-
1Academic Journal
Συγγραφείς: A. M. Kislyuk, T. S. Ilina, I. V. Kubasov, D. A. Kiselev, A. A. Temirov, A. V. Turutin, A. S. Shportenko, M. D. Malinkovich, Yu. N. Parkhomenko, А. М. Кислюк, Т. С. Ильина, И. В. Кубасов, Д. А. Киселев, А. А. Темиров, А. В. Турутин, А. С. Шпортенко, М. Д. Малинкович, Ю. Н. Пархоменко
Συνεισφορές: The reported study was funded by RFBR, project number 20-32-90141 on equipment of Materials Science and Metallurgy Joint Use Center in the NUST MISiS with financial support from the Ministry of Education and Science of the Russian Federation (No. 075-15-2021-696). The Authors acknowledges the Ministry of Education and Science of the Russian Federation for the support in the framework of the State Assignment (basic research, Project No. 0718-2020-0031)., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-32-90141 и на оборудовании Центра совместного использования материаловедения и металлургии НИТУ «МИСиС» при финансовой поддержке Министерства образования и науки Российской Федерации (№ 075-15-2021-696). Авторы благодарят Министерство образования и науки Российской Федерации за поддержку в рамках Государственного задания (фундаментальные исследования, проект № 0718-2020-0031 «Новые магнитоэлектрические композитные материалы на основе оксидных сегнетоэлектриков с упорядоченной доменной структурой: производство и свойства»).
Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 1 (2022); 39-51 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 1 (2022); 39-51 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-1
Θεματικοί όροι: восстановительный отжиг, bidomain crystal, charged domain wall, diffusion annealing, piezoresponse force microscopy, surface potential, reduction annealing, бидоменный кристалл, заряженная доменная стенка, диффузионный отжиг, силовая микроскопия пьезоотклика
Περιγραφή αρχείου: application/pdf
Relation: https://met.misis.ru/jour/article/view/448/364; Eliseev E.A., Morozovska A.N., Svechnikov G.S., Gopalan V., Shur V.Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Physical Review B: Condensed Matter and Materials Physics. 2011; 83(23): 235313. https://doi.org/10.1103/PhysRevB.83.235313; Wolba B., Seidel J., Cazorla C., Godau C., Haußmann A., Eng L.M. Resistor network modeling of conductive domain walls in lithium niobate. Advanced Electronic Materials. 2018; 4(1): 1700242. https://doi.org/10.1002/aelm.201700242; Schröder M., Haußmann A., Thiessen A., Soergel E., Woike T., Eng L.M. Conducting domain walls in lithium niobate single crystals. Advanced Functional Materials. 2012; 22(18): 3936—3944. https://doi.org/10.1002/adfm.201201174; Werner C.S., Herr S.J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate. Scientific Reports. 2017; 7(1): 9862. https://doi.org/10.1038/s41598-017-09703-2; Vasudevan R.K., Wu W., Guest J.R., Baddorf A.P., Morozovska A.N., Eliseev E.A., Balke N., Nagarajan V., Maksymovych P., Kalinin S.V. Domain wall conduction and polarization-mediated transport in ferroelectrics. Advanced Functional Materials. 2013; 23(20): 2592—2616. https://doi.org/10.1002/adfm.201300085; Gureev M.Y., Tagantsev A.K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Physical Review B: Condensed Matter and Materials Physics. 2011; 83(18): 184104. https://doi.org/10.1103/PhysRevB.83.184104; Kubasov I.V., Kislyuk A.M., Ilina T.S., Shportenko A.S., Kiselev D.A., Turutin A.V., Temirov A.A., Malinkovich M.D., Parkhomenko Y.N. Conductivity and memristive behavior of completely charged domain walls in reduced bidomain lithium niobate. Journal of Materials Chemistry C. 2021; 9(43): 15591—15607. https://doi.org/10.1039/d1tc04170c; Sluka T., Tagantsev A.K., Bednyakov P., Setter N. Free-electron gas at charged domain walls in insulating BaTiO3. Nature Communications. 2013; 4(1): 1808. https://doi.org/10.1038/ncomms2839; Vul B.M., Guro G.M., Ivanchik I.I. Encountering domains in ferroelectrics. Ferroelectrics. 1973; 6(1): 29—31. https://doi.org/10.1080/00150197308237691; Кислюк А.М., Ильина Т.С., Кубасов И.В., Киселев Д.А., Темиров А.А., Турутин А.В., Малинкович М.Д., Полисан А.А., Пархоменко Ю.Н. Формирование стабильных индуцированных доменов в области заряженной междоменной границы в ниобате лития с помощью зондовой микроскопии. Известия высших учебных заведений. Материалы электронной техники. 2019; 22(1): 5—17. https://doi.org/10.17073/1609-3577-2019-1-5-17; Alikin D.O., Ievlev A.V., Turygin A.P., Lobov A.I., Kalinin S.V., Shur V.Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Applied Physics Letters. 2015; 106(18): 182902. https://doi.org/10.1063/1.4919872; Schultheiß J., Rojac T., Meier D. Unveiling alternating current electronic properties at ferroelectric domain walls. Advanced Electronic Materials. 2022; 8(6): 2100996. https://doi.org/10.1002/aelm.202100996; Jiang A.-Q., Geng W.P., Lv P., Hong J., Jiang J., Wang C., Chai X.J., Lian J.W., Zhang Y., Huang R., Zhang D.W., Scott J.F., Hwang C.S. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nature Materials. 2020; 19(11): 1188—1194. https://doi.org/10.1038/s41563-020-0702-z; Wang C., Jiang J., Chai X., Lian J., Hu X., Jiang A.Q. Energy-efficient ferroelectric domain wall memory with controlled domain switching dynamics. ACS Applied Materials & Interfaces. 2020; 12(40): 44998—45004. https://doi.org/10.1021/acsami.0c13534; Qian Y., Zhang Z., Liu Y., Xu J., Zhang G. Graphical direct writing of macroscale domain structures with nanoscale spatial resolution in nonpolar-cut lithium niobate on insulators. Journal of Applied Physics. 2022; 17: 054049. https://doi.org/10.1103/PhysRevApplied.17.054049; Krestinskaya O., James A.P., Chua L.O. Neuromemristive circuits for edge computing: A review. IEEE Transactions on Neural Networks and Learning Systems. 2020; 31(1): 4—23. https://doi.org/10.1109/tnnls.2019.2899262; Chaudhary P., Lu H., Lipatov A., Ahmadi Z., McConville J.P.V., Sokolov A., Shield J.E., Sinitskii A., Gregg J.M., Gruverman A. Low-voltage domain-wall LiNbO3 memristors. Nano Letters. 2020; 20(8): 5873—5878. https://doi.org/10.1021/acs.nanolett.0c01836; McConville J.P.V., Lu H., Wang B., Tan Y., Cochard C., Conroy M., Moore K., Harvey A., Bangert U., Chen L., Gruverman A., Gregg J.M. Ferroelectric domain wall memristor. Advanced Functional Materials. 2020; 30(28): 2000109. https://doi.org/10.1002/adfm.202000109; Jiang J., Wang C., Chai X., Zhang Q., Hou X., Meng F., Gu L., Wang J., Jiang A.Q. Surface-bound domain penetration and large wall current. Advanced Electronic Materials. 2021; 7(3): 2000720. https://doi.org/10.1002/aelm.202000720; Maksymovych P., Seidel J., Chu Y.H., Wu P., Baddorf A.P., Chen L.-Q.Q., Kalinin S.V., Ramesh R. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Letters. 2011; 11(5): 1906—1912. https://doi.org/10.1021/nl104363x; Lu H., Tan Y., McConville J.P.V., Ahmadi Z., Wang B., Conroy M., Moore K., Bangert U., Shield J.E., Chen L.Q., Gregg J.M., Gruverman A. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Advanced Materials. 2019; 31(48): 1902890. https://doi.org/10.1002/adma.201902890; Shur V.Y., Rumyantsev E.L., Nikolaeva E.V., Shishkin E.I. Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters. 2000; 77(22): 3636—3638. https://doi.org/10.1063/1.1329327; Ievlev A.V., Alikin D.O., Morozovska A.N., Varenyk O.V., Eliseev E.A., Kholkin A.L., Shur V.Y., Kalinin S.V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano. 2015; 9(1): 769—777. https://doi.org/10.1021/nn506268g; Turygin A.P., Alikin D.O., Kosobokov M.S., Ievlev A.V., Shur V.Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip. ACS Applied Materials & Interfaces. 2018; 10(42): 36211—36217. https://doi.org/10.1021/acsami.8b10220; Ievlev A.V., Morozovska A.N., Shur V.Y., Kalinin S.V. Ferroelectric switching by the grounded scanning probe microscopy tip. Physical Review B: Condensed Matter and Materials Physics. 2015; 91(21): 214109. https://doi.org/10.1103/PhysRevB.91.214109; Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571—616. https://doi.org/10.1134/S1063739721080035; Evlanova N.L., Rashkovich L.N. Annealing effect on domain-structure of lithium meta-niobate single-crystals. Soviet Physics, Solid State. 1974; 16: 354.; Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3. Japanese Journal of Applied Physics. 1977; 16(6): 1069—1070. https://doi.org/10.1143/jjap.16.1069; Kubasov I.V., Timshina M.S., Kiselev D.A., Malinkovich M.D., Bykov A.S., Parkhomenko Y.N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports. 2015; 60(5): 700—705. https://doi.org/10.1134/S1063774515040136; Kubasov I.V., Kislyuk A.M., Bykov A.S., Malinkovich M.D., Zhukov R.N., Kiselev D.A., Ksenich S.V., Temirov A.A., Timushkin N.G., Parkhomenko Y.N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing. Crystallography Reports. 2016; 61(2): 258—262. https://doi.org/10.1134/S1063774516020115; Kugel V.D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals. Applied Physics Letters. 1993; 62(23): 2902—2904. https://doi.org/10.1063/1.109191; Rosenman G., Kugel V.D., Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics. 1995; 172(1): 7—18. https://doi.org/10.1080/00150199508018452; Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices. In: IEEE 1986 Ultrasonics Symposium. Williamsburg, VA, USA. 17–19 November 1986. USA: IEEE; 2005:719—722. https://doi.org/10.1109/ultsym.1986.198828; Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Applied Physics Letters. 1987; 50(20): 1413—1414. https://doi.org/10.1063/1.97838; Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3. Applied Physics Letters. 1990; 56(16): 1535—1536. https://doi.org/10.1063/1.103213; Zhu Y.Y., Zhu S.N., Hong J.F., Ming N. Ben domain inversion in LiNbO3 by proton exchange and quick heat treatment. Applied Physics Letters. 1994; 65(5): 558—560. https://doi.org/10.1063/1.112295; Zhang Z.Y., Zhu Y.Y., Zhu S.N., Ming N. Ben domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3. Physica Status Solidi A: Applied Research. 1996; 153(1): 275—279. https://doi.org/10.1002/pssa.2211530128; Åhlfeldt H., Webjörn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides. IEEE Photonics Technology Letters. 1991; 3(7): 638—639. https://doi.org/10.1109/68.87938; Bykov A.S., Grigoryan S.G., Zhukov R.N., Kiselev D.A., Ksenich S.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics. 2014; 43(8): 536—542. https://doi.org/10.1134/S1063739714080034; Tasson M., Legal H., Peuzin J.C., Lissalde F.C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie. Physica Status Solidi A: Applied Research. 1975; 31(2): 729—737. https://doi.org/10.1002/pssa.2210310246; Tasson M., Legal H., Gay J.C., Peuzin J.C., Lissalde F.C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point. Ferroelectrics. 1976; 13(1): 479—481. https://doi.org/10.1080/00150197608236646; Luh Y.S., Feigelson R.S., Fejer M.M., Byer R.L. Ferroelectric domain structures in LiNbO3 single-crystal fibers. Journal of Crystal Growth. 1986; 78(1): 135—143. https://doi.org/10.1016/0022-0248(86)90510-5; Blagov A.E., Bykov A.S., Kubasov I.V., Malinkovich M.D., Pisarevskii Y.V., Targonskii A.V., Eliovich I.A., Kovalchuk M.V. An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal. Instruments and Experimental Techniques. 2016; 59(5): 728—732. https://doi.org/10.1134/S0020441216050043; Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode. Sensors and Actuators A: Physical. 2019; 293(10): 48—55. https://doi.org/10.1016/j.sna.2019.04.028; Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Static and quasistatic modes. Sensors and Actuators A: Physical. 2019; 291(6): 68—74. https://doi.org/10.1016/j.sna.2019.03.041; Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer. Japanese Journal of Applied Physics. 1987; 26(S2): 198. https://doi.org/10.7567/JJAPS.26S2.198; Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics. 1989; 93(1): 211—216. https://doi.org/10.1080/00150198908017348; Nakamura K. Antipolarity domains formed by heat treatment of ferroelectric crystals and their applications. Japanese Journal of Applied Physics. 1992; 31(S1): 9—13. https://doi.org/10.7567/jjaps.31s1.9; Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer. Japanese Journal of Applied Physics. 1993; 32(5S): 2415—2417. https://doi.org/10.1143/jjap.32.2415; Kubasov I.V., Kislyuk A.M., Turutin A.V., Bykov A.S., Kiselev D.A., Temirov A., Zhukov R.N., Sobolev N.A., Malinkovich M.D., Parkhomenko Y.N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal. Sensors (Switzerland). 2019; 19(3): 614. https://doi.org/10.3390/s19030614; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486. https://doi.org/10.1016/j.jmmm.2019.04.061; Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Sobolev N.A., Kholkin A.L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019; 66(9): 1480—1487. https://doi.org/10.1109/tuffc.2019.2908396; Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Sobolev N.A., Kholkin A.L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3-based composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020; 67(6): 1219—1229. https://doi.org/10.1109/tuffc.2020.2967842; Godau C., Kämpfe T., Thiessen A., Eng L.M., Haußmann A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano. 2017; 11(5): 4816—4824. https://doi.org/10.1021/acsnano.7b01199; Volk T.R., Gainutdinov R.V., Zhang H.H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films. Applied Physics Letters. 2017; 110(13): 1—6. https://doi.org/10.1063/1.4978857; Schröder M., Chen X., Haußmann A., Thiessen A., Poppe J., Bonnell D.A., Eng L.M. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals. Materials Research Express. 2014; 1(3): 035012. https://doi.org/10.1088/2053-1591/1/3/035012; Jorgensen P.J., Bartlett R.W. High temperature transport processes in lithium niobate. Journal of Physics and Chemistry of Solids. 1969; 30(12): 2639—2648. https://doi.org/10.1016/0022-3697(69)90037-7; Limb Y., Cheng K.W., Smyth D.M. Composition and electrical properties in LiNbO3. Ferroelectrics. 1981; 38(1): 813—816. https://doi.org/10.1080/00150198108209546; Schirmer O.F., Thiemann O., Wöhlecke M. Defects in LiNbO3–I. Experimental aspects. Journal of Physics and Chemistry of Solids. 1991; 52(1): 185—200. https://doi.org/10.1016/0022-3697(91)90064-7; Garcia-Cabanes A., Dieguez E., Cabrera J.M., Agullo-Lopez F. Contributing bands to the optical absorption of reduced LiNbO3 : thermal and optical excitation. Journal of Physics: Condensed Matter. 1989; 1(36): 6453—6462. https://doi.org/10.1088/0953-8984/1/36/013; Bordui P.F., Jundt D.H., Standifer E.M., Norwood R.G., Sawin R.L., Galipeau J.D. Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance. Journal of Applied Physics. 1999; 85(7): 3766—3769. https://doi.org/10.1063/1.369775; Arizmendi L., Cabrera J.M., Agullo-Lopez F. Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction. Journal of Physics C: Solid State Physics. 1984; 17(3): 515—529. https://doi.org/10.1088/0022-3719/17/3/021; Shi J., Fritze H., Weidenfelder A., Swanson C., Fielitz P., Borchardt G., Becker K.-D. Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures. Solid State Ionics. 2014; 262: 904—907. https://doi.org/10.1016/j.ssi.2013.11.025; Esin A.A., Akhmatkhanov A.R., Shur V.Y. The electronic conductivity in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics. 2016; 496(1): 102—109. https://doi.org/10.1080/00150193.2016.1157438; Shportenko A.S., Kislyuk A.M., Turutin A.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Effect of contact phenomena on the electrical conductivity of reduced lithium niobate. Modern Electronic Materials. 2021; 7(4): 167—175. https://doi.org/10.3897/j.moem.7.4.78569; Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Malinkovich M.D., Polisan A.A., Parkhomenko Y.N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy. Modern Electronic Materials. 2019; 5(2): 51—60. https://doi.org/10.3897/j.moem.5.2.51314; Lushkin A.Y., Nazarenko V.B., Pilipchak K.N., Shnyukov V.F., Naumovets A.G. The impact of annealing and evaporation of crystals on their surface composition. Journal of Physics D: Applied Physics. 1999; 32(1): 9—15. https://doi.org/10.1088/0022-3727/32/1/003; Schirmer O.F., Imlau M., Merschjann C., Schoke B. Electron small polarons and bipolarons in LiNbO3. Journal of Physics: Condensed Matter. 2009; 21(12): 123201. https://doi.org/10.1088/0953-8984/21/12/123201; Dutt D.A., Feigl F.J., DeLeo G.G. Optical absorption and electron paramagnetic resonance studies of chemically reduced congruent lithium niobate. Journal of Physics and Chemistry of Solids. 1990; 51(5): 407—415. https://doi.org/10.1016/0022-3697(90)90175-F; Jhans H., Honig J.M., Rao C.N.R. Optical properties of reduced LiNbO3. Journal of Physics C: Solid State Physics. 1986; 19(19): 3649—3658. https://doi.org/10.1088/0022-3719/19/19/019; Imlau M., Badorreck H., Merschjann C. Optical nonlinearities of small polarons in lithium niobate. Applied Physics Reviews. 2015; 2(4): 040606. https://doi.org/10.1063/1.4931396; https://met.misis.ru/jour/article/view/448
-
2Academic Journal
Συγγραφείς: A. M. Kislyuk, T. S. Ilina, I. V. Kubasov, D. A. Kiselev, A. A. Temirov, A. A. Turutin, M. D. Malinkovich, A. A. Polisan, Yu. N. Parkhomenko, А. М. Кислюк, Т. С. Ильина, И. В. Кубасов, Д. А. Киселев, А. А. Темиров, А. В. Турутин, М. Д. Малинкович, А. А. Полисан, Ю. Н. Пархоменко
Συνεισφορές: The study was performed with financial support from the Russian Foundation for Basic Research, Project No. 18-32-00941. Atomic force microscopy studies were carried out with financial support from the Ministry of Education and Science of the Russian Federation on premises of the Joint Use Center for Materials Science and Metallurgy of NUST MISiS within State Assignment (basic research, project No. 0718-2020-0031 «New magnetoelectric composite materials based on oxide ferroelectrics having an ordered domain structure: production and properties»)., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-32-00941. Исследования методами атомно-силовой микроскопии выполнены при финансовой поддержке Министерства науки и высшего образования РФ на оборудовании ЦКП «Материаловедение и металлургия» НИТУ «МИСиС» в рамках Государственного задания (проект 11.9706.2017/7.8).
Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 22, № 1 (2019); 5-17 ; Известия высших учебных заведений. Материалы электронной техники; Том 22, № 1 (2019); 5-17 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2019-1
Θεματικοί όροι: поверхностный потенциал, bidomain crystal, charged domain wall, diffusion annealing, piezoresponse force microscopy, surface potential, бидоменный кристалл, заряженная междоменная граница, диффузионный отжиг, силовая микроскопия пьезоотклика
Περιγραφή αρχείου: application/pdf
Relation: https://met.misis.ru/jour/article/view/286/273; Lengyel K., Péter Á., Kovács L., Corradi G., Pálfalvi L., Hebling J., Unferdorben M., Dravecz G., Hajdara I., Szaller Zs., Polgár K. Growth, defect structure, and THz application of stoichiometric lithium niobate // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040601. DOI:10.1063/1.4929917; Bazzan M., Fontana M. Preface to special topic: Lithium niobate properties and applications: reviews of emerging trends // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040501. DOI:10.1063/1.4928590; Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040603. DOI:10.1063/1.4931601; Boes A., Corcoran B., Chang L., Bowers J., Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits // Laser & Photonics Rev. 2018. V. 12, N 4. P. 1700256. DOI:10.1002/lpor.201700256; Turutin A. V, Vidal J. V, Kubasov I. V, Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars // J. Phys. D: Appl. Phys. 2018. V. 51, N 21. P. 214001. DOI:10.1088/1361-6463/aabda4; Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. A Novel vibration sensor based on bidomain lithium niobate crystal // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 106—108. DOI:10.12693/APhysPolA.134.106; Zhukov R. N., Ksenich S. V., Kubasov I. V., Timushkin N. G., Temirov A. A., Kiselev D. A., Bykov A. S., Malinkovich M. D., Vygovskaya E. A., Toporova O. V. Studying local conductivity in LiNbO3 films via electrostatic force microscopy // Bull. Russian Academy of Sciences: Physics. 2014. V. 78, N 11. P. 1223—1226. DOI:10.3103/S106287381411029X; Kubasov I. V., Kislyuk A., Turutin A., Bykov A., Kiselev D., Temirov A., Zhukov R., Sobolev N., Malinkovich M., Parkhomenko Y. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal // Sensors. 2019. V. 19, N 3. P. 614. DOI:10.3390/s19030614; Parkhomenko Y. N., Sobolev N. A., Kislyuk A. M., Kholkin A. L., Malinkovich M. D., Turutin A. V., Kobeleva S. P., Vidal J. V., Pakhomov O. V., Kubasov I. V. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields // Appl. Phys. Lett. 2018. V. 112, N 26. P. 262906. DOI:10.1063/1.5038014; Vidal J. V., Turutin A. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2017. V. 64, N 7. P. 1102—1119. DOI:10.1109/TUFFC.2017.2694342; Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. Vibrational power harvester based on lithium niobate bidomain plate // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 90—92. DOI:10.12693/APhysPolA.134.90; Chen F., Kong L., Song W., Jiang C., Tian S., Yu F., Qin L., Wang C., Zhao X. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications // J. Materiomics. 2019. V. 5, N 1. P. 73—80. DOI:10.1016/j.jmat.2018.10.001; Esin A. A., Akhmatkhanov A. R., Shur V. Y. Tilt control of the charged domain walls in lithium niobate // Appl. Phys. Lett. 2019. V. 114, N 9. P. 092901. DOI:10.1063/1.5079478; Neradovskaia E. A., Neradovskiy M. M., Esin A. A., Chuvakova M. A., Baldil P., De Micheli M. P., Akhmatkhanov A. R., Forget N., Shur V. Y. Domain kinetics during polarization reversal in 36° Y-cut congruent lithium niobate // IOP Conference Series: Materials Science and Engineering. 2018. V. 443. P. 012024. DOI:10.1088/1757-899X/443/1/012024; Campbell M. P., McConville J. P. V., McQuaid R. G. P., Prabhakaran D., Kumar A., Gregg J. M. Hall effect in charged conducting ferroelectric domain walls // Nature Communications. 2016. V. 7, N 1. P. 13764. DOI:10.1038/ncomms13764; Kuroda A., Kurimura S., Uesu Y. Domain inversion in ferroelectric MgO : LiNbO3 by applying electric fields // Appl. Phys. Lett. 1996. V. 69, N 11. P. 1565—1567. DOI:10.1063/1.117031; Wolba B., Seidel J., Cazorla C., Godau C., Haußmann A., Eng L. M. Resistor network modeling of conductive domain walls in lithium niobate // Advanced Electronic Materials. 2018. V. 4, N 1. P. 1700242. DOI:10.1002/aelm.201700242; Gureev M. Y., Tagantsev A. K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric // Phys. Rev. B. 2011. V. 83, N 18. P. 184104. DOI:10.1103/PhysRevB.83.184104; Strukov B. A., Levanyuk A. P. Ferroelectric phenomena in crystals. Berlin; Heidelberg: Springer, 1998. DOI:10.1007/978-3-642-60293-1; Tasson M., Legal H., Peuzin J. C., Lissalde F. C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie // Phys. Status Solidi (a). 1975. V. 31, N 2. P. 729—737. DOI:10.1002/pssa.2210310246; Tasson M., Legal H., Gay J. C., Peuzin J. C., Lissalde F. C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point // Ferroelectrics. 1976. V. 13, N 1. P. 479—481. DOI:10.1080/00150197608236646; Bykov A. S., Grigoryan S. G., Zhukov R. N., Kiselev D. A., Ksenich S. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method // Russian Microelectronics. 2014. V. 43, N 8. P. 536—542. DOI:10.1134/S1063739714080034; Kubasov I. V., Kislyuk A. . M., Bykov A. S., Malinkovich M. D., Zhukov R. N., Kiselev D. A., Ksenich S. V., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing // Crystallography Reports. 2016. V. 61, N 2. P. 258—262. DOI:10.1134/S1063774516020115; Kubasov I. V., Timshina M. S., Kiselev D. A., Malinkovich M. D., Bykov A. S., Parkhomenko Y. N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing // Crystallography Reports. 2015. V. 60, N 5. P. 700—705. DOI:10.1134/S1063774515040136; Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3 // Jpn. J. Appl. Phys. 1977. V. 16, N 6. P. 1069—1070. DOI:10.1143/JJAP.16.1069; Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices // IEEE 1986 Ultrasonics Symposium. 1986. P. 719—722. DOI:10.1109/ULTSYM.1986.198828; Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment // Appl. Phys. Lett. 1987. V. 50, N 20. P. 1413—1414. DOI:10.1063/1.97838; Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer // Jpn. J. Appl. Phys. 1987. V. 26, N S2. P. 198. DOI:10.7567/JJAPS.26S2.198; Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer // Ferroelectrics. 1989. V. 93, N 1. P. 211—216. DOI:10.1080/00150198908017348; Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer // Jpn. J. Appl. Phys. 1993. V. 32, Pt 1. N 5B. P. 2415—2417. DOI:10.1143/JJAP.32.2415; Rosenman G., Kugel V. D., Shur D. Diffusion-induced domain inversion in ferroelectrics // Ferroelectrics. 1995. V. 172, N 1. P. 7—18. DOI:10.1080/00150199508018452; Ievlev A. V., Alikin D. O., Morozovska A. N., Varenyk O. V., Eliseev E. A., Kholkin A. L., Shur V. Y., Kalinin S. V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals // ACS Nano. 2015. V. 9, N 1. P. 769—777. DOI:10.1021/nn506268g; Alikin D. O., Ievlev A. V., Turygin A. P., Lobov A. I., Kalinin S. V., Shur V. Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals // Appl. Phys. Lett. 2015. V. 106, N 18. P. 182902. DOI:10.1063/1.4919872; Morozovska A. N., Ievlev A. V., Obukhovskii V. V., Fomichov Y., Varenyk O. V., Shur V. Y., Kalinin S. V., Eliseev E. A. Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics // Phys. Rev. B. 2016. V. 93, N 16. P. 165439. DOI:10.1103/PhysRevB.93.165439; Starkov A. S., Starkov I. A. Dependence of the ferroelectric domain shape on the electric field of the microscope tip // J. Appl. Phys. 2015. V. 118, N 7. P. 072010. DOI:10.1063/1.4927800; Morozovska A. N., Eliseev E. A., Kalinin S. V. Domain nucleation and hysteresis loop shape in piezoresponse force spectroscopy // Appl. Phys. Lett. 2006. V. 89, N 19. P. 192901. DOI:10.1063/1.2378526; Turygin A., Alikin D., Alikin Y., Shur V. The formation of self-organized domain structures at non-polar cuts of lithium niobate as a result of local switching by an SPM tip // Materials. 2017. V. 10, N 10. P. 1143. DOI:10.3390/ma10101143; Strelcov E., Ievlev A. V., Jesse S., Kravchenko I. I., Shur V. Y., Kalinin S. V. Direct probing of charge injection and polarization-controlled ionic mobility on ferroelectric LiNbO3 surfaces // Advanced Materials. 2014. V. 26, N 6. P. 958—963. DOI:10.1002/adma.201304002; Bordui P. F., Jundt D. H., Standifer E. M., Norwood R. G., Sawin R. L., Galipeau J. D. Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance // J. Appl. Phys. 1999. V. 85, N 7. P. 3766—3769. DOI:10.1063/1.369775; Dhar A., Singh N., Singh R. R. K., Singh R. R. K. Low temperature dc electrical conduction in reduced lithium niobate single crystals // J. Phys. Chem. Solids. 2013. V. 74, N 1. P. 146—151. DOI:10.1016/j.jpcs.2012.08.011; Pawlik A.-S., Kämpfe T., Haußmann A., Woike T., Treske U., Knupfer M., Büchner B., Soergel E., Streubel R., Koitzsch A., Eng L. M. Polarization driven conductance variations at charged ferroelectric domain walls // Nanoscale. 2017. V. 9, N 30. P. 10933—10939. DOI:10.1039/C7NR00217C; Ievlev A. V., Morozovska A. N., Shur V. Y., Kalinin S. V. Ferroelectric switching by the grounded scanning probe microscopy tip // Phys. Rev. B. 2015. V. 91, N 21. P. 214109. DOI:10.1103/PhysRevB.91.214109; Turygin A. P., Alikin D. O., Kosobokov M. S., Ievlev A. V., Shur V. Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip // ACS Applied Materials & Interfaces. 2018. V. 10, N 42. P. 36211—36217. DOI:10.1021/acsami.8b10220; Jösch W., Munser R., Ruppel W., Würfel P. The photovoltaic effect and the charge transport in LiNbO3 // Ferroelectrics. 1978. V. 21, N 1. P. 623—625. DOI:10.1080/00150197808237347; Werner C. S., Herr S. J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate // Scientific Reports. 2017. V. 7, N 1. P. 9862. DOI:10.1038/s41598-017-09703-2; Volk T., Wöhlecke M. Lithium Niobate. Berlin; Heidelberg: Springer, 2008. DOI:10.1007/978-3-540-70766-0; Chien C. L., Westgate C. R. (Eds.) The Hall effect and its applications. Boston (MA) Springe, 1980. DOI:10.1007/978-1-4757-1367-1; Dhar A., Mansingh A. On the correlation between optical and electrical properties in reduced lithium niobate crystals // J. Phys. D: Appl. Phys. 1991. V. 24, N 9. P. 1644—1648. DOI:10.1088/0022-3727/24/9/019; Imlau M., Badorreck H., Merschjann C. Optical nonlinearities of small polarons in lithium niobate // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040606. DOI:10.1063/1.4931396; Yatsenko A. V., Yevdokimov S. V., Pritulenko A. S., Sugak D. Y., Solskii I. M. Electrical properties of LiNbO3 crystals reduced in a hydrogen atmosphere // Phys. Solid State. 2012. V. 54, N 11. P. 2231—2235. DOI:10.1134/S1063783412110339; Saito A., Matsumoto H., Ohnisi S., Akai-Kasaya M., Kuwahara Y., Aono M. Structure of atomically smoothed LiNbO3 (0001) surface // Jpn. J. Appl. Phys. 2004. V. 43, N 4B. P. 2057—2060. DOI:10.1143/JJAP.43.2057; Sanna S., Schmidt W. G. LiNbO3 surfaces from a microscopic perspective // J. Physics: Condensed Matter. 2017. V. 29, N 41. P. 413001. DOI:10.1088/1361-648X/aa818d; https://met.misis.ru/jour/article/view/286
-
3Academic Journal
Συγγραφείς: A. S. Bykov, A. D. Kiselev, V. V. Antipov, M. D. Malinkovich, Yu. N. Parkhomenko, А. С. Быков, Д. А. Киселев, В. В. Антипов, М. Д. Малинкович, Ю. Н. Пархоменко
Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; № 3 (2012); 22-25 ; Известия высших учебных заведений. Материалы электронной техники; № 3 (2012); 22-25 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2012-3
Θεματικοί όροι: пьезокоэффициенты, single crystal, piezoresponse force microscopy, piezocoefficient, монокристаллы, силовая микроскопия пьезоотклика
Περιγραφή αρχείου: application/pdf
Relation: https://met.misis.ru/jour/article/view/32/28; Блистанов, А. А. Кристаллы квантовой и нелинейной оптики / А. А. Блистанов // М. : МИСИС, 2000. − 432 с.; Киселев, Д. А. Исследование доменной структуры в монокристаллах LiNbO3 методом силовой микроскопии пьезоотклика / Д. А. Киселев, А. С. Быков, Р. Н. Жуков, В. В. Антипов, М. Д. Малинкович, Ю. Н. Пархоменко // Кристаллография. − 2012. − Т. 57, № 6. − С. 876.; Jungk, T. Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy / T. Jungk, A. Hoffmann, E. Soergel // New J. Physics. − 2009. − N 11. − P. 033029.; Жуков, Р. Н. Распространение поляризации сегнетоэлектрических зерен в электрически изолированных пленках ниобата лития / Р. Н. Жуков, Д. А. Киселев, М. Д. Малинкович, Ю. Н. Пархоменко, Е. А. Выговская, О. В. Торопова // Изв. вузов. Материалы электрон. техники. − 2011. − № 4. − С. 12.; Sorokin, N. G. The regular domain structure in LiNbO3 and LiTaO3 / N. G. Sorokin, V. V. Antipov, A. A. Blistanov // Ferroelectrics.− 1995. − V. 167. − P. 267.; Antipov, V. V. Formation of bidomain structure in lithium niobate single crystals by electrothermal method /V. V. Antipov, A. S. Bykov, M. D. Malinkovich, Y. N. Parkhomenko // Ferroelectrics. − 2008. − V. 374. − P. 65.; Най Дж. Физические свойства кристаллов // Дж. Най − М. : Мир, 1967. − 385 с.; https://met.misis.ru/jour/article/view/32
-
4Academic Journal
Συγγραφείς: D. A. Kiselev, R. N. Zhukov, A. S. Bykov, M. D. Malinkovich, Yu. N. Parkhomenko, Е. A. Выговская, Д. А. Киселев, Р. Н. Жуков, А. С. Быков, М. Д. Малинкович, Ю. Н. Пархоменко, Е. А. Выговская
Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; № 2 (2012); 25-29 ; Известия высших учебных заведений. Материалы электронной техники; № 2 (2012); 25-29 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2012-2
Θεματικοί όροι: ниобат лития, Kelvin mode, Piezoresponse Force Mickroscopy, Niobate Lithium, surface potencial, метод зонда Кельвина, силовая микроскопия пьезоотклика, поверхностный потенциал
Περιγραφή αρχείου: application/pdf
Relation: https://met.misis.ru/jour/article/view/106/99; Feigelson, R. S. Epitaxial growth of lithium niobate thin films by the solid source MOCVD method / R. S. Feigelson // J. Cryst. Growth. − 1996. − V. 166. − P. 1.; Tsukada, I. Pulsed−laser deposition of LiNbO3 in low gas pressure using pure ozone / I. Tsukada, S. Higuchi. // Jap. J. Appl. Phys. − 2004. − V. 43. − P. 5307.; Lee, S. Y. Reduced optical losses in MOCVD grown lithium niobate thin films on sapphire by controlling nucleation density / S. Y. Lee, R. S. Feigelson // J. Cryst. Growth. − 1998. − V. 186. − P. 594.; Киселев, Д. А. Пьезо− и пироэлектрические петли гистерезиса униполярных тонких пленок цирконата−титаната свинца / Д. А. Киселев, А. Л. Холкин, А. А. Богомолов, О. Н. Сергеева, Е. Ю. Каптелов, И. П. Пронин // ПЖТФ. − 2008. − Т. 34. − С. 28.; Gautier, B. Nanoscale observation of the distribution of the polarization orientation of ferroelectric domains in lithium niobate thin films / B. Gautier, V. Bornand // Thin Solid Films − 2006. − V. 515. − P. 1592.; Bornand, V. Growth and nanoscale ferroelectric investigation of radiofrequency−sputtered LiNbO3 thin films / V. Bornand, B. Gautier, Ph. Papet // Mater. Chem. and Phys. − 2004. − V. 86. − P. 340.; Жуков, Р. Н. Распространение поляризации сегнетоэлектрических зерен в электрически изолированных пленках ниобата лития / Р. Н. Жуков, Д. А. Киселев, М. Д. Малинкович, Ю. Н. Пар-хоменко, Е. А. Выговская, О. В. Торопова // Изв. вузов. Материалы электрон. техники − 2011. − № 4. − С. 12—16.; Bornand, V. Growth technologies and studies of ferroelectric thin films−application to LiTaO3 and LiNbO3 materials / V. Bornand, Ph. Papet // Ferroelectrics. − 2003. − V. 288. − P. 187.; Jonscher, A. K. Universal relaxation law / A. K. Jonscher. − London : Chelsea Dielectric Press, 1996. − 415 p.; Hong, S. Principle of ferroelectric domain imaging using atomic force microscope / S. Hong, J. Woo, H. Shin, J. U. Jeon, Y. E. Pak, E. L. Colla, N. Setter, E. Kim, K. No // J. Appl. Phys. − 2001. − V. 89. − P. 1377.; Lim, D. G. Characteristics of LiNbO3 memory capacitors fabricated using a low thermal budget process / D. G. Lim, B. S. Jang, S. I. Moon, C. Y. Won, J. Yi // Solid−State Electr. − 2001. − V. 45. − P. 1159.; Gautier, B. Nanoscale study of the ferroelectric properties of SrBi2Nb2O9 thin films grown by pulsed laser deposition on epitaxial Pt electrodes using atomic force microscope / B. Gautier, J.−R. Ducle-reb, M. Guilloux−Viry // Appl. Surf. Sci. − 2003. − V. 217. − P. 108.; https://met.misis.ru/jour/article/view/106
-
5Report
Θεματικοί όροι: СКАНИРУЮЩАЯ ЗОНДОВАЯ МИКРОСКОПИЯ, БЕССВИНЦОВАЯ ПЬЕЗОКЕРАМИКА, СЕГНЕТОЭЛЕКТРИЧЕСКАЯ ДОМЕННАЯ СТРУКТУРА, СИЛОВАЯ МИКРОСКОПИЯ ПЬЕЗООТКЛИКА
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/47132
-
6Report
Συγγραφείς: Шур, В. Я., Абрамов, А. С., Аликин, Д. О., Батурин, И. С., Есин, А. А., Зеленовский, П. С., Кособоков, М. С., Линкер, Э. А., Макарова, С. А., Мингалиев, Е. А., Пелегова, Е. В., Пряхина, В. И., Слаутин, Б. Н., Турыгин, А. П., Ушаков, А. Д., Холкин, А. Л., Чезганов, Д. С.
Θεματικοί όροι: СЕГНЕТОЭЛЕКТРИЧЕСКАЯ ДОМЕННАЯ СТРУКТУРА, БЕССВИНЦОВАЯ ПЬЕЗОКЕРАМИКА, СИЛОВАЯ МИКРОСКОПИЯ ПЬЕЗООТКЛИКА, СКАНИРУЮЩАЯ ЗОНДОВАЯ МИКРОСКОПИЯ
Relation: http://elar.urfu.ru/handle/10995/47132
Διαθεσιμότητα: http://elar.urfu.ru/handle/10995/47132