Εμφανίζονται 1 - 20 Αποτελέσματα από 1.647 για την αναζήτηση '"СЕМЕЙСТВО"', χρόνος αναζήτησης: 1,26δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Θεματικοί όροι: Annotatsiya. Sharq xurmosining navlari o'rganishda bioekologik xususiyatlari o'sish, rivojlanishi birlamchi materiallarning eng muhim xo'jalik belgilarini o'rganish va bilish, navlarning hosildorlik ko'rsatkichlari, mexanik taxlili hamda dugustatsion baholash, ularni mavjud navlar bilan taqqoslash, har xil iqlim sharoitlarda sinab ko'rish, morfologik ko'rsatkichlari, introduktsiya sharoitiga to'liq moslasha olganligi, bu o'simlikni O'zbekistoning janubiy yerlarda yetishtirish imkoniyati mavjudligini ko'rsatadi. Kalit so'zlar: Xurmo, subtropik meva, oila, turkum, tur, nav, hosildorlik, daraxt, gul, meva, mexanik taxlil, degustatsion baholash. Аннотация. При изучении биоэкологических особенностей сортов финика восточного, изучении и знании важнейших хозяйственных характеристик исходного сырья, показателей продуктивности сортов, механическом анализе и вкусовой оценке, их сравнении с существующими сортами, испытаниях в разных климатических условиях, морфологических показателях, том, что они смогли полностью адаптироваться к условиям интродукции, показывают, что существует возможность выращивания этого растения на южных землях Узбекистана. Ключевые слова: Хурма, субтропический плод, семейство, род, вид, сорт, продуктивность, дерево, цветок, плод, механический анализ, дегустационная оценка. Abastract. In the study of the bioecological characteristics of the varieties of the oriental persimmon, the study and knowledge of the most important economic characteristics of the primary materials, the productivity indicators of the varieties, mechanical analysis and taste evaluation, their comparison with the existing varieties, testing in different climatic conditions, morphological indicators, the fact that they were able to fully adapt to the conditions of introduction, show that there is a possibility of growing this plant in the southern lands of Uzbekistan. Key words: Persimmon, subtropical fruit, family, genus, species, variety, productivity, tree, flower, fruit, mechanical analysis, tasting evaluation

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: VIII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».

  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Συνεισφορές: This study was funded by the Ministry of Higher Education and Science of the Russian Federation, grant No. 123020700216-4 (FEUF-2023-0004)., Данное исследование было профинансировано Министерством высшего образования и науки Российской̆ Федерации, грант № 123020700216-4 (FEUF-2023-0004).

    Πηγή: Siberian journal of oncology; Том 23, № 6 (2024); 97-106 ; Сибирский онкологический журнал; Том 23, № 6 (2024); 97-106 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3358/1302; Coley A.B., DeMeis J.D., Chaudhary N.Y., Borchert G.M. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines. 2022; 10(8): 1819. doi:10.3390/biomedicines10081819.; Maxwell E.S., Fournier M.J. The Small Nucleolar RNAs. Ann. Rev. Biochem. 1995; 64(1): 897–934. doi:10.1146/annurev.bi.64.070195.004341.; Terns M.P., Terns R.M. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr. 2002; 10(1–2): 17–39.; Deschamps-Francoeur G., Couture S., Abou-Elela S., Scott M.S. The snoGloBe interaction predictor reveals a broad spectrum of C/D snoRNA RNA targets. Nucleic Acids Res. 2022; 50(11): 6067–83. doi:10.1093/nar/gkac475.; Baldini L., Charpentier B., Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D SnoRNAs. Noncoding RNA. 2021; 7(2): 30. doi:10.3390/ncrna7020030.; Ono M., Scott M.S., Yamada K., Avolio F., Barton G.J., Lamond A.I. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 2011; 39(9): 3879–91. doi:10.1093/nar/gkq1355.; Scott M.S., Avolio F., Ono M., Lamond A.I., Barton G.J. Human MiRNA Precursors with Box H/ACA SnoRNA Features. PLoS Comput Biol. 2009; 5(9). doi:10.1371/journal.pcbi.1000507.; Dong J., Wang H., Zhang Z., Yang L., Qian X., Qian W., Han Y., Huang H., Qian P. Small but strong: Pivotal roles and potential applications of snoRNAs in hematopoietic malignancies. Front Oncol. 2022; 12. doi:10.3389/fonc.2022.939465.; Mei Y.P., Liao J.P., Shen J., Yu L., Liu B.L., Liu L., Li R.Y., Ji L., Dorsey S.G., Jiang Z.R., Katz R.L., Wang J.Y., Jiang F. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012; 31(22): 2794–804. doi:10.1038/onc.2011.449.; Nachmani D., Bothmer A.H., Grisendi S., Mele A., Bothmer D., Lee J.D., Monteleone E., Cheng K., Zhang Y., Bester A.C., Guzzetti A., Mitchell C.A., Mendez L.M., Pozdnyakova O., Sportoletti P., Martelli M.P., Vulliamy T.J., Safra M., Schwartz S., Luzzatto L., Bluteau O., Soulier J., Darnell R.B., Falini B., Dokal I., Ito K., Clohessy J.G., Pandolfi P.P. Germline NPM1 mutations lead to altered rRNA 2’-O-methylation and cause dyskeratosis congenita. Nat Genet. 2019; 51(10): 1518–29. doi:10.1038/s41588-019-0502-z.; Oliveira V., Mahajan N., Bates M.L., Tripathi C., Kim K.Q., Zaher H.S., Maggi L.B. Jr, Tomasson M.H. The snoRNA target of t(4;14) in multiple myeloma regulates ribosome biogenesis. FASEB Bioadv. 2019; 1(7): 404–14. doi:10.1096/fba.2018-00075.; Ronchetti D., Todoerti K., Tuana G., Agnelli L., Mosca L., Lionetti M., Fabris S., Colapietro P., Miozzo M., Ferrarini M., Tassone P., Neri A. The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J. 2012; 2(11). doi:10.1038/bcj.2012.41.; Zhou F., Liu Y., Rohde C., Pauli C., Gerloff D., Köhn M., Misiak D., Bäumer N., Cui C., Göllner S., Oellerich T., Serve H., Garcia-Cuellar M.P., Slany R., Maciejewski J.P., Przychodzen B., Seliger B., Klein H.U., Bartenhagen C., Berdel W.E., Dugas M., Taketo M.M., Farouq D., Schwartz S., Regev A., Hébert J., Sauvageau G., Pabst C., Hüttelmaier S., Müller-Tidow C. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017; 19(7): 844–55. doi:10.1038/ncb3563.; May J.M., Bylicky M., Chopra S., Coleman C.N., Aryankalayil M.J. Long and short non-coding RNA and radiation response: a review. Transl Res. 2021; 233: 162–79. doi:10.1016/j.trsl.2021.02.005.; Li Y., Ma X., Li J., He S., Zhuang J., Wang G., Ye Y., Xia W. LncRNA Gas5 Regulates Granulosa Cell Apoptosis and Viability Following Radiation by X-Ray via Sponging MiR-205-5p and Wnt/β-Catenin Signaling Pathway in Granulosa Cell Tumor of Ovary. Trop J Pharm Res. 2020; 19(6): 1153–59.; Gao J., Liu L., Li G., Cai M., Tan C., Han X., Han L. LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int J Biol Macromol. 2019; 126: 994–1001. doi:10.1016/j.ijbiomac.2018.12.176.; Weidhaas J.B., Babar I., Nallur S.M., Trang P., Roush S., Boehm M., Gillespie E., Slack F.J. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 2007; 67(23): 11111–16. doi:10.1158/0008-5472.CAN-07-2858.; Zhang H., Fang C., Feng Z., Xia T., Lu L., Luo M., Chen Y., Liu Y. and Li Y. The Role of LncRNAs in the Regulation of Radiotherapy Sensitivity in Cervical Cancer. Front. Oncol. 2022; 12. doi:10.3389/fonc.2022.896840.; Ebahimzadeh K., Shoorei H., Mousavinejad S.A., Anamag F.T., Dinger M.E., Taheri M., Ghafouri-Fard S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol Res Pract. 2021; 218. doi:10.1016/j.prp.2020.153327.; Xiao J., He X. Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma. Cancer Manag Res. 2021; 13: 8781–94. doi:10.2147/CMAR.S336265.; Tian Y., Tang L., Yi P., Pan Q., Han Y., Shi Y., Rao S., Tan S., Xia L., Lin J., Oyang L., Tang Y., Liang J., Luo X., Liao Q., Wang H., Zhou Y. MiRNAs in Radiotherapy Resistance of Nasopharyngeal Carcinoma. J Cancer. 2020; 11(13): 3976–85. doi:10.7150/jca.42734.; Masoudi-Khoram N., Abdolmaleki P. Role of non-coding RNAs in response of breast cancer to radiation therapy. Mol Biol Rep. 2022; 49(6): 5199–208. doi:10.1007/s11033-022-07234-2.; Li Z., Wang F., Zhu Y., Guo T., Lin M. Long Noncoding RNAs Regulate the Radioresistance of Breast Cancer. Anal Cell Pathol (Amst). 2021. doi:10.1155/2021/9005073.; Zhang S., Wang B., Xiao H., Dong J., Li Y., Zhu C., Jin Y., Li H., Cui M., Fan S. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer. 2020; 11(7): 1801–16. doi:10.1111/1759-7714.13450.; Rastorgueva E., Liamina D., Panchenko I., Iurova E., Beloborodov E., Pogodina E., Sugak D., Slesarev S., Saenko Y. The effect of chromosome abnormalities on expression of SnoRNA in radioresistant and radiosensitive cell lines after irradiation. Cancer Biomark. 2022; 34(4): 545–53. doi:10.3233/CBM-210092.; Liamina D., Sibirnyj W., Khokhlova A., Saenko V., Rastorgueva E., Fomin A., Saenko Y. Radiation-Induced Changes of microRNA Expression Profiles in Radiosensitive and Radioresistant Leukemia Cell Lines with Different Levels of Chromosome Abnormalities. Cancers (Basel). 2017; 9(10): 136. doi:10.3390/cancers9100136.; Расторгуева Е.В., Погодина Е.С., Юрова Е.В., Белобородов Е.А., Сугак Д.Е., Саенко Ю.В., Фомин А.Н. Экспрессия H/ACA мякРНК в клеточных линиях с хромосомными нарушениями после облучения. Ульяновский медико-биологический журнал. 2022; (4): 149–59. doi:10.34014/2227-1848-2022-4-149-159.; Liang J.C., Ning Y., Wang R.Y., Padilla-Nash H.M., Schröck E., Soenksen D., Nagarajan L., Ried T. Spectral karyotypic study of the HL-60 cell line: detection of complex rearrangements involving chromosomes 5, 7, and 16 and delineation of critical region of deletion on 5q31.1. Cancer Genet Cytogenet. 1999; 113(2): 105–9. doi:10.1016/s0165-4608(99)00030-8.; Lafontaine D.L., Tollervey D. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci. 1998; 23(10): 383–8. doi:10.1016/s0968-0004(98)01260-2.; Naumann S., Reutzel D., Speicher M., Decker H.J. Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res. 2001; 25(4): 313–22. doi:10.1016/s0145-2126(00)00125-9.; Wang Y., Han Y., Jin Y., He Q., Wang Z. The Advances in Epigenetics for Cancer Radiotherapy. Int J Mol Sci. 2022; 23(10): 5654. doi:10.3390/ijms23105654.; Brooks W.H., Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet. 2015; 6: 22. doi:10.3389/fgene.2015.00022.; Peitzsch C., Cojoc M., Hein L., Kurth I., Mäbert K., Trautmann F., Klink B., Schröck E., Wirth M.P., Krause M., Stakhovsky E.A., Telegeev G.D., Novotny V., Toma M., Muders M., Baretton G.B., Frame F.M., Maitland N.J., Baumann M., Dubrovska A. An Epigenetic Reprogramming Strategy to Resensitize Radioresistant Prostate Cancer Cells. Cancer Res. 2016; 76(9): 2637–51. doi:10.1158/0008-5472.CAN-15-2116.; https://www.siboncoj.ru/jour/article/view/3358

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20