Showing 1 - 20 results of 420 for search '"СИНДРОМ ПОЛИКИСТОЗНЫХ ЯИЧНИКОВ"', query time: 0.77s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2609/1406; Петров И.А., Дмитриева М.Л., Тихоновская О.А. и др. Тканевые и молекулярные основы фолликулогенеза. Механизмы раннего фолликулярного роста. Проблемы репродукции. 2017;23(5):33–41. https://doi.org/10.17116/repro201723533-41.; Pors S.E., Harðardóttir L., Olesen H.Ø. et al. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod. 2020;26(5):301–11. https://doi.org/10.1093/molehr/gaaa022.; Zhang Y., Yan Z., Qin Q. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–1034.e4. https://doi.org/10.1016/j.molcel.2018.10.029.; Hernández-Coronado C.G., Guzmán A., Castillo-Juárez H. et al. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Ann Endocrinol (Paris). 2019;80(5–6):263–72. https://doi.org/10.1016/j.ando.2019.06.003.; Pitman M., Oehler M.K., Pitson S.M. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal. 2021;81:109949. https://doi.org/10.1016/j.cellsig.2021.109949.; Quinville B.M., Deschenes N.M., Ryckman A.E., Walia J.S. A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci. 2021;22(11):5793. https://doi.org/10.3390/ijms22115793.; Sukocheva O., Wadham C., Holmes A. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol. 2006;173(2):301–10. https://doi.org/10.1083/jcb.200506033.; Chou C.H., Chen M.J. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–75. https://doi.org/10.1016/bs.vh.2018.01.013.; Zeleznik O.A., Clish C.B., Kraft P. et al. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: a 23-year prospective study. J Natl Cancer Inst. 2020;112(6):628–36. https://doi.org/10.1093/jnci/djz195.; Janneh A.H., Ogretmen B. Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). 2022;14(9):2183. https://doi.org/10.3390/cancers14092183.; Gomez-Larrauri A., Das Adhikari U., Aramburu-Nuñez M. et al. Ceramide metabolism enzymes-therapeutic targets against cancer. Medicina (Kaunas). 2021;57(7):729. https://doi.org/10.3390/medicina57070729.; Companioni O., Mir C., Garcia-Mayea Y., LLeonart M.E. Targeting sphingolipids for cancer therapy. Front Oncol. 2021;11:745092. https://doi.org/10.3389/fonc.2021.745092.; Yuan Y., Jia G., Wu C. et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263–74. https://doi.org/10.1038/s41422-021-00566-x.; Lucki N.C., Sewer M.B. The interplay between bioactive sphingolipids and steroid hormones. Steroids. 2010;75(6):390–9. https://doi.org/10.1016/j.steroids.2010.01.020.; Roth Z. Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci. 2018;101(4):3642–54. https://doi.org/10.3168/jds.2017-13389.; Протопопов В.А., Секунов А.В., Панов А.В., Брындина И.Г. Взаимосвязь сфинголипидных механизмов с окислительным стрессом и изменениями митохондрий при функциональной разгрузке постуральных мышц. Acta Biomedica Scientifica. 2024;9(2):228–42. https://doi.org/10.29413/ABS.2024-9.2.23.; Kujjo L.L., Perez G.I. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction. 2012;143(1):1–10. https://doi.org/10.1530/REP-11-0350.; Zigdon H., Kogot-Levin A., Park J.W. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288(7):4947–56. https://doi.org/10.1074/jbc.M112.402719.; Arora A.S., Jones B.J., Patel T.C. et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology. 1997;25(4):958–63. https://doi.org/10.1002/hep.510250428.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Kasapoğlu I., Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020;161(2):bqaa001. https://doi.org/10.1210/endocr/bqaa001.; Smits M.A.J., Schomakers B.V., van Weeghel M. et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023;38(11):2208–20. https://doi.org/10.1093/humrep/dead177.; Lee S., Kang H.G., Jeong P.S. et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci Total Environ. 2021;755(Pt 1):144144. https://doi.org/10.1016/j.scitotenv.2020.144144.; Hernández-Coronado C.G., Guzmán A., Espinosa-Cervantes R. et al. Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. Animal. 2015;9(2):308–12. https://doi.org/10.1017/S1751731114002341.; Kujjo L.L., Acton B.M., Perkins G.A. et al. Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev. 2013;134(1–2):43–52. https://doi.org/10.1016/j.mad.2012.12.001.; Morita Y., Tilly J.L. Oocyte apoptosis: like sand through an hourglass. Dev Biol. 1999;213(1):1–17. https://doi.org/10.1006/dbio.1999.9344.; Hernández-Coronado C.G., Guzmán A., Rodríguez A. et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. Gen Comp Endocrinol. 2016;236:1–8. https://doi.org/10.1016/j.ygcen.2016.06.029.; Hao X., Zhang M. Roles of sphingosine-1-phosphate in follicle development and oocyte maturation. Anim Res One Health. 2024;2(3):314–22. https://doi.org/10.1002/aro2.53.; Park J.Y., Su Y.Q., Ariga M. et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.; Yamanaka M., Shegogue D., Pei H. et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem. 2004;279(52):53994–4001. https://doi.org/10.1074/jbc.M410144200.; Squecco R., Sassoli C., Nuti F. et al. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell. 2006;17(11):4896–910. https://doi.org/10.1091/mbc.e06-03-0243.; Giepmans B.N., Verlaan I., Hengeveld T. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol. 2001;11(17):1364–8. https://doi.org/10.1016/s0960-9822(01)00424-9.; Hao X., Wang Y., Kong N. et al. Growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biol Reprod. 2016;95(2):45. https://doi.org/10.1095/biolreprod.116.140137.; Yuan F., Hao X., Cui Y. et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022;13(11):963. https://doi.org/10.1038/s41419-022-05415-2.; Mostafa S., Nader N., Machaca K. Lipid signaling during gamete maturation. Front Cell Dev Biol. 2022;10:814876. https://doi.org/10.3389/fcell.2022.814876.; Birbes H., El Bawab S., Hannun Y.A., Obeid L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001;15(14):2669–79. https://doi.org/10.1096/fj.01-0539com.; Hernández-Corbacho M.J., Salama M.F., Canals D. et al. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):56–68. https://doi.org/10.1016/j.bbalip.2016.09.019.; Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci. 2015;16(3):5076–124. https://doi.org/10.3390/ijms16035076.; Fisher-Wellman K.H., Hagen J.T., Neufer P.D. et al. On the nature of ceramide-mitochondria interactions – dissection using comprehensive mitochondrial phenotyping. Cell Signal. 2021;78:109838. https://doi.org/10.1016/j.cellsig.2020.109838.; Eliyahu E., Shtraizent N., Martinuzzi K. et al. Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 2010;24(4):1229–38. https://doi.org/10.1096/fj.09-145508.; Santiquet N.W., Greene A.F, Becker J. et al. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. Mol Hum Reprod. 2017;23(9):594–606. https://doi.org/10.1093/molehr/gax032.; Eliyahu E., Shtraizent N., Shalgi R., Schuchman E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem. 2012;30(3):735–48. https://doi.org/10.1159/000341453.; Morita Y., Perez G.I., Paris F. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14. https://doi.org/10.1038/80442.; Coll O., Morales A., Fernández-Checa J.C., Garcia-Ruiz C. Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. J Lipid Res. 2007;48(9):1924–35. https://doi.org/10.1194/jlr.M700069-JLR200.; Yuan F., Wang Z., Sun Y. et al. Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis. 2021;12(6):574. https://doi.org/10.1038/s41419-021-03848-9.; Morita Y., Tilly J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann N Y Acad Sci. 2000;905:209–20. https://doi.org/10.1111/j.1749-6632.2000.tb06551.x.; Knapp P., Chomicz K., Świderska M. et al. Unique roles of sphingolipids in selected malignant and nonmalignant lesions of female reproductive system. Biomed Res Int. 2019;2019:4376583. https://doi.org/10.1155/2019/4376583.; Kreitzburg K.M., van Waardenburg R.C.A.M., Yoon K.J. Sphingolipid metabolism and drug resistance in ovarian cancer. Cancer Drug Resist. 2018;1:181–97. https://doi.org/10.20517/cdr.2018.06.; Rutherford T., Brown W.D., Sapi E. et al. Absence of estrogen receptor-beta expression in metastatic ovarian cancer. Obstet Gynecol. 2000;96(3):417–21. https://doi.org/10.1016/s0029-7844(00)00917-0.; Jeon S.-Y., Hwang K.-A., Choi K.-C. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016;158:1–8. https://doi.org/10.1016/j.jsbmb.2016.02.005.; Mungenast F., Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol (Lausanne). 2014;5:192. https://doi.org/10.3389/fendo.2014.00192.; Giaccari C., Antonouli S., Anifandis G. et al. An update on physiopathological roles of Akt in the reprodAKTive mammalian ovary. Life (Basel). 2024;14(6):722. https://doi.org/10.3390/life14060722.; Yang Y., Lang P., Zhang X. et al. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet. 2023;40(3):537–52. https://doi.org/10.1007/s10815-023-02724-z.; Liu L., Yin T.L., Chen Y. et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–9. https://doi.org/10.1016/j.jsbmb.2018.08.008.; Shi Y., Zhao H., Shi Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.; Parasar P., Ozcan P., Terry K.L. Endometriosis: epidemiology, diagnosis and clinical management. Curr Obstet Gynecol Rep. 2017;6(1):34–41. https://doi.org/10.1007/s13669-017-0187-1.; Lee Y.H., Tan C.W., Venkatratnam A. et al. Dysregulated sphingolipid metabolism in endometriosis. J Clin Endocrinol Metab. 2014;99(10):E1913–21. https://doi.org/10.1210/jc.2014-1340.; Zhang Q., Duan J., Liu X., Guo S.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. https://doi.org/10.1016/j.mce.2016.03.015.; Bernacchioni C., Capezzuoli T., Vannuzzi V. et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021;115(2):501–11. https://doi.org/10.1016/j.fertnstert.2020.08.012.; Turathum B., Gao E.M., Grataitong K. et al. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne). 2022;13:906570. https://doi.org/10.3389/fendo.2022.906570.; Itami N., Shirasuna K., Kuwayama T., Iwata H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod. 2018;98(5):644–53. https://doi.org/10.1093/biolre/ioy023.; Fucho R., Casals N., Serra D., Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 2017;31(4):1263–72. https://doi.org/10.1096/fj.201601156R.; Torretta E., Barbacini P., Al-Daghri N.M., Gelfi C. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment. Int J Mol Sci. 2019;20(23):5901. https://doi.org/10.3390/ijms20235901.; Samad F., Hester K.D., Yang G. et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–87. https://doi.org/10.2337/db06-0330.; Shibahara H., Ishiguro A., Inoue Y. et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology. 2020;141:54–61. https://doi.org/10.1016/j.theriogenology.2019.09.006.; Levi A.J., Raynault M.F., Bergh P.A. et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9. https://doi.org/10.1016/s0015-0282(01)02017-9.; Timur B., Aldemir O., İnan N. et al. Clinical significance of serum and follicular fluid ceramide levels in women with low ovarian reserve. Turk J Obstet Gynecol. 2022;19(3):207–14. https://doi.org/10.4274/tjod.galenos.2022.05760.; Alizadeh J., da Silva Rosa S.C., Weng X. et al. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol. 2023;102(3):151337. https://doi.org/10.1016/j.ejcb.2023.151337.; Nakahara T., Iwase A., Nakamura T. et al. Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril. 2012;98(4):1001–8.e1. https://doi.org/10.1016/j.fertnstert.2012.06.008.; Valtetsiotis K., Valsamakis G., Charmandari E., Vlahos N.F. Metabolic mechanisms and potential therapeutic targets for prevention of ovarian aging: data from up-to-date experimental studies. Int J Mol Sci. 2023;24(12):9828. https://doi.org/10.3390/ijms24129828.; Li F., Turan V., Lierman S. et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13. https://doi.org/10.1093/humrep/det391.; Pascuali N., Scotti L., Di Pietro M. et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.; Абусуева З.А., Мухтарова М.М., Хашаева Т.Х. и др. Компаративная оценка провоспалительных цитокинов у женщин с диагностированными наследственными тромбофилиями различного генеза и их ассоциация с ранними и поздними эмбриональными потерями. Проблемы репродукции. 2022;28(3):10–7. https://doi.org/10.17116/repro20222803110.; Cianci A., Calogero A.E., Palumbo M.A. et al. Relationship between tumour necrosis factor alpha and sex steroid concentrations in the follicular fluid of women with immunological infertility. Hum Reprod. 1996;11(2):265–8. https://doi.org/10.1093/humrep/11.2.265.; Banaras S., Paracha R.Z., Nisar M. et al. System level modeling and analysis of TNF-α mediated sphingolipid signaling pathway in neurological disorders for the prediction of therapeutic targets. Front Physiol. 2022;13:872421. https://doi.org/10.3389/fphys.2022.872421.; Sukocheva O.A., Neganova M.E., Aleksandrova Y/ et al. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal. 2024;22(1):251. https://doi.org/10.1186/s12964-024-01626-6.; Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110(1):3–8. https://doi.org/10.1172/JCI16127.; Di Paolo A., Vignini A., Alia S. et al. Pathogenic role of the sphingosine 1-phosphate (S1P) pathway in common gynecologic disorders (GDs): a possible novel therapeutic target. Int J Mol Sci. 2022;23(21):13538. https://doi.org/10.3390/ijms232113538.; Коваль О.М., Хачанова Н.В., Журавлева М.В. и др. Безопасность воспроизведенного финголимода. Безопасность и риск фармакотерапии. 2018;6(1):23–31. https://doi.org/10.30895/2312-7821-2018-6-1-23-31.; https://www.gynecology.su/jour/article/view/2609

  3. 3
  4. 4
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2519/1361; Всемирная организация здравоохранения. Бесплодие. Режим доступа: https://www.who.int/ru/news-room/fact-sheets/detail/infertility. [Дата обращения 11.04.2025].; Клинические рекомендации. Привычный выкидыш. 2025. М.: Министерство здравоохранения Российской Федерации, 2025. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/721_2. [Дата обращения: 25.05.2025].; Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2020;113(3):533–5. https://doi.org/10.1016/j.fertnstert.2019.11.025.; Горбатенко Н.В., Беженарь В.Ф., Фишман М.Б. Влияние ожирения на развитие нарушения репродуктивной функции у женщин. Ожирение и метаболизм. 2017;14(1):3–8. https://doi.org/10.14341/omet201713-8.; Genovese H.G., McQueen D.B. The prevalence of sporadic and recurrent pregnancy loss. Fertil Steril. 2023;120(5):934–6. https://doi.org/10.1016/j.fertnstert.2023.08.954.; Батрак Н.В., Малышкина А.И., Сотникова Н.Ю., Крошкина Н.В. Клинико-иммунологические особенности беременных с привычным невынашиванием в анамнезе. Российский вестник акушера-гинеколога. 2015;15(3):35–9. https://doi.org/10.17116/rosakush201515335-39.; Kwak-Kim J., AlSubki L., Luu T. et al. The role of immunologic tests for subfertility in the clinical environment. Fertil Steril. 2022;117(6):1132–43. https://doi.org/10.1016/j.fertnstert.2022.04.009.; Cavalcante M.B., Sarno M., Barini R. Immune biomarkers in cases of recurrent pregnancy loss and recurrent implantation failure. Minerva Obstet Gynecol. 2025;77(1):34–44. https://doi.org/10.23736/S2724-606X.24.05549-0.; Broughton D.E., Moley K.H. Obesity and female infertility: potential mediators of obesity's impact. Fertil Steril. 2017;107(4):840–7. https://doi.org/10.1016/j.fertnstert.2017.01.017.; Тихоненко Е.В., Бабенко А.Ю., Шляхто Е.В. Предикторы эффективности терапии агонистами рецепторов глюкагоноподобного пептида-1 у пациентов с сахарным диабетом 2 типа и ожирением. Ожирение и метаболизм. 2018;15(4):22–30. https://doi.org/10.14341/omet9584.; Alfaris N., Waldrop S., Johnson V. et al. GLP-1 single, dual, and triple receptor agonists for treating type 2 diabetes and obesity: a narrative review. EClinicalMedicine. 2024;75:102782. https://doi.org/10.1016/j.eclinm.2024.102782.; Bendotti G., Montefusco L., Lunati M.E. et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol Res. 2022;182:106320. https://doi.org/10.1016/j.phrs.2022.106320.; Ennab F., Atiomo W. Obesity and female infertility. Best Pract Res Clin Obstet Gynaecol. 2023;89:102336. https://doi.org/10.1016/j.bpobgyn.2023.102336.; Gonçalves C.C.R.A., Feitosa B.M., Cavalcante B.V. et al. Obesity and recurrent miscarriage: The interconnections between adipose tissue and the immune system. Am J Reprod Immunol. 2023;90(3):e13757. https://doi.org/10.1111/aji.13757.; Калугина А.С., Бобров К.Ю. Синдром поликистозных яичников: современные представления и роль в проблеме бесплодия (обзор литературы). Проблемы репродукции. 2015;21(2):31–5. https://doi.org/10.17116/repro201521231-35.; Luan Y.Y., Zhang L., Peng Y.Q. et al. Immune regulation in polycystic ovary syndrome. Clin Chim Acta. 2022;531:265–72. https://doi.org/10.1016/j.cca.2022.04.234.; Saito S., Nakashima A., Shima T., Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63(6):601–10. https://doi.org/10.1111/j.1600-0897.2010.00852.x.; Wang W., Sung N., Gilman-Sachs A., Kwak-Kim J. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol. 2020;11:2025. https://doi.org/10.3389/fimmu.2020.02025.; Yousefzadeh Y., Soltani-Zangbar M.S., Hemmatzadeh M. et al. Fetomaternal immune tolerance: crucial mechanisms of tolerance for successful pregnancy in humans. Immunol Invest. 2022;51(4):1108–125. https://doi.org/10.1080/08820139.2021.1909061.; Li D., Zheng L., Zhao D. et al. The role of immune cells in recurrent spontaneous abortion. Reprod Sci. 2021;28(12):3303–15. https://doi.org/10.1007/s43032-021-00599-y.; True H., Blanton M., Sureshchandra S., Messaoudi I. Monocytes and macrophages in pregnancy: the good, the bad, and the ugly. Immunol Rev. 2022;308(1):77–92. https://doi.org/10.1111/imr.13080.; Zhao Q.Y., Li Q.H., Fu Y.Y. et al. Decidual macrophages in recurrent spontaneous abortion. Front Immunol. 2022;13:994888. https://doi.org/10.3389/fimmu.2022.994888.; Галстян Г.Р., Каратаева Е.А., Юдович Е.А. Эволюция агонистов рецепторов глюкагоноподобного пептида-1 в терапии сахарного диабета 2 типа. Сахарный диабет. 2017;20(4):286–98. https://doi.org/10.14341/DM8804.; Ussher J.R., Drucker D.J. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol. 2023;20(7):463–74. https://doi.org/10.1038/s41569-023-00849-3.; Klen J., Dolžan V. Glucagon-like peptide-1 receptor agonists in the management of type 2 diabetes mellitus and obesity: the impact of pharmacological properties and genetic factors. Int J Mol Sci. 2022;23(7):3451. https://doi.org/10.3390/ijms23073451.; Власов Т.Д., Симаненкова А.В., Дора С.В., Шляхто Е.В. Механизмы нейропротективного действия инкретиномиметиков. Сахарный диабет. 2016;19(1):16–23. https://doi.org/10.14341/DM7192.; Tobaiqy M. A review of serious adverse events linked with GLP-1 agonists in type 2 diabetes mellitus and obesity treatment. Pharmacol Rep. 2024;76(5):981–90. https://doi.org/10.1007/s43440-024-00629-x.; Muller D.R.P., Stenvers D.J., Malekzadeh A. et al. Effects of GLP-1 agonists and SGLT2 inhibitors during pregnancy and lactation on offspring outcomes: a systematic review of the evidence. Front Endocrinol (Lausanne). 2023;14:1215356. https://doi.org/10.3389/fendo.2023.1215356.; Dao K., Shechtman S., Weber-Schoendorfer C. et al. Use of GLP1 receptor agonists in early pregnancy and reproductive safety: a multicentre, observational, prospective cohort study based on the databases of six Teratology Information Services. BMJ Open. 2024;14(4):e083550. https://doi.org/10.1136/bmjopen-2023-083550.; Zhou J., Wei Z., Lai W. et al. The safety profile of usage of glucagon-like peptide-1 receptor agonists in pregnancy: a pharmacovigilance analysis based on the Food and Drug Administration Adverse Event Reporting System. Br J Clin Pharmacol. 2025;91(4):1272–80. https://doi.org/10.1111/bcp.16354.; Diab H., Fuquay T., Datta P. et al. Subcutaneous semaglutide during breastfeeding: infant safety regarding drug transfer into human milk. Nutrients. 2024;16(17):2886. https://doi.org/10.3390/nu16172886.; Caldwell A.E., Gorczyca A.M., Bradford A.P. et al. Effectiveness of preconception weight loss interventions on fertility in women: a systematic review and meta-analysis. Fertil Steril. 2024;122(2):326–40. https://doi.org/10.1016/j.fertnstert.2024.02.038.; Carson S.A., Kallen A.N. Diagnosis and management of infertility: a review. JAMA. 2021;326(1):65–76. https://doi.org/10.1001/jama.2021.4788.; Seifer D.B., Feinberg E.C., Hsu A.L. Ovarian aging and fertility. JAMA. 2024;332(20):1750–1. https://doi.org/10.1001/jama.2024.18207.; Elmaleh-Sachs A., Schwartz J.L., Bramante C.T. et al. Obesity management in adults: a review. JAMA. 2023;330(20):2000–15. https://doi.org/10.1001/jama.2023.19897.; Xie Z., Zheng G., Liang Z. et al. Seven glucagon-like peptide-1 receptor agonists and polyagonists for weight loss in patients with obesity or overweight: an updated systematic review and network meta-analysis of randomized controlled trials. Metabolism. 2024;161:156038. https://doi.org/10.1016/j.metabol.2024.156038.; Wadden T.A., Bailey T.S., Billings L.K. et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 Randomized Clinical Trial. JAMA. 2021;325(14):1403–13. https://doi.org/10.1001/jama.2021.1831.; Jastreboff A.M., Aronne L.J., Ahmad N.N. et al. SURMOUNT-1 Investigators. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387(3):205–16. https://doi.org/10.1056/NEJMoa2206038.; Scragg J., Hobson A., Willis L. et al. Effect of weight loss interventions on the symptomatic burden and biomarkers of polycystic ovary syndrome: a systematic review of randomized controlled trials. Ann Intern Med. 2024;177(12):1664–74. https://doi.org/10.7326/M23-3179.; Ruiz-González D., Cavero-Redondo I., Hernández-Martínez A. et al. Comparative efficacy of exercise, diet and/or pharmacological interventions on BMI, ovulation, and hormonal profile in reproductive-aged women with overweight or obesity: a systematic review and network meta-analysis. Hum Reprod Update. 2024;30(4):472–87. https://doi.org/10.1093/humupd/dmae008.; Austregésilo de Athayde De Hollanda Morais B., Martins Prizão V., de Moura de Souza M. et al. The efficacy and safety of GLP-1 agonists in PCOS women living with obesity in promoting weight loss and hormonal regulation: a meta-analysis of randomized controlled trials. J Diabetes Complications. 2024;38(10):108834. https://doi.org/10.1016/j.jdiacomp.2024.108834.; Lyu X., Lyu T., Wang X. et al. The antiobesity effect of GLP-1 receptor agonists alone or in combination with metformin in overweight/obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Int J Endocrinol. 2021;2021:6616693. https://doi.org/10.1155/2021/6616693.; Hoek A., Wang Z., van Oers A.M. et al. Effects of preconception weight loss after lifestyle intervention on fertility outcomes and pregnancy complications. Fertil Steril. 2022;118(3):456–62. https://doi.org/10.1016/j.fertnstert.2022.07.020.; Chen J., Mei A., Wei Y. et al. GLP-1 receptor agonist as a modulator of innate immunity. Front Immunol. 2022;13:997578. https://doi.org/10.3389/fimmu.2022.997578.; Yusta B., Baggio L.L., Koehler J. et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes. 2015;64(7):2537–49. https://doi.org/10.2337/db14-1577.; Desai A., Petrov J., Hashash J.G. et al. Use of glucagon-like peptide-1 receptor agonists for type 2 diabetes mellitus and outcomes of inflammatory bowel disease. Aliment Pharmacol Ther. 2024;60(5):620–32. https://doi.org/10.1111/apt.18138.; Boshchenko A.A., Maslov L.N., Mukhomedzyanov A.V. et al. Peptides are cardioprotective drugs of the future: the receptor and signaling mechanisms of the cardioprotective effect of glucagon-like peptide-1 receptor agonists. Int J Mol Sci. 2024;25(9):4900. https://doi.org/10.3390/ijms25094900.; Kopp K.O., Glotfelty E.J., Li Y., Greig N.H. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res. 2022;186:106550. https://doi.org/10.1016/j.phrs.2022.106550.; Насонов Е.Л., Паневин Т.С., Трошина Е.А. Агонисты рецепторов глюкагоноподобного пептида-1: перспективы применения в ревматологии. Научно-практическая ревматология. 2024;62(2):135–44. https://doi.org/10.47360/1995-4484-2024-135-144.; Aslam B., Bin Zafar M.D., Changez M.I.K. et al. Exploring the potential impact of GLP-1 receptor agonists in cancer therapy. Minerva Endocrinol (Torino). 2023 Dec. https://doi.org/10.23736/S2724-6507.23.04101-5. [Online ahead of print].; Alhajahjeh A., Al-Faouri R., Bahmad H.F. et al. From diabetes to oncology: glucagon-like peptide-1 (GLP-1) receptor agonist's dual role in prostate cancer. Cancers (Basel). 2024;16(8):1538. https://doi.org/10.3390/cancers16081538.; Wu A.Y., Cahill K.N., Toki S., Peebles R.S. Evaluating the glucagon-like peptide-1 receptor in managing asthma. Curr Opin Allergy Clin Immunol. 2022;22(1):36–41. https://doi.org/10.1097/ACI.0000000000000797.; Cai R., Yang Q., Liao Y. et al. Immune treatment strategies in unexplained recurrent pregnancy loss. Am J Reprod Immunol. 2025;93(2):e70060. https://doi.org/10.1111/aji.70060.; Garmendia J.V., De Sanctis C.V., Hajdúch M., De Sanctis J.B. Exploring the immunological aspects and treatments of recurrent pregnancy loss and recurrent implantation failure. Int J Mol Sci. 2025;26(3):1295. https://doi.org/10.3390/ijms26031295.; Cavalcante M.B., Sarno M., Barini R. Lymphocyte immunotherapy in recurrent miscarriage and recurrent implantation failure. Am J Reprod Immunol. 2021;85(4):e13408. https://doi.org/10.1111/aji.13408.; Cavalcante M.B., Alcântara da Silva P.H., Sampaio O.G.M. et al. The use of immunotherapies for recurrent miscarriage: an overview of systematic reviews and meta-analysis. J Reprod Immunol. 2023;158:103986. https://doi.org/10.1016/j.jri.2023.103986.; Cavalcante M.B., Tavares A.C.M., Rocha C.A. et al. Calcineurin inhibitors in the management of recurrent miscarriage and recurrent implantation failure: systematic review and meta-analysis. J Reprod Immunol. 2023;160:104157. https://doi.org/10.1016/j.jri.2023.104157.; Tong X., Song X., Zhang Y., Zhao Q. Efficacy and safety of glucagon-like peptide-1 receptor agonists in the treatment of polycystic ovary syndrome – a systematic review and meta-analysis. Arch Physiol Biochem. 2024;130(6):1005-1011. https://doi.org/10.1080/13813455.2024.2380422.; Salamun V., Jensterle M., Janez A., Vrtacnik Bokal E. Liraglutide increases IVF pregnancy rates in obese PCOS women with poor response to first-line reproductive treatments: a pilot randomized study. Eur J Endocrinol. 2018;179(1):1–11. https://doi.org/10.1530/EJE-18-0175.; Drucker D.J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740-756. https://doi.org/10.1016/j.cmet.2018.03.001.; https://www.gynecology.su/jour/article/view/2519

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 7 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 54-57 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 7 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 54-57 ; 2181-3469

    File Description: application/pdf

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1.; http://elib.usma.ru/handle/usma/21120

  13. 13
    Academic Journal

    Source: Mother and Baby in Kuzbass; № 2 (2024): июнь; 104-108 ; Мать и Дитя в Кузбассе; № 2 (2024): июнь; 104-108 ; 2542-0968 ; 1991-010X

    File Description: text/html; application/pdf

  14. 14
    Academic Journal

    Contributors: The work was financially supported by Sanofi pharmaceutical company, Работа выполнена при финансовой поддержке фармацевтической компании Санофи

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 2 (2024); 218-230 ; Акушерство, Гинекология и Репродукция; Vol 18, No 2 (2024); 218-230 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2053/1202; Grober U., Schmidt J., Kisters K. Magnesium in prevention and therapy. Nutrients. 2015;7(9):8199–226. doi:10.3390/nu7095388.; Bertinato J., Wu Xiao C., Ratnayake W.M. et al. Lower serum magnesium concentration is associated with diabetes, insulin resistance, and obesity in South Asian and white Canadian women but not men. Food Nutr Res. 2015;59(1):25974. doi:10.3402/fnr.v59.25974.; Al Alawi M.A., Majoni S.W., Falhammar H. Magnesium and human health: perspectives and research directions. Int J Endocrinol. 2018;2018:9041694. doi:10.1155/2018/9041694.; Громова О.А., Торшин И.Ю., Рудаков К.В. и др. Недостаточность магния – достоверный фактор риска коморбидных состояний: результаты крупномасштабного скрининга магниевого статуса в регионах России. Фарматека. 2013;(6):115–29.; Блинов Д.В., Ушакова Т.И., Макацария Н.А. и др. Гормональная контрацепция и дефицит магния: результаты субанализа исследования MAGYN. Акушерство, Гинекология и Репродукция. 2017;11(1):36–48. doi:10.17749/2313-7347.2017.11.1.036-048.; Блинов Д.В., Зимовина У.В., Джобава Э.М. Ведение беременных с дефицитом магния: фармакоэпидемиологическое исследование. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2014;7(2):23–32.; Makatsariya A.D., Bitsadze V.O, Blinov D.V. et al. Pregnant women with symptoms of magnesium deficiency in Russian Federation: MAGIC 2 study results. Magnes Res. 2016;29(3):81. URL: https://www.researchgate.net/publication/316007448_Pregnant_women_with_symptoms_of_magnesium_deficiency_in_Russian_Federation_MAGIC_2_study_results.; Блинов Д.В., Зимовина У.В., Сандакова Е.А., Ушакова Т.И. Дефицит магния у пациенток с гормонально-зависимыми заболеваниями: фармакоэпидемиологический профиль и оценка качества жизни. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2015;8(2):16–24. URL: https://cyberleninka.ru/article/n/defitsit-magniya-u-patsientok-s-gormonalno-zavisimymi-zabolevaniyami-farmakoepidemiologicheskiy-profil-i-otsenka-kachestva-zhizni.; Schimatschek H.F., Rempis R. Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnes Res. 2001;14(4):283–90.; De Baaij J.H.F., Hoenderop J.G.J., Bindels R.J.M. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1–46. doi:10.1152/physrev.00012.2014.; Olza J., Aranceta-Bartrina J., González-Gross M. et al. Reported dietary intake, disparity between the reported consumption and the level needed for adequacy and food sources of calcium, phosphorus, magnesium and vitamin D in the Spanish population: findings from the ANIBES study. Nutrients. 2017;9(2):168. doi:10.3390/nu9020168.; Olza J., Aranceta-Bartrina J., González-Gross M. et al. Reported dietary intake and food sources of zinc, selenium, and vitamins A, E and C in the Spanish population: findings from the ANIBES study. Nutrients. 2017;9(7):697. doi:10.3390/nu9070697.; Jahnen-Dechent W., Ketteler M. Magnesium basics. Clin Kidney J. 2012;5(Suppl 1):i3–i14. doi:10.1093/ndtplus/sfr163.; Danziger J., William J.H., Scott D.J. et al. Proton-pump inhibitor use is associated with low serum magnesium concentrations. Kidney Int. 2013;83(4):692–9. doi:10.1038/ki.2012.452.; Наумов Д.Е. Термочувствительные ионные каналы TRPM8 (oбзор литературы). Бюллетень физиологии и патологии дыхания. 2011;(42):89–96.; Громова О.А., Гоголева И.В. Применение магния в зеркале доказательной медицины и фундаментальных исследований в терапии. Дефицит магния и концепция стресса. Трудный пациент. 2007;5(11):29–38.; Voets T., Nilius B., Hoefs S. et al. TRPM6 Forms the Mg 2+ influx channel involved in intestinal and renal Mg 2+ absorption. J Biol Chem. 2004;279(1):19–25. doi:10.1074/jbc.M311201200.; Schlingmann K.P., Gudermann T. A critical role of TRPM channel-kinase for human magnesium transport. J Physiol. 2005;566(Pt 2):301–8. doi:10.1113/jphysiol.2004.080200.; Pilchova I., Klacanova K., Tatarkova Z. et al. The involvement of Mg 2+ in regulation of cellular and mitochondrial functions. Oxid Med Cell Longev. 2017;2017:6797460. doi:10.1155/2017/6797460.; Sontia B., Touyz R.M. Magnesium transport in hypertension. Pathophysiology. 2007;14(3–4):205–11. doi:10.1016/j.pathophys.2007.09.005.; Mutnuri S., Fernandez I., Kochar T. Suppression of parathyroid hormone in a patient with severe magnesium depletion. Case Rep Nephrol. 2016;2016:2608538. doi:10.1155/2016/2608538.; Viering D.H.H.M., de Baaij J.H.F., Walsh S.B. et al. Genetic causes of hypomagnesemia, a clinical overview. Pediatr Nephrol. 2017;32(7):1123–35. doi:10.1007/s00467-016-3416-3.; Seo J.W., Park T.J. Magnesium metabolism. Electrolyte Blood Press. 2008;6(2):86–95. doi:10.5049/EBP.2008.6.2.86.; Pham P.C.T., Pham P.-A.T., Pham S.V. et al. Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis. 2014;7:219–30. doi:10.2147/IJNRD.S42054.; Lajer H., Daugaard G. Cisplatin and hypomagnesemia. Cancer Treat Rev. 1999;25(1):47–58. doi:10.1053/ctrv.1999.0097.; Bagnis C.I., Deray G. Amphotericin B nephrotoxicity. Saudi J Kidney Dis Transpl. 2002;13(4):481–91.; Lee C.H., Kim G.-H. Electrolyte and acid-base disturbances induced by clacineurin inhibitors. Electrolyte Blood Press. 2007;5(2):126–30. doi:10.5049/EBP.2007.5.2.126.; Sivakumar J. Proton pump inhibitor-induced hypomagnesaemia and hypocalcaemia : case review. Int J Physiol Pathophysiol Pharmacol. 2016;8(4):169–74.; Atsmon J., Dolev E. Drug-induced hypomagnesaemia: scope and management. Drug Saf. 2005;28(9):763–88. doi:10.2165/00002018-200528090-00003.; Makatsariya A.D., Dzhobava E.M., Bitsadze V.O. et al. Observational study of outpatient women in hormone dependent conditions with magnesium deficiency and receiving Magne B6® Forte in Russia (MAGYN Study). Magnes Res. 2016;29(3):82. URL: https://www.researchgate.net/publication/316007423_Observational_study_of_outpatient_women_in_hormone_dependent_conditions_with_magnesium_deficiency_and_receiving_Magne_B6_Forte_in_Russia_MAGYN_Study.; Ryu A., Kim T.H. Premenstrual syndrome : a mini review. Maturitas. 2015;82(4):436–40. doi:10.1016/j.maturitas.2015.08.010.; Rosenstein D.L., Elin R.J., Hosseini J.M. et al. Magnesium measures across the menstrual cycle in premenstrual syndrome. Biol Psychiatry. 1994;35(8):557–61. doi:10.1016/0006-3223(94)90103-1.; Sherwood R.A., Rocks B.F., Stewart A., Saxton R.S. Magnesium and the premenstrual syndrome. Ann Clin Biochem. 1986;23(Pt 6):667–70. doi:10.1177/000456328602300607.; Muneyyirci-Delale O., Nacharaju V.L., Altura B.M., Altura B.T. Sex steroid hormones modulate serum ionized magnesium and calcium levels throughout the menstrual cycle in women. Fertil Steril. 1998;69(5):958–2. doi:10.1016/S0015-0282(98)00053-3.; Tonick S., Muneyyirci-Delale O. Magnesium in women’s health and gynecology. Open J Obstet Gynecol. 2016;6(5):325–33. doi:10.4236/ojog.2016.65041.; Facchinetti F., Sances G., Borella P. et al. Magnesium prophylaxis of menstrual migraine: effects on intracellular magnesium. Headache. 1991;31(5):298–301. doi:10.1111/j.1526-4610.1991.hed3105298.x.; Walker A.F., De Souza M.C., Vickers M.F. et al. Magnesium supplementation alleviates premenstrual symptoms of fluid retention. J Womens Health. 1998;7(9):1157–65. doi:10.1089/jwh.1998.7.1157.; Quaranta S., Buscaglia M.A., Meroni M.G. et al. Pilot study of the efficacy and safety of a modified-release magnesium 250 mg tablet (Sincromag) for the treatment of premenstrual syndrome. Clin Drug Investig. 2007;27(1):51–8. doi:10.2165/00044011-200727010-00004.; De Souza M.C., Walker A.F., Robinson P.A., Bolland K. A synergistic effect of a daily supplement for 1 month of 200 mg magnesium plus 50 mg vitamin B6 for the relief of anxiety-related premenstrual symptoms: a randomized, double-blind, crossover study. J Womens Health Gend Based Med. 2000;9(2):131–9. doi:10.1089/152460900318623.; Fathizadeh N., Ebrahimi E., Valiani M. et al. Evaluating the effect of magnesium and magnesium plus vitamin B6 supplement on the severity of premenstrual syndrome. Iran J Nurs Midwifery Res. 2010;15(Suppl 1):401–5.; Дадак К., Макацария А.Д., Блинов Д.В., Зимовина У.В. Клинические и биохимические аспекты применения препаратов магния в акушерстве, гинекологии и перинатологии. Акушерство, Гинекология и Репродукция. 2014;8(2):69–78.; Черкасова Н.Ю., Фомина А.В., Филиппова О.В. Анализ рынка лекарственных средств для лечения дисменореи. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2013;6(3):36–9.; Унанян А.Л., Алимов В.А., Аракелов С.Э. и др. Фармакоэпидемиология использования оригинального дротаверина при дисменорее: результаты международного многоцентрового исследования. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2014;7(3):44–50.; Оразов М.Р., Чайка А.В., Носенко Е.Н. Купирование хронической тазовой боли, обусловленной аденомиозом, прогестагенами нового поколения. Акушерство, Гинекология и Репродукция. 2014;8(3):6–10.; Джобава Э.М. Вопросы безопасности применения дротаверина в акушерской практике. Акушерство, Гинекология и Репродукция. 2018;12(1):54–60. doi:10.17749/2313-7347.2018.12.1.054-060.; Proctor M.L., Farquhar C.M. Dysmenorrhoea. BMJ Clin Evid. 2007;2007:0813.; Proctor M., Murphy P. A. Herbal and dietary therapies for primary and secondary dysmenorrhoea. Cochrane Database Syst Rev. 2001;(3):CD002124. doi:10.1002/14651858.CD002124.; Seifert B., Wagler P., Dartsch S. et al. Magnesium – a new therapeutic alternative in primary dysmenorrhea. Zentralbl Gynakol. 1989;111(11):755–60. (In German).; Parazzini F., Di Martino M., Pellegrino P. Magnesium in the gynecological practice : a literature review. Magnes Res. 2017;30(1):1–7. doi:10.1684/mrh.2017.0419.; Fontana-Klaiber H., Hogg B. Therapeutic effects of magnesium in dysmenorrhea. Schweiz Rundsch Med Prax. 1990;79(16):491–4. (In German).; Benassi L., Barletta F.P., Baroncini L. et al. Effectiveness of magnesium pidolate in the prophylactic treatment of primary dysmenorrhea. Clin Exp Obstet Gynecol. 1992;19(3):176–9.; Higdon J. An evidence-based approach to vitamins and minerals: health benefits and intake recommendations. Stuttgart, New York: Thieme, 2012. 282 p.; Olatunji L.A., Oyeyipo I.P., Micheal O.S., Soladoye A.O. Effect of dietary magnesium on glucose tolerance and plasma lipid during oral contraceptive administration in female rats. Afr J Med Med Sci. 2008;37(2):135–9.; Akinloye O., Adebayo T.O., Oguntibeju O.O. et al. Effects of contraceptives on serum trace elements, calcium and phosphorus levels. West Indian Med J. 2011;60(3):308–15.; Muneyyirci-Delale O., Nacharaju V.L., Dalloul M. et al. Divalent cations in women with PCOS: implications for cardiovascular disease. Gynecol Endocrinol. 2001;15(3):198–201. doi:10.1080/gye.15.3.198.201.; Sharifi F., Mazloomi S., Hajihosseini R. et al. Serum magnesium concentrations in polycystic ovary syndrome and its association with insulin resistance. Gynecol Endocrinol. 2012;28(1):7–11. doi:10.3109/09513590.2011.579663.; O’Shaughnessy A., Muneyyirci-Delale O., Nacharaju V.L. et al. Circulating divalent cations in asymptomatic ovarian hyperstimulation and in vitro fertilization patients. Gynecol Obstet Invest. 2001;52(4):237–42. doi:10.1159/000052982.; Bird S.T., Hartzema A.G., Brophy J.M. et al. Risk of venous thromboembolism in women with polycystic ovary syndrome: a population-based matched cohort analysis. CMAJ. 2013;185(2):E115–20. doi:10.1503/cmaj.120677.; Громова О.А., Лиманова О.А., Торшин И.Ю. Систематический анализ фундаментальных и клинических исследований указывает на необходимость совместного использования эстроген-содержащих препаратов с препаратами пиридоксина и магния. Акушерство, Гинекология и Репродукция. 2013;7(3):35–50.; Farsinejad-Marj M., Saneei P., Esmaillzadeh A. Dietary magnesium intake, bone mineral density and risk of fracture : a systematic review and meta-analysis. Osteoporos Int. 2016;27(4):1389–99. doi:10.1007/s00198-015-3400-y.; Gur A., Colpan L., Nas K. et al. The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab. 2002;20(1):39–43. doi:10.1007/s774-002-8445-y.; Brodowski J. Levels of ionized magnesium in women with various stages of postmenopausal osteoporosis progression evaluated on the basis of densitometric examinations. Przegl Lek. 2000;57(12):714–6. (In Polish).; Дефицит магния в акушерстве и гинекологии: результаты национального совещания. Акушерство, Гинекология и Репродукция. 2014;8(2):6–10.; Солопова А.Г., Блинов Д.В., Бегович Ё. и др. Неврологические расстройства после гистерэктомии: от патогенеза к клинике. Эпилепсия и пароксизмальные состояния. 2022;14(1):54–64. doi:10.17749/2077-8333/epi.par.con.2022.115.; Блинов Д.В., Солопова А.Г., Плутницкий А.Н. и др. Организация здравоохранения в сфере реабилитации пациенток с онкологическими заболеваниями репродуктивной системы. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2022;15(1):119–30. URL: https://cyberleninka.ru/article/n/organizatsiya-zdravoohraneniya-v-sfere-reabilitatsii-patsientok-s-onkologicheskimi-zabolevaniyami-reproduktivnoy-sistemy.; Блинов Д.В., Солопова А.Г., Ачкасов Е.Е. и др. Медицинская реабилитация пациенток с климактерическим синдромом и хирургической менопаузой: вклад коррекции дефицита магния. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2022;15(4):478–90. doi:10.17749/2070-4909/farmakoekonomika.2022.159.; Блинов Д.В., Солопова А.Г., Ачкасов Е.Е. и др. Роль коррекции дефицита магния в реабилитации женщин с климактерическим синдромом и хирургической менопаузой: результаты исследования MAGYN. Акушерство, Гинекология и Репродукция. 2022;16(6):676–91. doi:10.17749/2313-7347/ob.gyn.rep.2022.371.; Блинов Д.В., Солопова А.Г., Ачкасов Е.Е. и др. Организация реабилитации пациенток с опухолями яичников: современные подходы и будущие направления. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2023;16(2):303–16. URL: https://www.elibrary.ru/ip_restricted.asp?rpage=https%3A%2F%2Fwww%2Eelibrary%2Eru%2Fitem%2Easp%3Fedn%3Ddcaony.; Блинов Д.В., Солопова А.Г., Ачкасов Е.Е. и др. Алгоритм комплексной психотерапевтической поддержки для женщин с психоневрологическими симптомами в период реабилитации после лечения злокачественных новообразований репродуктивной системы. Эпилепсия и пароксизмальные состояния. 2023;15(3):232–45. doi:10.17749/2077-8333/epi.par.con.2023.168.; Магне B6. Инструкция по медицинскому применению. ЛСР-007053/09. Режим доступа: http://www.grls.rosminzdrav.ru. [Дата доступа: 13. 01. 2024].; Магне B6 Форте. Инструкция по медицинскому применению. ЛСР-007053/09. Режим доступа: http://www.grls.rosminzdrav.ru]. [Дата доступа: 13. 01. 2024].; Дижевская Е.В. Мультидисциплинарный подход к коррекции магний-дефицитных состояний. Акушерство, Гинекология и Репродукция. 2015;9(3):68–85.; Дижевская Е.В. Обмен научными данными и экспертными мнениями по фармакотерапии в течение беременности: традиционные и современные подходы III Международный экспертный совет по проблемам дефицита магния в акушерстве и гинекологии. Акушерство, Гинекология и Репродукция. 2015;9(4):93–101.; О Пленуме Президиума Российского общества акушеров-гинекологов. Акушерство и гинекология. 2015;(5):113–5.; Громова О.А. Дефицит магния как проблема современного питания у детей и подростков. Педиатрическая фармакология. 2014;(1):20–30.; Ranade V.V., Somberg J.C. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther. 2001;8(5):345–57. doi:10.1097/00045391-200109000-00008.; https://www.gynecology.su/jour/article/view/2053

  15. 15
    Academic Journal

    Contributors: This study was funded by the Russian Science Foundation (RSF) grant № 23-15-00464., Исследование выполнено при финансовой поддержке гранта Российского научного фонда (РНФ) № 23-15-00464.

    Source: Medical Genetics; Том 23, № 3 (2024); 21-30 ; Медицинская генетика; Том 23, № 3 (2024); 21-30 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2453/1777; Murri M., Luque-Ramírez M., Insenser M., et al. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum. Reprod. Update. 2013;19(3):268–88. doi:10.1093/HUMUPD/DMS059.; Prasad S., Tiwari M., Pandey A.N., et al. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 2016;23(1):1–5. doi:10.1186/S12929-016-0253-4/TABLES/1.; Barbosa P., Abo El-Magd N.F., Hesketh J., Bermano G. The Role of rs713041 Glutathione Peroxidase 4 (GPX4) Single Nucleotide Polymorphism on Disease Susceptibility in Humans: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022;23(24):15762. doi:10.3390/IJMS232415762.; Steinbrecher A., Méplan C., Hesketh J., et al. Effects of selenium status and polymorphisms in selenoprotein genes on prostate cancer risk in a prospective study of European men. Cancer Epidemiol. Biomarkers Prev. 2010;19(11):2958–68. doi:10.1158/1055-9965. EPI-10-0364.; Jablonska E., Gromadzinska J., Peplonska B., et al. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer. 2015;15(1):15:657. doi:10.1186/S12885-015-1680-4.; Xiao L., Yuan J., Yao Q., et al. A case-control study of selenoprotein genes polymorphisms and autoimmune thyroid diseases in a Chinese population. BMC Med. Genet. 2017 18(1). doi:10.1186/S12881-017-0415-6.; Huang Y.Y., Wu C.H., Liu C.H., et al. Association between the Genetic Variants of Glutathione Peroxidase 4 and Severity of Endometriosis. Int. J. Environ. Res. Public Health. 2020;17(14):1–9. doi:10.3390/IJERPH17145089.; Farmohammadi A., Arab-Yarmohammadi V., Ramzanpour R. Association analysis of rs1695 and rs1138272 variations in GSTP1 gene and breast cancer susceptibility. Asian Pac. J. Cancer Prev. 2020;21(4):1167–72. doi:10.31557/APJCP.2020.21.4.1167.; Santric V., Djokic M., Suvakov S., et al. GSTP1 rs1138272 Polymorphism Affects Prostate Cancer Risk. Medicina (Kaunas). 2020;56(3).128. doi:10.3390/MEDICINA56030128.; Nadif R., Mintz M., Jedlicka A., et al. Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli. Free Radic. Res. 2005;39(12):1345–50. doi:10.1080/10715760500306711.; Gusti A.M.T., Qusti S.Y., Bahijri S.M., et al. Glutathione S-Transferase (GSTT1 rs17856199) and Nitric Oxide Synthase (NOS2 rs2297518) Genotype Combination as Potential Oxidative Stress-Related Molecular Markers for Type 2 Diabetes Mellitus. Diabetes, Metab. Syndr. Obes. Targets Ther. 2021;14:1385-1403. doi:10.2147/DMSO.S300525.; Abd El Azeem R.A., Zedan M.M., Saad E.A., et al. Single-nucleotide polymorphisms (SNPs) of antioxidant enzymes SOD2 and GSTP1 genes and SLE risk and severity in an Egyptian pediatric population. Clin. Biochem. 2021;88:37–42. doi:10.1016/J.CLINBIOCHEM.2020.11.010.; Koren-Gluzer M., Aviram M., Hayek T. Paraoxonase1 (PON1) reduces insulin resistance in mice fed a high-fat diet, and promotes GLUT4 overexpression in myocytes, via the IRS-1/Akt pathway. Atherosclerosis. 2013;229(1):71–78. doi:10.1016/J.ATHEROSCLEROSIS.2013.03.028.; Shokri Y., Variji A., Nosrati M., et al. Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Res. Clin. Pract. 2020;161:108067. doi:10.1016/J.DIABRES.2020.108067.; Chistiakov D.A., Melnichenko A.A., Orekhov A.N., Bobryshev Y.V. Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie. 2017;132:19–27. doi:10.1016/J.BIOCHI.2016.10.010.; Мустафина О. Е., Данилова В. В., Зуева Л. П., и др. Полиморфизм Q192R гена параоксоназы 1 в популяции татар: анализ ассоциаций с сердечно-сосудистыми заболеваниями, содержанием липидов в крови и градациями возраста. Медицинская генетика. 2005;4(5):233.; Lomteva S.V., Shkurat T.P., Bugrimova E.S., et al. Violation of the Hormonal Spectrum in Polycystic Ovaries in Combination with Insulin Resistance. What is the Trigger: Insulin Resistance or Polycystic Ovary Disease?. Baghdad Sci.J [Internet]. 2022 Oct. 1 [cited 2024 Apr. 17];19(5):0990. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6317; Бушуева О.Ю., Барышева Е.М., Марков А.В., и др. Молекулярные и эпигенетические механизмы вовлеченности генов редокс-гомеостаза в формирование различных сердечно-сосудистых заболеваний. Медицинская генетика. 2020;19(5):66-68. https://doi.org/10.25557/2073-7998.2020.05.66-68; Бушуева О.Ю. Анализ вовлеченности однонуклеотидных полиморфизмов генов редокс-гомеостаза в развитие изолированных и коморбидных кардио- и цереброваскулярных заболеваний. Медицинская генетика. 2020;19(9):37-49.; Rudnicka E., Duszewska A.M., Kucharski M., et al. Oxidative stress and reproductive function: Oxidative stress in polycystic ovary syndrome. Reproduction. 2022;164(6):F145–54. doi:10.1530/REP-22-0152.; Gongadashetti K., Gupta P., Dada R., Malhotra N. Follicular fluid oxidative stress biomarkers and ART outcomes in PCOS women undergoing in vitro fertilization: A cross-sectional study. Int. J. Reprod. Biomed. 2021;19(5):449–56. doi:10.18502/IJRM.V19I5.9254.; Herman R., Jensterle M., Janež A., et al. Genetic Variability in Antioxidative and Inflammatory Pathways Modifies the Risk for PCOS and Influences Metabolic Profile of the Syndrome. Metabolites. 2020;10(11):1–18. doi:10.3390/METABO10110439.; Villette S., Kyle J.A.M., Brown K.M., et al. A novel single nucleotide polymorphism in the 3′ untranslated region of human glutathione peroxidase 4 influences lipoxygenase metabolism. Blood Cells, Mol. Dis. 2002;29(2):174–78. doi:10.1006/bcmd.2002.0556.; Méplan C., Hughes D.J., Pardini B., et al. Genetic variants in selenoprotein genes increase risk of colorectal cancer. Carcinogenesis. 2010;31(6):1074–79. doi:10.1093/CARCIN/BGQ076.; Crosley L.K., Bashir S., Nicol F., et al. The single-nucleotide polymorphism (GPX4c718t) in the glutathione peroxidase 4 gene influences endothelial cell function: Interaction with selenium and fatty acids. Mol. Nutr. Food Res. 2013;57(12): 2185–94. doi:10.1002/MNFR.201300216.; Wigner P., Dziedzic A., Synowiec E., et al. Variation of genes encoding nitric oxide synthases and antioxidant enzymes as potential risks of multiple sclerosis development: a preliminary study. Sci. Rep. 2022;12(1). doi:10.1038/S41598-022-14795-6.; Peng X., Lin Y., Li J., et al. Evaluation of Glutathione Peroxidase 4 role in Preeclampsia. Sci. Rep. 2016;6:33300. doi:10.1038/SREP33300.; Khadzhieva M.B., Lutcenko N.N., Volodin I.V., et al. Association of oxidative stress-related genes with idiopathic recurrent miscarr iage. Free Radic. Res. 2014;48(5):53 4–41. doi:10.3109/10715762.2014.891735.; Sánchez-Aranguren L.C., Prada C.E., Riaño-Medina C.E., Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front. Physiol. 2014;5(372). doi:10.3389/FPHYS.2014.00372.; Paltoglou G., Tavernarakis G., Christopoulos P., et al. PON1-108 TT and PON1-192 RR genotypes are more frequently encountered in Greek PCOS than non-PCOS women, and are associated with hyperandrogenaemia. Clin. Endocrinol. (Oxf). 2013;79(2):259–66. doi:10.1111/CEN.12139.; Wang Y., Liu H., Fan P., et al. Evidence for association between paraoxonase 1 gene polymorphisms and polycystic ovarian syndrome in south-west Chinese women. Eur. J. Endocrinol. 2012;166(5):877–85. doi:10.1530/EJE-11-0986.; Dadachanji R., Shaikh N., Khavale S., et al. PON1 polymorphisms are associated with polycystic ovary syndrome susceptibility, related traits, and PON1 activity in Indian women with the syndrome. Fertil. Steril. 2015;10 4(1):207–16. doi:10.1016/J.FERTNSTERT.2015.03.037.; San Millán J.L., Cortón M., Villuendas G., et al. Association of the polycystic ovary syndrome with genomic variants related to insulin resistance, type 2 diabetes mellitus, and obesity. J. Clin. Endocrinol. Metab. 2004;89(6):2640–46. doi:10.1210/JC.2003-031252.; Liao D., Yu H., Han L., et al. Association of PON1 gene polymorphisms with polycystic ovarian syndrome risk: a meta-analysis of case-control studies. J. Endocrinol. Invest. 2018;41(11):1289–1300. doi:10.1007/S40618-018-0866-4.; Ghoreshi Z.A.S., Abbasi-jorjandi M., Asadikaram G., et al. Paraoxonase 1 rs662 polymorphism, its related variables, and COVID-19 intensity: Considering gender and post-COVID complications. Exp. Biol. Med. (Maywood). 2023;248(23):2351-2362. doi:10.1177/15353702221128563.; Marjani A., Poursharifi N., Hashemi M.M., et al. The association of paraoxonase I gene polymorphisms Q192R (rs662) and L55M (rs854560) and its activity with metabolic syndrome components in fars ethnic group. Horm. Mol. Biol. Clin. Investig. 2023;44(3):295-303. doi:10.1515/HMBCI-2022-0064.; Jalilvand A., Yari K., Heydarpour F. Role of Polymorphisms on the Recurrent Pregnancy Loss: A Systematic Review, Meta-analysis and Bioinformatic Analysis. Gene. 2022;844:146804. doi:10.1016/J.GENE.2022.146804.; Mancini A., Bruno C., Vergani E., et al. Oxidative Stress and LowGrade Inflammation in Polycystic Ovary Syndrome: Controversies and New Insights. Int. J. Mol. Sci. 2021;22(4):1–16. doi:10.3390/IJMS22041667.; Gao D., Nong S., Huang X., et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J. Biol. Chem. 2010;285(39):29965–73. doi:10.1074/JBC.M110.128694.; Li W., Liu C., Yang Q., et al. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome. Front. Nutr. 2022;9:1018674. doi:10.3389/FNUT.2022.1018674/BIBTEX.; Ali R.M., Lomteva S.V., Aleksandrova A.A., et al. Effect of polymorphisms CYP17 (rs743572), SOD2 (rs4880) and CAT (rs1001179) on hormonal profile and redox status of blood serum and follicular fluid in patients with polycystic ovary syndrome. Gene Reports. 2023;33:101817. doi:10.1016/J.GENREP.2023.101817.

  16. 16
    Academic Journal

    Source: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 77 No. 3 (2023): Medical Sciences; 172-176 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 77 Nr. 3 (2023): Ştiinţe medicale; 172-176 ; Вестник Академии Наук Молдовы. Медицина; Том 77 № 3 (2023): Медицина; 172-176 ; 1857-0011

    File Description: application/pdf

  17. 17
  18. 18
  19. 19
    Academic Journal

    Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 12, Iss 1.73, Pp 81-86 (2016)
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; № 1.73 (2016); 81-86
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; № 1.73 (2016); 81-86
    Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; № 1.73 (2016); 81-86

    File Description: application/pdf

  20. 20
    Academic Journal

    Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 12, Iss 3.75, Pp 56-60 (2016)
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; № 3.75 (2016); 56-60
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; № 3.75 (2016); 56-60
    Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; № 3.75 (2016); 56-60

    File Description: application/pdf