хрупкин В. И., Писаренко Л. В., Липатов К. В. Кожная пластика в гнойной хирургии. www.medsovet.info/content_826.; Митиш В.А., Налбандян Р.Т., Мединский П.В. Подготовка ран к пластическим и реконструктивным операциям. Раны и раневая инфекция: материалы I Международного конгресса. М., 2012. С. 238–239.; Тихилов Р.М., Кочиш А. Ю., Родоманова Л.А. и др. Возможности современных методов реконструктивно-пластической хирургии в лечении больных с обширными посттравматическими дефектами тканей конечностей (обзор литературы). Травматология и ортопедия России. 2011; 2: 164–170.; Штутин А.А., Михайличенко В.Ю., Штутин И.А., Самарин С.А. Особенности пластического закрытия раневых дефектов дистальных отделов нижней конечности суральным лоскутом. Пластическая хирургия и эстетическая медицина. 2021; 1: 52–57.; https://www.riri.su/jour/article/view/265

  16. 16
    Academic Journal

    Source: CHILDREN INFECTIONS; Том 20, № 2 (2021); 49-56 ; ДЕТСКИЕ ИНФЕКЦИИ; Том 20, № 2 (2021); 49-56 ; 2618-8139 ; 2072-8107 ; 10.22627/2072-8107-2021-20-2

    File Description: application/pdf

    Relation: https://detinf.elpub.ru/jour/article/view/599/507; Скрипченко Н.В., Вильниц А.А. Менингококковая инфекция у детей. Санкт-Петербург: Тактик-Студио, 2015:840.; О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2019 году: Государственный доклад. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. 2020: 299.; Brandtzaeg P., van Deuren M. Classification and pathogenesis of meningococcal infections. Methods Mol Biol. 2012; 799:21—35. doi:10.1007/978-1-61779-346-2_2.; Rhodes A., Evans L.E., Alhazzani W, Levy M.M. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017 Mar; 43(3):304— 377. doi:10.1007/s00134-017-4683-6. Epub 2017 Jan 18.; Weiss S.L., Peters MJ., Alhazzani W, Agus M.S.D. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020 Feb; 46(Suppl 1): 10—67. doi:10.1007/s00134-019-05878-6.; Белобородов В.Б. Нерешенные вопросы менингококковой инфекции. Инфекционные болезни. Новости. Мнения. Обучение. 2018; 1:46—53.; Brusletto B.S., Hellerud B.C., Lоberg E.M., Goverud I.L., Vege A., Berg J.P., Brandtzaeg P., Оvstebо R. Traceability and distribution of Neisseria meningitidis DNA in archived post mortem tissue samples from patients with systemic meningococcal disease. BMC Clin Pathol. 2017 Aug 16; 17:10. doi:10.1186/s12907-017-0049-9. eCollection 2017.; Darton T., Guiver M., Naylor S., Jack D.L., Kaczmarski E.B., Borrow R., Read R.C. Severity of meningococcal disease associated with genomic bacterial load. Clin Infect Dis. 2009 Mar 1; 48(5):587— 94. doi:10.1086/596707.; Hackett SJ., Guiver M., Marsh J., Sills J.A., Thomson A.P., Kaczmarski E.B., Hart C.A. Meningococcal bacterial DNA load at presentation correlates with disease severity. Arch Dis Child. 2002; 86(1):44— 6.; Ovstebo R., Brandtzaeg P., Brusletto B., Haug K.B., Lande K., Hoiby E.A., Kierulf P. Use of robotized DNA isolation and real-time pcr to quantify and identify close correlation between levels of neisseria meningitidis DNA and lipopolysaccharides in plasma and cerebrospinal fluid from patients with systemic meningococcal disease. J Clin Microbiol. 2004; 42(7):2980—7.; Rosa S.D., Villa G., Ronco C. The golden hour of polymyxin B he-moperfusion in endotoxic shock: The basis for sequential extracorporeal therapy in sepsis. Artif Organs. 2020 Feb; 44(2):184—1 86. doi:10.1111/aor.13550. Epub 2019 Sep 2.; Лобзин Ю.В., Иванова М.В., Скрипченко Н.В., Вильниц А.А., Карев В.Е., Горелик Е.Ю., Середняков К.В., Конев А.И. Современные клинико-эпидемиологические особенности течения генерализованной менингококковой инфекции и новые возможности терапии. Инфекционные болезни: новости, мнения, обучение. 2018; 7; 1(24):69—77.; Carcillo Joseph A. Multiple Organ System Extracorporeal Support in Critically Ill Children. Pediatr Clin N Am. 2008; 55:617—646.; Gomez-Jimenez J., Salgado A., Mourelle M., Martin M.C., Segura R.M., Peracaula R., Moncada S. L-arginin: nitric oxide pathway in endo-toxemia and human septic shock. Crit. Care Med. 1995; 23(2):253—258. doi:10.1097/00003246-199502000-00009.; Theilen U., Wilson L., Wilson G., Beattie J.O., Qureshi S, Simpson D. Management of invasive meningococcal disease in children and young people: summary of SIGN guidelines. BMJ. 2008; 336(7657): 1367—1370.; Pelkonen T., Roine I., Cruzeiro M.L., Pitkaranta A., Kataja M., Pelto-la H. Slow initial P-lactam infusion and oral paracetamol to treat childhood bacterial meningitis:a randomised, controlled trial. The Lancet. Inf. Dis., 2011; 11 (8):613—621. doi:10.1016/S1473-3099(11)70055-X; Zagli G., Bonizzoli M., Spina R., Cianchi G., Pasquini A., Anichini V, Matano S., Tarantini F, Di Filippo A., Maggi E., Peris A. Efects of hemoperfusion with an immobilized polymyxin-B fber column on cytokine plasma levels in patients with abdominal sepsis. Minerva Anestesiol. 2010; (76):405—12.; Nishibori M., Takahashi H.K., Katayama H., Mori S., Saito S., Iwa-gaki H., Tanaka N., Morita K., Ohtsuka A. Specifc removal of monocytes from peripheral blood of septic patients by polymyxin B-immobilized flter column. Acta Med. Okayama. 2009; (63):65—9. PMID: 19247424. doi:10.18926/AMO/31855.; Tanaka Y., Okano K., Tsuchiya K., Yamamoto M., Nitta K. Polymyxin B. Hemoperfusion improves hemodynamic status in patients with sepsis with both gram-negative and non-gram-negative bacteria. J. Clin. Exp. Nephrol., 2015; (1):4. DOI:10.21767/2472—5056.100004; Vatazin A.V, Zulkarnaev A.B., Krstich M. Effect of selective adsorption of endotoxin on mortality. Abstracts of the Scientific-Practical Conference «Actual Questions of Nephrology, Dialysis, Surgical Correction and Hemodialysis». Moscow, 2011:10.; Ishibe Y., Shibata S., Takahashi G., Suzuki Y., Inoue Y., Endo S. Association of type II secretory phospholipase A2 and surfactant protein D with the pulmonary oxygenation potential in patients with septic shock during polymyxin-B immobilized fiber-direct hemoperfusion. J. Clin. Apher. Oct 2017; 32(5):302—10. DOI:10.1002/jca.21507. PMID:27623356.; Лобзин Ю.В., Скрипченко Н.В., Середняков К.В., Маркова К.В. Способ лечения генерализованной формы менингококковой инфекции у детей с рефрактерным септическим шоком и синдромом полиорганной недостаточности. Патент на изобретение RU 2712050 C1, 24.01.2020. Заявка № 2019123073 от 17.07.2019.; Marshall J.C., Foster D., Vincent J.L., Cook DJ., Cohen J., Dellinger R.P., Opal S., Abraham E., Brett S.J., Smith T., Mehta S., Derzko A., Ro-maschin A., MEDIC study. Diagnostic and prognostic implications of endotoxemia in critical illness: Results of the MEDIC study. J Infect Dis. 2004; 190(3):527—34. doi:10.1086/422254. Epub 2004 Jul 2.; Terayama T., Yamakawa K., Umemura Y., Aihara M., Fujimi S. Polymyxin B Hemoperfusion for Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Surg Infect (Larchmt). 2017; 18(3):225—233. doi:10.1089/sur.2016.168. Epub 2017 Jan 16.; https://detinf.elpub.ru/jour/article/view/599

  17. 17
    Academic Journal
  18. 18
  19. 19
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 17, № 5 (2020); 80-86 ; Вестник анестезиологии и реаниматологии; Том 17, № 5 (2020); 80-86 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/469/449; Белобородова Н. В., Острова И. В. Сепсис-ассоциированная энцефалопатия (обзор) // Общая реаниматология. – 2017. – Т. 13, № 5. – С. 121–139.; Боткин С. П. Курс клиники внутренних болезней и клинические лекции: в 2 т. / С. П. Боткин; вступ. ст. А. Л. Мясникова; сост. К. А. Розова. – М.: Медгиз, 1950. – 944 с.; Мещеряков Г. Н., Радаев С. М., Закс И. О. и др. Системы оценки тяжести – компонент методологии лечебной работы (обзор литературы) // Реаниматология и интенсивная терапия. – 2009. – № 1. – С. 19–28.; Насонкин О. С., Цыган В. Н. Исторические вехи эволюции учения о шоке в отечественной медицине // Вестник Российской Военно-медицинской академии. – 2012. – № 1. – С. 314–320.; Никифорова (Постникова) Т. А., Песков С. А., Доронина О. Б. Анализ современного состояния клинико-экспериментальных данных о взаимодействии нервной и иммунной систем // Бюллетень сибирской медицины. – 2014. – Т. 13, № 6. – С. 72–80.; Саенко В. Ф., Десятерик В. И., Перцева Т. А. и др. Сепсис и нозокомиальная инфекция. – Кривой рог: Минерал, 2002. – 256 с.; Черных Е. Р., Леплина О. Ю., Тихонова М. А. и др. Цитокиновый баланс в патогенезе системного воспалительного ответа: новая мишень иммунотерапевтических воздействий при лечении сепсиса // Медицинская иммунология. – 2001. – Т. 3, № 3. – С. 415–429.; Andonegui G., Zelinski E. L., Schubert C. L. et al. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment // JCI Insight. – 2018. – Vol. 3, № 9. URL: https://insight.jci.org/articles/view/99364.; Bedirli N., Bagriacik E. U., Yilmaz G. et al. Sevoflurane exerts brain-protective effects against sepsis-associated encephalopathy and memory impairment through caspase 3/9 and Bax/Bcl signaling pathway in a rat model of sepsis // J. Int. Med. Res. – 2018. – Vol. 46, № 7. – P. 2828–2842.; Carmeliet P., Van Damme J., Denef C. Interleukin-1 beta inhibits acetylcholine synthesis in the pituitary corticotropic cell line AtT20 // Brain Res. ‒ 1989. Vol. 491. – P. 199–203.; Chaudhry N., Duggal A. K. Sepsis associated encephalopathy // Advances in Medicine. – 2014. – P. 1–16. URL: https://doi.org/10.1155/2014/762320.; Chung H. Y., Wickel J., Brunkhorst F. M. et al. Sepsis-associated encephalopathy: from delirium to dementia? // J. Clin. Med. – 2020. – Vol. 9, № 3. – P. 703.; Ebersoldt M., Sharshar T., Annane D. Sepsis-associated delirium // Intens. Care Med. – 2007. – Vol. 33. – P. 941–950.; Ehler J., Petzold A., Wittstock M. et al. The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy – A prospective, pilot observational study // PLoS One. – 2019. – Vol. 14, № 1. URL: https://www.researchgate.net/publication/330662647_The_prognostic_value_of_neurofilament_levels_in_patients_with_sepsis-associated_encephalopathy-A_prospective_pilot_observational_study.; Eidelman L. A., Putterman D., Putterman C. et al. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities // JAMA. – 1996. Vol. 275, № 6. – P. 470–473.; Fu Q., Wu J., Zhou X. Y. et al. NLRP3/Caspase-1 pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy // Inflammation. – 2019. – Vol. 42, № 1. – P. 306–318.; Gofton T. E., Young G. B. Sepsis-associated encephalopathy // Nat. Rev. Neurol. 2012. – Vol. 8, № 10. – P. 557–566.; Heming N., Mazeraud A., Verdonk F. et al. Neuroanatomy of sepsis-associated encephalopathy // Crit. Care (London, England). – 2017. – Vol. 21, № 1. – P. 65.; Iacobone E., Bailly-Salin J., Polito A. et al. Sepsis-associated encephalopathy and its differential diagnosis // Crit. Care Med. – 2009. – Vol. 37 (10 suppl.). P. 331–336.; Karnatovskaia L. V., Festic E. Sepsis // Neurohospitalist. – 2012. – Vol. 2, № 4. P. 144–153.; Kuperberg S. J., Wadgaonkar R. Sepsis-associated encephalopathy: the blood-brain barrier and the sphingolipid rheostat // Front Immunol. 2017. – Vol. 8. – P. 597.; Li S., Lv J., Li J. et al. Intestinal microbiota impact sepsis associated encephalopathy via the vagus nerve // Neurosci. Lett. – 2018. – Vol. 662. – P. 98–104.; Li Y., Liu L., Kang J. et al. Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression // J. Neurosci. – 2000. – Vol. 20. – P. 149–155.; Molnar L., Fülesdi B., Németh N. et al. Sepsis-associated encephalopathy: A review of literature // Neurol. India. –2018. – Vol. 66. – P. 352–361.; Quan N., Banks W. A. Brain-immune communication pathways // Brain Behav Immun. – 2007. – Vol. 21. – P. 727–735.; Ren C., Yao R. Q., Zhang H. et al. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression // J. Neuroinflammation. – 2020. – Vol. 17, № 1. – P. 14.; Robba C., Crippa I. A., Taccone F. S. Septic Encephalopathy // Curr. Neurol. Neurosci. Rep. – 2018. – Vol. 18. – P. 82.; Saeed R. W. Varma S., Peng-Nemeroff T. et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation // J. Exp. Med. – 2005. – Vol. 201. – P. 1113–1123.; Sonneville R., de Montmollin E., Poujade J. et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy // Intens. Care Med. – 2017. Vol 43. – P. 1075–1084.; Tong D. M., Zhou Y. T., Wang G. S. et al. Early prediction and outcome of septic encephalopathy in acute stroke patients with nosocomial // J. Clin. Med. Res. 2015. – Vol. 7, № 7. – P. 534–539.; Tracey K. J. Reflex control of immunity // Nat. Rev. Immunol. – 2009. – Vol. 9. P. 418–428.; Van Eijk M. M., Roes K. C., Honing M. L. et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial // Lancet. – 2010. – Vol. 376 (9755). – P. 1829–1837.; Watkins L. R., Goehler L. E., Relton J. K. et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication // Neurosci. Lett. – 1995 – Vol. 183. – P. 27–31.; Westhoff D., Witlox J., Koenderman L. et al. Preoperative cerebrospinal fluid cytokine levels and the risk of postoperative delirium in elderly hip fracture patients // J. Neuroinflammation. – 2013. – Vol. 10. – P. 122.; Xu X. E., Liu L., Wang Y. C. et al. Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis // Brain. Behav. Immun. – 2019. – Vol. 80. – P. 859–870.; Young G. B., Bolton C. F., Austin T. W. et al. The encephalopathy associated with septic illness // Clin. Invest. Med. – 1990. – Vol. 13, № 6. – P. 297–304.; Zhang Q. H., Sheng Z. Y., Yao Y. M. Septic encephalopathy: when cytokines interact with acetylcholine in the brain // Military Med. Research. – 2014. Vol. 1. – P. 20.; Zhu S. Z., Huang W. P., Huang L. Q. et al. Huperzine A protects sepsis associated encephalopathy by promoting the deficient cholinergic nervous function // Neurosci. Lett. – 2016. – Vol. 631. – P. 70–78.

  20. 20
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 1 (2020); 133-137 ; Российский вестник перинатологии и педиатрии; Том 65, № 1 (2020); 133-137 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-1

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1070/902; Zeligman I. The skin as a physiologic organ. J Natl Med Assoc 1961; 53 (3): 148–150.; Кешишян Е.С. Анатомо-физиологические особенности строения кожи в детском возрасте. Медицинский совет 2008; 1–2: 57–60. [Keshishyan E.S. Anatomical and physiological features of the structure of the skin in childhood. Meditsinskii sovet 2008; 1–2: 57–60. (in Russ.)]; Адаськевич В.П. Острая кожная недостаточность: клинико патогенетические варианты и методы терапевтической коррекции. Российский журнал кожных и венерических заболеваний 2016; 19 (2): 81. [Adas’kevich V.P. Acute skin failure: clinical pathogenic variants and methods of therapeutic correction. Rossiiskii zhurnal kozhnykh i venericheskikh zabolevanii 2016; 19 (2): 81. (in Russ.)]; Irvine C. "Skin failure"– a real entity: discussion paper. J R Soc Med 1991; 84 (7): 412–413.; Langemo D.K., Brown G. Skin fails too: acute, chronic, and end-stage skin failure. Adv Skin Wound Care 2006; 19 (4): 206–211.; Pollack M.M., Ruttimann U.E., Geston P.R., Getson P.R. Pediatric risk of mortality (PRISM) score. Crit Care Med 1988; 16(11): 1110–1116. DOI:10.1097/00003246198811000-00006; Shann F., Pearson G., Slater A., Wilkinson K. Paediatric index of mortality (PIM): A mortality prediction model for children in intensive care. Intensive Care Med 1997; 23 (2): 201–207. DOI:10.1007/s001340050317; Knaus W.A., Zimmerman J.E., Wagner D.P., Draper E.A., Lawrence D.E. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 1981; 9 (8): 591–597. DOI:10.1097/00003246198108000-00008; Leteurtre S., Martinot A., Duhamel A., Gauvin F., Grandbastien B., Nam T.V. et al. Development of a pediatric multiple organ dysfunction Score. Med Decis Mak 1999; 19 (4): 399– 410. DOI:10.1177/0272989X9901900408; Marshall J.C., Cook D.J., Christou N.V., Bernard G.R., Sprung C.L., Sibbald W.J. Multiple organ dysfunction score. Crit Care Med 1996; 24 (7): 1272. DOI:10.1097/00003246199607000-00037; Graciano A.L., Balko J.A., Rahn D.S., Ahmad N., Giroir B.P. The pediatric multiple organ dysfunction score (P-MODS): development and validation of an objective scale to measure the severity of multiple organ dysfunction in critically ill children. Crit Care Med 2005; 33 (7): 1484–1491. DOI:10.1097/01.CCM.0000170943.23633.47; Jones A.E., Trzeciak S., Kline J.A. The sequential organ failure, assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit Care Med 2009; 37 (5): 1649–1654. DOI:10.1097/CCM.0b013e31819def97; Valeyrie-Allanore L., Saskia O., Roujeau J.C., Kerdel F.A. Acute skin failure. In: Life-Threatening Dermatoses and Emergencies in Dermatology. J. Revuz, J-C. Roujeau, F.A. Kerdel, L. Valeyrie-Allanore (eds). Berlin, Heidelberg: Springer Berlin Heidelberg, 2009; 37–42. DOI:10.1007/978-3-540-79339-7; Curry K., Kutash M., Chambers T., Evans A., Holt M., Purcell S. A prospective, descriptive study of characteristics associated with skin failure in critically ill adults. Ostomy wound Manag 2012; 58 (5): 36–43.; Delmore B., Cox J., Rolnitzky L., Chu A., Stolfi A. Differentiating a pressure ulcer from acute skin failure in the adult critical care patient. Adv Skin Wound Care 2015; 28 (11): 514–524. DOI:10.1097/01.ASW.0000471876.11836.dc; Cohen K.E., Scanlon M.C., Bemanian A., Schindler C.A. Pediatric skin failure. Am J Crit Care 2017; 26 (4): 320–328. DOI:10.4037/ajcc2017806; Kim J.H., Shin H.K., Jung G.Y., Lee D.L. A case of acute skin failure misdiagnosed as a pressure ulcer, leading to a legal dispute. Arch Plast Surg 2019; 46 (1): 75–78. DOI:10.5999/ aps.2018.00087; Надлежащая медицинская практика инфологическая модель Профилактика пролежней (ГОСТ Р 56819-2015). М.: Стандартинформ, 2016; 48. [Good medical practice infological model Prevention of pressure ulcers (GOST R 56819-2015). Moscow: Standartinform; 2016; 48. (in Russ)]; Sehgal V.N., Srivastava G., Sardana K. Erythroderma/exfoliative dermatitis: a synopsis. Int J Dermatol 2004; 43 (1): 39–47.; Stevens A.M., Johnson F.C. A new eruptive fever associated with stomatitis and ophthalmia. Am J Dis Child 1922; 24 (6): 526. DOI:10.1001/archpedi.1922.04120120077005; Lyell A. Toxic epidermal necrolysis: an eruption resembling scalding of the skin. Br J Dermatol 1956; 68 (11): 355–361. DOI:10.1111/j.1365-2133.1956.tb12766.x; Bastuji-Garin S. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 1993; 129 (1): 92. DOI:10.1001/ archderm.1993.01680220104023; Bastuji-Garin S., Fouchard N., Bertocchi M., Roujeau J.C., Revuz J., Wolkenstein P. Scorten: A severity-of-illness score for toxic epidermal necrolysis. J Invest Dermatol 2000; 115 (2): 149–153. DOI:10.1046/j.1523-1747.2000.00061.x; Gerull R., Nelle M., Schaible T. Toxic epidermal necrolysis and Stevens-Johnson syndrome: A review. Crit Care Med 2011; 39 (6): 1521–1532. DOI:10.1097/CCM.0b013e31821201ed