Εμφανίζονται 1 - 20 Αποτελέσματα από 82 για την αναζήτηση '"СЕНСОРНЫЕ СВОЙСТВА"', χρόνος αναζήτησης: 0,60δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: This study was carried out as part of a state assignment of the Russian Ministry of Science and Higher Education (topic FZUU-2023-0001)., Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (тема “FZUU-2023-0001”).

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 2 (2024); 146-153 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 2 (2024); 146-153 ; 2413-6387 ; 1609-3577

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/605/482; Zhiqiang G., Boru Y., Jinping J., Xuehong W. Research progress on carbon dioxide reduction coupled with the formation of C−O bonds to oxygenated compounds. Asian Journal of Organic Chemistry. 2023; 12(5): e202300097. https://doi.org/10.1002/ajoc.202300097; Srivastava S., Singh P., Gupta G. Transition metal tellurides based gas sensors for efficient sensing at room temperature: Progress and prospective. Micro and Nanostructures. 2022; 172: 207452. https://doi.org/10.1016/j.micrna.2022.207452; Struzzi C., Scardamaglia M., Casanova-Chafer J., Calavia R., Colomer J.-F., Kondyurin A., Bilek M., Britun N., Snyders R., Llobet E., Bittencourt C. Exploiting sensor geometry for enhanced gas sensing properties of fluorinated carbon nanotubes under humid environment. Sensors and Actuators B: Chemical. 2019; 281: 945—952. https://doi.org/10.1016/j.snb.2018.10.159; Ghosh D., Ghorai P., Debnath S., Roy D., Samanta A., Maiti K.S., Sarkar S., Roy D., Sarkar K., Banerjee R. Ch. 6. Impression of climatic variation on flora, fauna and human Being: A present state of art. In: Dubey A.K., Kumar A., Narang S.K., Khan M.A., Srivastav A.L. (eds.). Visualization techniques for climate change with machine learning and artificial intelligence; 2023. P. 101—122. https://doi.org/10.1016/B978-0-323-99714-0.00004-2; Shrisha, Wu Ch.-M., Kebena G.M., Guan-Ying C., Dong-Hau K., Noto S.G. Highly efficient reduced tungsten oxide-based hydrogen gas sensor at room temperature. Materials Science and Engineering: B. 2023; 289: 116285. https://doi.org/10.1016/j.mseb.2023.116285; Yao J., Nan Z., Juhua X., Quan J., Xiaoguang S., Xiaolong W. Co3O4/In2O3 p-n heterostructures based gas sensor for efficient structure-driven trimethylamine detection. Ceramics International. 2023; 49(11(Pt A)): 17354—17362. https://doi.org/10.1016/j.ceramint.2023.02.103; Лукьянов Г.Н. Сенсоры и датчики физических величин. СПб.: НИУ ИТМО; 2020. 57 с.; Xinqi L., Huiling Y., Qian Z., Bingyuan H., Fang L., Hejun G., Hongquan F., Juan Z., Yunwen L. Understanding the adsorption sites on nitrogen- and oxygen-doped carbon nanotubes for iodine uptake. Applied Surface Science. 2023; 629: 157387. https://doi.org/10.1016/j.apsusc.2023.157387; Cheng Z., Jiabin S., Shanshan X., Jing W., Haiquan L., Siqi X., Yingjie P., Yong Z., Yongheng Z. Food Chemistry. 2022; 392: 133318. https://doi.org/10.1016/j.foodchem.2022.133318; Zeyao F., Xueli Y., Zhenhua L., Caixuan S., Guofeng P., Hao Z. Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Construction of efficient TEA gas sensor based on zinc vanadate for ppb-level detection. Materials Science in Semiconductor Processing. 2023; 156: 107285. https://doi.org/10.1016/j.mssp.2022.107285; Xue Sh.-Sh., Tang Zh.-H., Zhu W.-B., Li Y.-Q., Huang P., Fu Sh.-Y. Stretchable and ultrasensitive strain sensor from carbon nanotube-based composite with significantly enhanced electrical and sensing properties by tailoring segregated conductive networks. Composites Communications. 2022; 29: 100987. https://doi.org/10.1016/j.coco.2021.100987; Singh K., Sharma S., Singh B., Gupta M., Tripathi C.C. Fabrication of graphene, graphite and multi wall carbon nano tube based thin films and their potential application as strain sensor. Thin Solid Films. 2022; 761: 139540. https://doi.org/10.1016/j.tsf.2022.139540; Martins F.G., Thakur C.K., Karthikeyan C., Moorthy N.S.H.N., Sousa S.F. Use of lysinated multiwalled carbon nanotubes with carbohydrate ligands as a doxorubicin nanocarrier: A molecular dynamics analysis. Carbon Trends. 2023; 12: 100280. https://doi.org/10.1016/j.cartre.2023.100280; Seman R.N.A.R., Azam M.A., Mohamad A. Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renewable and Sustainable Energy Reviews. 2017; 75: 644—659. https://doi.org/10.1016/j.rser.2016.10.078; Andalouci A., Roussigné Y., Gangloff L., Legagneux P., Farhat S., Chérif S.M. 1D cobalt nanocrystals confined in vertically aligned carbon nanotubes: One-step synthesis and magnetic properties. Journal of Alloys and Compounds. 2023; 960: 170984. https://doi.org/10.1016/j.jallcom.2023.170984; Sheng Z., Xiaoxin Y., Yixi Y., Xinrui Z., Lan L., Xiao W., Gaoyi H., Yan L. One-dimensional heterostructures of polyoxometalate-encapsulated carbon nanotubes for enhanced capacitive energy storage. Cell Reports Physical Science. 2023; 4(6): 101446. https://doi.org/10.1016/j.xcrp.2023.101446; Jawad A., Zhiguang Z. Properties of concrete with addition carbon nanotubes: A review. Construction and Building Materials. 2023; 393: 132066. https://doi.org/10.1016/j.conbuildmat.2023.132066; Xinyue Z., Guili Y. Overlapping of linear optical spectra in metallic carbon nanotubes, Controlled by applied axial magnetic field and uniaxial strain. Physica B: Condensed Matter. 2023; 666: 415102. https://doi.org/10.1016/j.physb.2023.415102; Hailong L., Cheng Z., Ningbo L., Miao Z. Microcracked strain sensor based on carbon nanotubes/copper composite film with high performance and waterproof property for underwater motion detection. Composites Part B: Engineering. 2023; 254: 110574. https://doi.org/10.1016/j.compositesb.2023.110574; Santhosh N.M., Vasudevan A., Jurov A., Korent A., Slobodian P., Zavašnik J., Cvelbar U. Improving sensing properties of entangled carbon nanotube-based gas sensors by atmospheric plasma surface treatment. Microelectronic Engineering. 2020; 232: 111403. https://doi.org/10.1016/j.mee.2020.111403; Katta S.S., Yadav S., Singh P., Bhushan S., Srivastava A. Investigation of pristine and B/N/Pt/Au/Pd doped single-walled carbon nanotube as phosgene gas sensor: A first-principles analysis. Applied Surface Science. 2022; 588: 152989. https://doi.org/10.1016/j.apsusc.2022.152989; Sawant S.V., Patwardhan A.W., Joshi J.B., Dasgupta K. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review. Chemical Engineering Journal. 2022; 427: 131616. https://doi.org/10.1016/j.cej.2021.131616; Мансуров Р.Ш., Гурин М.А., Рубель Е.В. Влияние концентрации углекислого газа на организм человека. Universum: Технические науки. 2017; 8(41): 20—23.; Zaporotskova I.V., Boroznina N.P., Dryuchkov E.S., Shek T.S., Butenko Y.V., Zaporotskov P.A. Surface functionalization of CNTs by a nitro group as a sensor device element: Theoretical research. Journal of Advanced Materials and Technologies. 2021; 6(2): 113—121. https://doi.org/10.17277/ jamt.2021.02.pp.113-121; Boroznina N., Zaporotskova I., Boroznin S., Dryuchkov E. Sensors based on amino group surface-modified CNTs. Chemosensors. 2019; 7(1): 11. https://doi.org/10.3390/CHEMOSENSORS7010011; Борознина Н.П., Запороцкова И.В., Запороцков П.А., Кожитов Л.В., Ерофеев Д.Р. Исследования взаимодействия модифицированных нитрогруппой боронитридных нанотрубок с газофазными углеродосодержащими молекулами для создания сенсорных устройств. Известия высших учебных заведений. Материалы электронной техники. 2022; 25(4): 261—270. https://doi.org/10.17073/1609-3577-2022-4-261-270; Boroznin S.V., Zaporotskova I.V. Sensory properties of carbon nanotubes containing impurity boron atoms. Letters on Materials. 2022; 12(3): 214—218. https://doi.org/10.22226/2410-3535-2022-3-214-218; Boroznin S.V. Carbon nanostructures containing boron impurity atoms: synthesis, physicochemical properties and potential applications. Modern Electronic Materials. 2022; 8(1): 23—42. https://doi.org/10.3897/j.moem.8.1.84317; Boroznina N.P., Zaporotskova I.V., Boroznin S.V., Kozhitov L.V., Zaporotskov P.A. In: The 5th World congress on recent advances in nanotechnology (RAN'20). October 2020; 2020. No 125. https://doi.org/10.11159/icnnfc20.125; Khan F., Julien C.M., Islam S.S. Fabrication of multiwalled carbon nanotubes/MoS2 nanocomposite: Application as temperature sensor. FlatChem. 2023; 40: 100521. https://doi.org/10.1016/j.flatc.2023.100521; https://met.misis.ru/jour/article/view/605

  5. 5
  6. 6
  7. 7
    Academic Journal

    Πηγή: Eastern-European Journal of Enterprise Technologies; Том 1, № 11 (103) (2020): Technology and Equipment of Food Production; 22-33
    Восточно-Европейский журнал передовых технологий; Том 1, № 11 (103) (2020): Технологии и оборудование пищевых производств; 22-33
    Східно-Європейський журнал передових технологій; Том 1, № 11 (103) (2020): Технології та обладнання харчових виробництв; 22-33

    Περιγραφή αρχείου: application/pdf

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 4 (2020); 253-259 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 4 (2020); 253-259 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/415/418; Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of Fullerenes and Carbon Nanotubes. London: Academic Press, Inc., 1996. 965 p.; Saito R., Dresselhaus M. S., Dresselhaus G. Physical properties of carbon nanotubes. London: Imperial College Press, 1998. 262 p.; Запороцкова И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства. Волгоград: ВолГУ, 2009. 490 с.; Mohamed A. E.-M. A., Mohamed M. A. Carbon nanotubes: Synthesis, characterization, and applications. In: Carbon Nanomaterials for Agri-food and Environmental Applications. Elsevier Inc., 2019. P. 21—32. DOI:10.1016/B978-0-12-819786-8.00002-5; Arunkumar T., Karthikeyan R., Ram Subramani R., Viswanathan K., Anish M. Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs) // International Journal of Ambient Energy. 2020. V. 41, N 4. P. 452—456. DOI:10.1080/01430750.2018.1472657; Tomilin O. B., Rodionova E. V., Rodin E. A., Poroshina M. D., Frolov AS. The effect of carbon nanotube modifications on their emission properties // Fullerenes Nanotubes and Carbon Nanostructures. 2020. V. 28, N 2. P. 123—128. DOI:10.1080/1536383X.2019.1680978; Savin A. V., Savina O. I. An effect of chemical modification of surface of carbon nanotubes on their thermal conductivity // Physics of the Solid State. 2019. V. 61, N 2. P. 279—284. DOI:10.1134/S1063783419020252; Dresselhaus M. S., Dresselhaus G., Avouris P. Сarbon nanotubes: synthesis, structure, properties, and application. Berlin: Springer-Verlag, 2000. 464 p.; Дьячков П. Н. Электронные свойства и применение нанотрубок. М.: БИНОМ. Лаборатория знаний, 2010. 488 с.; Wojtkiewicz J., Brzostowski B., Pilch M. Electronic and optical properties of carbon nanotubes directed to their applications in solar cells // PRAM 2019: Parallel Processing and Applied Mathematics. Poland, 2020. P. 341—349. DOI:10.1007/978-3-030-43222-5_30; Suhito I. R., Koo K.-M., Kim T. H. Recent advances in electrochemical sensors for the detection of biomolecules and whole cells // Biomedicines. 2021. V. 9, N 1. P. 1—20. DOI:10.3390/biomedicines9010015; Park S. H., Bai S.-J., Song, Y. S. Improved performance of carbon nanotubes embedded photomicrobial solar cell // Nanotechnology. 2020. V. 31, N 11. P. 115401. DOI:10.1088/1361-6528/ab5b2a; Liu H., Li Y. Modified carbon nanotubes for hydrogen storage at moderate pressure and room temperature // Fullerenes Nanotubes and Carbon Nanostructures. 2020. V. 28, N 8. P. 663—670. DOI:10.1080/1536383X.2020.1738396; Manut A., Zoolfakar A. S., Mamat M. H., Ab Ghani N. S., Zolkapli M. Characterization of titanium dioxide (TiO2) nanotubes for resistive-type humidity sensor // IEEE International Conference on Semiconductor Electronics, Proceedings (ICSE). Vietnam, 2020. P. 104—107. DOI:10.1109/ICSE49846.2020.9166854; Aydın M. T. A., Hoşgün H. L. Hydrothermal synthesis and characterization of vanadium-doped titanium dioxide nanotubes // Journal of the Australian Ceramic Society. 2020. V. 56, N 2. P. 645—651. DOI:10.1007/s41779-019-00382-y; Hussain R. A., Hussain I. Metal telluride nanotubes: Synthesis, and applications // Materials Chemistry and Physics. 2020. V. 256. P. 123691. DOI:10.1016/j.matchemphys.2020.123691; Fujisawa K., Hayashi T., Endo M., Terrones M., Kim J. H., Kim Y.A. Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes // Nanoscale. 2018. V. 10, N 26. P. 12723—12733. DOI:10.1039/c8nr02323a; Liu Y., Khavrus V., Lehmann T., Yang H.-L., Stepien L., Greifzu M., Oswald S., Gemming T., Bezugly V., Cuniberti G. Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devices // ACS Applied Energy Materials. 2020. V. 3, N 3. P. 2556—2564. DOI:10.1021/acsaem.9b02243; Fakhrabadi M. M. S., Allahverdizadeh A., Norouzifard V., Dadashzadeh B. Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes // Solid State Communications. 2012. V. 152, N 21. P. 1973—1979. DOI:10.1016/j.ssc.2012.08.003; Rubio A. Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes // Physics Revier Series B. Condenced Matter. 2004. V. 69. P. 245403. DOI:10.1103/PhysRevB.69.245403; Debnarayan J., Sun C.-L., Chen L.-C., Chen K.-H. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes // Progress in Materials Science. 2013. V. 58. P. 565. DOI:10.1016/j.pmatsci.2013.01.003; Boroznina N. P., Boroznin S. V., Zaporotskova I. V., Kozhitov L. V., Popkova A. V. On the practicability of sensors based on surface carboxylated boron-carbon nanotubes // Russian Journal of Inorganic Chemistry. 2019. V. 64, N 1. P. 74—78. DOI:10.1134/S0036023619010029; Boroznina N. P., Zaporotskova I. V., Boroznin S. V., Dryuchkov E. S. Sensors based on amino group surface-modified CNTs // Chemosensors. 2019. V. 7, N 1. P. 11. DOI:10.3390/CHEMOSENSORS7010011; Koch W., Holthausen M. C. A Chemist's Guide to Density Functional Theory. Weinheim: Wiley-VCH, 2001. 294 p.; Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. J. 6-31G* basis set for third-row atoms // Journal of Computational Chemistry. 2001. V. 22, N 9. P. 976—984. DOI:10.1002/jcc.1058; https://met.misis.ru/jour/article/view/415

  14. 14
    Academic Journal

    Πηγή: Food systems; Vol 4, No 2 (2021); 82-88 ; Пищевые системы; Vol 4, No 2 (2021); 82-88 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2021-4-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/107/136; Krasina, I. B., Tarasenko, N. A. (2014). Research way of obtain extracts from walnut leaves, their properties investigation on purpose to use them as ingredients during jelly fruit candy production. American-Eurasian Journal of Sustainable Agriculture, 8(9), 23–26.; Palacıoglu, S. (2003). Sekrleme sector profile (Confectionery sector profile). Retrieved from http://www.ito.org.tr/Dokuman/Sektor/1–87.pdf. Accessed March 20, 2021; Mutlu, C., Tontul, S. A., Erbaş, M. (2018). Production of a minimally processed jelly candy for children using honey instead of sugar. LWT, 93, 499–505. https://doi.org/10.1016/j.lwt.2018.03.064; Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., Feyissa, A. H. (2019). Impact of ohmicsonication treatment on pectinmethylesterase in not-from concentrate orange juice. Journal of Food Science and Technology, 56(8), 3951–3956. https://doi.org/10.1007/s13197–019–03834–2; Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., Feyissa, A. H. (2019). Optimization of ohmicsonication for overall quality characteristics of NFC apple juice. Journal of Food Processing and Preservation, 43(9), Article e14087 https://doi.org/10.1111/jfpp.14087; Charoen, R., Savedboworn, W., Phuditcharnchnakun, S., Khuntaweetap, T. (2015). Development of antioxidant gummy jelly candy supplemented with psidium guajava leaf extract. KMUTNB International Journal of Applied Science and Technology, 8(2), 145–151. https://doi.org/10.14416/j.ijast.2015.02.002; Riedel, A., Mehnert, M., Paul, C. E., Westphal, A. H., van Berkel, W. J. H., Tischler, D. (2015). Functional characterization and stability improvement of a ‘thermophilic-like’ ene-reductase from rhodococcus opacus 1CP. Frontiers in Microbiology, 6(OCT), Article 1073. https://doi.org/10.3389/fmicb.2015.01073; Singh, M.C., Prakash, J. (2016). Nutritional and Sensory Quality of Iron Fortified Tamarind Candies. Nutrition & Food Science, 1(1), 1–7.; Muzzaffar, S., Baba, W. N., Nazir, N., Masoodi, F. N., Bhat, M. M., Bazaz, R. (2016). Effect of storage on physicochemical, microbial and antioxidant properties of pumpkin (Cucurbita moschata) candy. Cogent Food And Agriculture, 2(1),1–13. https://doi.org/10.1080/23311932.2016.1163650; Kumar, V., Kushwaha, R., Goyal, A., Tanwar, B., Kaur, J. (2018). Process optimization for the preparation of antioxidant rich ginger candy using beetroot pomace extract Food Chemistry, 245, 168–177. https://doi.org/10.1016/j.foodchem.2017.10.089; Krolevets, A., Myachikova, N., Semichev, K. (2019). Properties of Nanostuctured Motherwort Extract and Its Application in Fruit Jelly Candy Production. Proceedings of the 1st International Symposium Innovations in Life Sciences (ISILS2019). Series: Advances in Biological Sciences Research. https://doi.org/10.2991/isils-19.2019.44; Petersen, C., Wankhade, U. D., Bharat, D., Wong, K., Mueller, J. E., Chintapalli, S. V. et al. (2019). Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. Journal of Nutritional Biochemistry, 66, 63–69. https://doi.org/10.1016/j.jnutbio.2019.01.004; Basu, A., Nguyen, A., Betts, N. M., Lyons, T. J. (2014). Strawberry as a functional food: An evidence-based review. Critical Reviews in Food Science and Nutrition, 54(6), 790–806. https://doi.org/10.1080/10408398.2011.608174; Cassani, L., Tomadoni, B., Moreira, M. R., Agüero, M. V. (2018). Improving quality parameters of functional strawberry juices: Optimization of prebiotic fiber enrichment and geraniol treatment. Food and Bioprocess Technology, 11(11), 2110–2124. https://doi.org/10.1007/s11947–018–2170-x; Balthazar, C. F., Santillo, A., Guimarães, J. T., Capozzi, V., Russo, P., Caroprese, M. et al. (2019). Novel milk–juice beverage with fermented sheep milk and strawberry (fragaria × ananassa): Nutritional and functional characterization. Journal of Dairy Science, 102(12), 10724–10736. https://doi.org/10.3168/jds.2019–16909; Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry, 272, 192–200. https://doi.org/10.1016/j.foodchem.2018.08.022; Clifford, T., Howatson, G., West, D. J., Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822. https://doi.org/10.3390/nu7042801; Lechner, J. F., Stoner, G. D. (2019). Red beetroot and betalains as cancer chemopreventative agents. Molecules, 24(8). https://doi.org/10.3390/molecules24081602; AOAC (2016). Association of Official Analytical Chemistry. Official methods of analysis (20th Ed.). Washington, DC: Association of Official Analytical Chemists.; More, S. A., Patil, S. S., Kakanur, M., Thakur, R., Nayak, M. N., Kumar, S. R. (2018). A quantitative analysis of total carbohydrate content from the salivary expectorants in young children. Journal of Indian Society of Pedodontics and Preventive Dentistry, 36(1), 53–57. https://doi.org/10.4103/JISPPD.JISPPD_153_17; Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., Feyissa, A. H. (2018). Effect of ohmic heating parameters on inactivation of enzymes and quality of not-from-concentrate mango juice. Asian Journal of Scientific Research, 11(3), 383–392. https://doi.org/10.3923/ajsr.2018.383.392; El-Mogy, M. M., Ali, M. R., Darwish, O. S., Rogers, H. J. (2019). Impact of salicylic acid, abscisic acid, 1 and methyl jasmonate on postharvest quality and bioactive compounds of cultivated strawberry fruit. Journal of Berry Research, 9(1), 333–348. https://doi.org/10.3233/JBR-180349; Altemimi, A. B., Al-Hilphy, A. R., Abedelmaksoud, T. G., Aboud, S. A., Badwaik, L. S., Lakshmanan, G. (2021). Infrared Radiation Favorably Influences the Quality Characteristics of Key Lime Juice. Applied Sciences, 11(6), Article 2842. https://doi.org/10.3390/app11062842; Elsayed, N., El-Din, H.S., Altemimi, A.B., Ahmed, H.Y., Pratap-Singh, A., Abedelmaksoud, T.G. (2021). In Vitro Antimicrobial, Antioxidant and Anticancer Activities of Egyptian Citrus Beebread. Molecules, 26(9), p.2433.; Awad, A. H. R., Parmar, A., Ali, M. R., El-Mogy, M. M., Abdelgawad, K. F. (2021). Extending the Shelf-Life of Fresh-Cut Green Bean Pods by Ethanol, Ascorbic Acid, and Essential Oils. Foods, 10, Article 1103. https://doi.org/10.3390/foods10051103; Ali, M. R., EL Said, R. M. (2020). Assessment of the potential of arabic gum as an antimicrobial and antioxidant agent in developing vegan “egg-free” mayonnaise. Journal of Food Safety, 40(2), Article e12771. https://doi.org/10.1111/jfs.12771; Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B., Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9–19. https://doi.org/10.1016/j.nut.2011.08.009; Singh, J. P., Kaur, A., Shevkani, K., Singh, N. (2016). Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. Journal of Food Science and Technology, 53(11), 4056–4066. https://doi.org/10.1007/s13197–016–2412–8; Vasconcellos, J., Conte-Junior, C., Silva, D., Pierucci, A. P., Paschoalin, V., Alvares, T. S. (2016). Comparison of total antioxidant potential, and total phenolic, nitrate, sugar, and organic acid contents in beetroot juice, chips, powder, and cooked beetroot. Food Science and Biotechnology, 25(1), 79–84. https://doi.org/10.1007/s10068–016–0011–0; Jackman, R. L., Smith, J. L. (1996). Anthocyanins and betalains. Chapter in a book: Natural food colorants. Blackie Academic and Professional, London, 244–309.; Güneşer, O. (2016). Pigment and color stability of beetroot betalains in cow milk during thermal treatment. Food Chemistry, 196, 220–227. https://doi.org/10.1016/j.foodchem.2015.09.033; Rababah, T., Over, K., Hettiarachchy, N. S., Horax, R., Eswaranandam, S., Davis, B. et al. (2010). Infusion of plant extracts during processing to preserve quality attributes of irradiated chicken breasts over 9 months storage at –20 C. Journal of Food Processing and Preservation, 34(SUPPL. 1), 287–307. https://doi.org/10.1111/j.1745–4549.2009.00381.x; Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13(4), 215–225. https://doi.org/10.1016/S0950–3293(01)00039–8; Figiel, A., Tajner-Czopek, A. (2006). The effect of candy moisture content on texture. Journal of Food Service, 17, 189–195. https://doi.org/10.1111/j.1745–4506.2006.00037.x; Figueroa, L. E., Genovese, D. B. (2018). Pectin gels enriched with dietary fibre for the development of healthy confectionery jams. Food Technology and Biotechnology, 56(3), 441–453. https://doi.org/10.17113/ftb.56.03.18.5641; Stintzing, F., Carle, R. (2008). Betalains in food: Occurrence, stability, and postharvest modification. Chapter in a book: Food Colorants-Chemical and Functional Properties. CRC Press: Boca Raton, FL, USA.; Brown, A. (2011). Understanding Food: principles and preparation. Chapter in a book: Soups, salads and gelatins. PP.327–344. University of Hawaii at Manoa. Wadsworth, Cengage Learning. Inc. United States. USA.; https://www.fsjour.com/jour/article/view/107

  15. 15
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20