Εμφανίζονται 1 - 20 Αποτελέσματα από 434 για την αναζήτηση '"СЕГНЕТОЭЛЕКТРИКИ"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Συνεισφορές: The study was conducted as part of the implementation of indicators for projects funded from the state budget or other external sources: The National Project “Science and Universities” to achieve the result “Creation of new laboratories, including under the guidance of young promising researchers (growing result),” FSFZ-2022-0003, Статья написана в рамках выполнения индикаторов по проектам, финансируемым из государственного бюджета или других внешних источников: Национальный проект «Наука и университеты» для достижения результата «Создание новых лабораторий, в том числе под руководством молодых перспективных исследователей (нарастающий итог)», FSFZ-2022-0003

    Πηγή: Fine Chemical Technologies; Vol 19, No 1 (2024); 72-87 ; Тонкие химические технологии; Vol 19, No 1 (2024); 72-87 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2034/2001; https://www.finechem-mirea.ru/jour/article/view/2034/2002; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2034/1151; Pithan C., Hennings D., Waser R. Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC: Progress in Synthesis of Nanocrystalline BaTiO3 Powders. Int. J. Appl. Ceram. Technol. 2006;2(1):1–14. https://doi.org/10.1111/j.1744-7402.2005.02008.x; Brzozowski E., Castro M.S. Synthesis of barium titanate improved by modifications in the kinetics of the solid state reaction. J. Eur. Ceram. Soc. 2000;20(14–15):2347–2351. https://doi.org/10.1016/S0955-2219(00)00148-5; Chaisan W., Yimnirun R., Ananta S., Cann D.P. Dielectric properties of solid solutions in the lead zirconate titanatebarium titanate system prepared by a modified mixed-oxide method. Mater. Lett. 2005;59(28):3732–3737. https://doi.org/10.1016/j.matlet.2005.06.045; Kambale K.R.R., Kulkarni A.R.R., Venkataramani N. Grain growth kinetics of barium titanate synthesized using conventional solid state reaction route. Ceram. Int. 2014;40(1A):667–673. https://doi.org/10.1016/j.ceramint.2013.06.053; Mikhailov M.M., Neshchimenko V.V., Utebekov T.A., Yuriev S.A. Features high-temperature synthesis of barium zirconium titanate powder by using zirconium dioxide nanopowders. J. Alloys Compd. 2015;652:364–370. https://doi.org/10.1016/j.jallcom.2015.08.124; Roy A.C., Mohanta D. Structural and ferroelectric properties of solid-state derived carbonate-free barium titanate (BaTiO3) nanoscale particles. Scr. Mater. 2009;61(9):891–894. https://doi.org/10.1016/j.scriptamat.2009.07.022; Buscaglia M.T., Bassoli M., Buscaglia V., Alessio R. Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2. J. Am. Ceram. Soc. 2005;88(9):2374–2379. https://doi.org/10.1111/j.1551-2916.2005.00451.x; Kainth S., Choudhary R., Upadhyay S., Bajaj P., Sharma P., Brar L.K., et al. Non-isothermal solid-state synthesis kinetics of the tetragonal barium titanate. J. Solid State Chem. 2022;312:123275. https://doi.org/10.1016/j.jssc.2022.123275; Qian H., Zhu G., Xu H., Zhang X., Zhao Y., Yan D., et al. Preparation of tetragonal barium titanate nanopowders by microwave solid-state synthesis. Appl. Phys. A. 2020;126(4):294. https://doi.org/10.1007/s00339-020-03472-y; Sundararajan T., Prabu S.B., Vidyavathy S.M. Combined effects of milling and calcination methods on the characteristics of nanocrystalline barium titanate. Mater. Res. Bull. 2012;47(6):1448–5144. https://doi.org/10.1016/j.materresbull.2012.02.044; Clabel H J.L., Awan I.T., Pinto A.H., Nogueira I.C., Bezzon V.D.N., Leite E.R., et al. Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent. Ceram. Int. 2020;46(3):2987–3001. https://doi.org/10.1016/j.ceramint.2019.09.296; Nath A.K., Jiten C., Singh K.C., Laishram R., Thakur O.P., Bhattacharya D.K. Effect of Ball Milling Time on the Electrical and Piezoelectric Properties of Barium Titanate Ceramics. Integr. Ferroelectr. 2010;116(1):51–58. https://doi.org/10.1080/10584587.2010.488572; Rotaru R., Peptu C., Samoila P., Harabagiu V. Preparation of ferroelectric barium titanate through an energy effective solid state ultrasound assisted method. J. Am. Ceram. Soc. 2017;100(10):4511–4518. https://doi.org/10.1111/jace.15003; Lee H.W., Kim N.W., Nam W.H., Lim Y.S. Sonochemical activation in aqueous medium for solid-state synthesis of BaTiO3 powders. Ultrason. Sonochem. 2022;82:105874. https://doi.org/10.1016/j.ultsonch.2021.105874; Akbas H.Z., Aydin Z., Yilmaz O., Turgut S. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics. Ultrason. Sonochem. 2017;34:873–880. https://doi.org/10.1016/j.ultsonch.2016.07.027; Jin S.H., Lee H.W., Kim N.W., Lee B.W., Lee G.G., Hong Y.W., et al. Sonochemically activated solid-state synthesis of BaTiO3 powders. J. Eur. Ceram. Soc. 2021;41(9):4826–4834. https://doi.org/10.1016/j.jeurceramsoc.2021.03.043; Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O., Jovalekic C., Mitic V.V., Varela J.A. Mechanochemical synthesis of barium titanate. J. Eur. Ceram. Soc. 2005;25(12):1985–1989. https://doi.org/10.1016/j.jeurceramsoc.2005.03.003; Stojanovic B.D. Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process. Technol. 2003; 143–144(1):78–81. https://doi.org/10.1016/S0924-0136(03)00323-6; Ohara S., Kondo A., Shimoda H., Sato K., Abe H., Naito M. Rapid mechanochemical synthesis of fine barium titanate nanoparticles. Mater. Lett. 2008;62(17–18):2957–2959. https://doi.org/10.1016/j.matlet.2008.01.083; Kozma G., Lipták K., Deák C., Rónavári A., Kukovecz Á., Kónya Z. Conversion Study on the Formation of Mechanochemically Synthesized BaTiO3. Chemistry. 202215;4(2):592–602. https://doi.org/10.3390/chemistry4020042; Kudłacik-Kramarczyk S., Drabczyk A., Głąb M., Dulian P., Bogucki R., Miernik K., et al. Mechanochemical Synthesis of BaTiO3 Powders and Evaluation of Their Acrylic Dispersions. Materials. 2020;13(15):3275. https://doi.org/10.3390/ma13153275; Kong L.B., Zhang T.S., Ma J., Boey F. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater. Sci. 2008;53(2): 207–322. https://doi.org/10.1016/j.pmatsci.2007.05.001; Apaydin F., Parlak T.T., Yildiz K. Low temperature formation of barium titanate in solid state reaction by mechanical activation of BaCO3 and TiO2. Materials Research Express. 2020;6(12):126330. https://doi.org/10.1088/20531591/ab6c0d; More S.P., Khedkar M.V., Jadhav S.A., Somvanshi S.B., Humbe A.V., Jadhav K.M. Wet chemical synthesis and investigations of structural and dielectric properties of BaTiO3 nanoparticles. J. Phys.: Conf. Ser. 2020;1644(1):012007. https://doi.org/10.1088/1742-6596/1644/1/012007; Hennings D., Mayr W. Thermal Decomposition of (BaTi) Citrates into Barium Titanate. J. Solid State Chem. 1978;26(4):329–338. https://doi.org/10.1016/0022-4596(78)90167-6; Kao C.F., Yang W.D. Preparation of barium strontium titanate powder from citrate precursor. Appl. Organomet. Chem. 1999;13(5):383–397. http://doi.org/10.1002/(SICI)10990739(199905)13:53.0.CO;2-P; Wang H. Inhibition of the formation of barium carbonate by fast heating in the synthesis of BaTiO3 powders via an EDTA gel method. Mater. Chem. Phys. 2002;74:1–4. https://doi.org/10.1016/S0254-0584(01)00410-2; Sen S., Choudhary R.N.P., Pramanik P. Synthesis and characterization of nanostructured ferroelectric compounds. Mater. Lett. 2004;58(27–28):3486–3490. https://doi.org/10.1016/j.matlet.2004.06.063; Aktaş P. Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. Celal Bayar University Journal of Science (CBUJOS). 2020;16(3):293–300. https://doi.org/10.18466/cbayarfbe.734061; Turky A.O., Rashad M.M., Bechelany M. Tailoring optical and dielectric properties of Ba0.5Sr0.5TiO3 powders synthesized using citrate precursor route. Mater. Des. 2016;90:54–59. https://doi.org/10.1016/j.matdes.2015.10.113; Hsieh T.-H., Yen S.-C., Ray D.-T. A study on the synthesis of (Ba,Ca)(Ti,Zr)O3 nano powders using Pechini polymeric precursor method. Ceram. Int. 2012;38(1):755–759. https://doi.org/10.1016/j.ceramint.2011.08.001; Durán P., CapelF., Tartaj J., Moure C. BaTiO3 formation by thermal decomposition of a (BaTi)-citrate polyester resin in air. J. Mater. Res. 2001;16(1):197–209. https://doi.org/10.1557/JMR.2001.0032; Ries A., Simões A.Z., Cilense M, Zaghete M.A, Varela J.A. Barium strontium titanate powder obtained by polymeric precursor method. Mater. Charact. 2003;50(2–3):217–221. https://doi.org/10.1016/S1044-5803(03)00095-0; Prado L.R., de Resende N.S., Silva R.S., Egues S.M.S., Salazar-Banda G.R. Influence of the synthesis method on the preparation of barium titanate nanoparticles. Chem. Eng. Process.: Process Intensif. 2015;103:12–20. https://doi.org/10.1016/j.cep.2015.09.011; Duran P., Gutierrez D., Tartaj J., Moure C. Densification behaviour, microstructure development and dielectric properties of pure BaTiO3 prepared by thermal decomposition of (Ba, Ti)-citrate polyester resins. Ceram. Int. 2002;28(3):283–292. https://doi.org/10.1016/S02728842(01)00092-X; Luan W., Gao L. Influence of pH value on properties of nanocrystalline BaTiO3 powder. Ceram. Int. 2001;27(6): 645–648. https://doi.org/10.1016/S0272-8842(01)00012-8; Lazarević Z.Ž., Vijatović M., Dohčević-Mitrović Z., Romčević N.Ž., Romčević M.J., Paunović N., et al. The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. J. Eur. Ceram. Soc. 2010;30(2):623–628. https://doi.org/10.1016/j.jeurceramsoc.2009.08.011; Ashiri R., Nemati A., Sasani Ghamsari M. Crack-free nanostructured BaTiO3 thin films prepared by sol–gel dipcoating technique. Ceram. Int. 2014;40(6):8613–8619. https://doi.org/10.1016/j.ceramint.2014.01.078; Hayashi T., Ohji N., Hiraoka K., Fukunaga T., Maiwa H. Preparation and Properties of Ferroelectric BaTiO3 Thin Films by Sol–Gel Process. Jpn. J. Appl. Phys. 1993;32(9S): 4092–4094. https://doi.org/10.1143/JJAP.32.4092; Demydov D., Klabunde K.J. Characterization of mixed metal oxides (SrTiO3 and BaTiO3) synthesized by a modified aerogel procedure. J. Non-Cryst. Solids. 2004;350:165–172. https://doi.org/10.1016/j.jnoncrysol.2004.06.022; Suslov A., Kobylianska S., Durilin D., Ovchar O., Trachevskii V., Jancar B., et al. Modified Pechini Processing of Barium and Lanthanum–Lithium Titanate Nanoparticles and Thin Films. Nanoscale Res. Lett. 2017;12(1):350. https://doi.org/10.1186/s11671-017-2123-8; Teh Y.C., Saif A.A., Poopalan P. Sol–Gel Synthesis and Characterization of Ba1−xGdxTiO3+δ Thin Films on SiO2/Si Substrates Using Spin-Coating Technique. Mater. Sci. 20179;23(1):51–56. https://doi.org/10.5755/j01.ms.23.1.13954; Devi L.R., Sharma H.B. Structural and optical parameters of sol–gel derived Barium Strontium Titanate (BST) thin film. Mater. Today Proc. 2022;65(5):2801–2806. https://doi.org/10.1016/j.matpr.2022.06.219; Pfaff G. Sol–gel synthesis of barium titanate powders of various compositions. J. Mater. Chem. 1992;2(6):591–594. https://doi.org/10.1039/JM9920200591; Phule P.P., Risbud S.H. Sol–gel synthesis and characterization of BaTi4O9 and BaTiO3 powders. In: Materials Research Society Symposium Proceedings (MRS Online Proceedings Library). 1988:121:275–280. https://doi.org/10.1557/PROC121-275; Cernea M. Sol–gel synthesis and characterization of BaTiO3 powder. J. Optoelectron. Adv. Mater. 2005;7(6):3015–3022.; Omar A.F.C., Hatta F.F., Kudin T.I.T., Mohamed M.A., Hassan O.H. Calcination Effect on Structural Trasformation of Barium Titanite Ferroelectric Ceramic by Sol Gel Method. Int. J. Eng. Adv. Technol. 2019;9(1):5893–5896. https://doi.org/10.35940/ijeat.A3023.109119; Lemoine C., Gilbert B., Michaux B., Pirard J.P., Lecloux A. Synthesis of barium titanate by the sol–gel process. J. Non-Cryst. Solids. 1994;175(1):1–13. https://doi.org/10.1016/0022-3093(94)90309-3; Ianculescu A.C., Vasilescu C.A., Crisan M., Raileanu M., Vasile B.S., Calugaru M., et al. Formation mechanism and characteristics of lanthanum-doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater. Charact. 2015;106: 195–207. https://doi.org/10.1016/j.matchar.2015.05.022; Phule P.P., Risbud S.H. Low-temperature synthesis and processing of electronic materials in the BaO–TiO2 system. J. Mater. Sci. 1990;25:1169–1183. https://doi.org/10.1007/BF00585422; Nanni P., Viviani M., Buscaglia V. Synthesis of Dielectric Ceramic Materials. In: Nalwa H.S. (Ed.). Handbook of Low and High Dielectric Constant Materials and Their Applications. Academic Press; 1999. p. 429–55. https://doi.org/10.1016/B978-012513905-2/50011-X; Zheng C., Cui B., You Q., Chang Z. Characterization of BaTiO3 Powders and Ceramics Prepared Using the Sol–gel Process, with Triton X-100 Used as a Surfactant. In: The 7th National Conference on Functional Materials and Applications. 2010. P. 341–346.; Bakken K., Pedersen V.H., Blichfeld A.B., Nylund I.-E., Tominaka S., Ohara K., Grande T., Einarsrud M.-A. Structures and Role of the Intermediate Phases on the Crystallization of BaTiO3 from an Aqueous Synthesis Route. ACS Omega. 2021;6(14):9567–9576. https://doi.org/10.1021/acsomega.1c00089; Singh M., Yadav B.C., Ranjan A., Kaur M., Gupta S.K. Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sensors and Actuators B: Chemical. 2017;241:1170–1178. https://doi.org/10.1016/j.snb.2016.10.018; Nagdeote S.B. Sol–gel Synthesis, Structural and Dielectric Characteristics of Nanocrystalline Barium Titanate Solid. Macromol. Symp. 2021;400(1):2100060. https://doi.org/10.1002/masy.202100060; Boulos M., Guillemet-Fritsch S., Mathieu F., Durand B., Lebey T., Bley V. Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics. Solid State Ion. 2005;176(13–14):1301–1309. https://doi.org/10.1016/j.ssi.2005.02.024; Cai W., Rao T., Wang A., Hu J., Wang J., Zhong J., et al. A simple and controllable hydrothermal route for the synthesis of monodispersed cube-like barium titanate nanocrystals. Ceram. Int. 2015;41(3):4514–4522. https://doi.org/10.1016/j.ceramint.2014.11.146; Lee W.W., Chung W.H., Huang W.S., Lin W.C., Lin W.Y., Jiang Y.R., et al. Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method. J. Taiwan Inst. Chem. Eng. 2013;44(4):660–669. https://doi.org/10.1016/j.jtice.2013.01.005; Kumazawa H., Kagimoto T., Kawabata A. Preparation of barium titanate ultrafine particles from amorphous titania by a hydrothermal method and specific dielectric constants of sintered discs of the prepared particles. J. Mater. Sci. 1996;31(10):2599–2602. https://doi.org/10.1007/BF00687288; Ávila H.A., Ramajo L.A., Reboredo M.M., Castro M.S., Parra R. Hydrothermal synthesis of BaTiO3 from different Ti-precursors and microstructural and electrical properties of sintered samples with submicrometric grain size. Ceram. Int. 2011;37(7):2383–2390. https://doi.org/10.1016/j.ceramint.2011.03.032; Zhu X., Zhang Z., Zhu J., Zhou S., Liu Z. Morphology and atomic-scale surface structure of barium titanate nanocrystals formed at hydrothermal conditions. J. Cryst. Growth. 2009;311(8):2437–2442. https://doi.org/10.1016/j.jcrysgro.2009.02.016; Zhu K., Qiu J., Kajiyoshi K., Takai M., Yanagisawa K. Effect of washing of barium titanate powders synthesized by hydrothermal method on their sinterability and piezoelectric properties. Ceram. Int. 2009;35(5):1947–1951. https://doi.org/10.1016/j.ceramint.2008.10.018; Hertl W. Kinetics of Barium Titanate Synthesis. J. Am. Ceram. Soc. 1988;71(10):879–883. https://doi.org/10.1111/j.1151-2916.1988.tb07540.x; MacLaren I., Ponton C.B. A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution. J. Eur. Ceram. Soc. 2000;20(9):1267–1275. https://doi.org/10.1016/S0955-2219(99)00287-3; Eckert J.O., Hung-Houston C.C., Gersten B.L., Lencka M.M., Riman R.E. Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate. J. Am. Ceram. Soc. 1996;79(11):2929–2939. https://doi.org/10.1111/j.1151-2916.1996.tb08728.x; Pinceloup P., Courtois C., Vincens J., Leriche A., Thierry B. Evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. J. Eur. Ceram. Soc. 1999;19(6–7):973–977. https://doi.org/10.1016/S0955-2219(98)00356-2; Walton R.I., Millange F., Smith R.I., Hansen T.C., O’Hare D. Real Time Observation of the Hydrothermal Crystallization of Barium Titanate Using in Situ Neutron Powder Diffraction. J. Am. Chem. Soc. 2001;123(50):12547–12555. https://doi.org/10.1021/ja011805p; Lencka M.M., Riman R.E. Hydrothermal synthesis of perovskite materials: Thermodynamic modeling and experimental verification. Ferroelectrics. 1994;151(1): 159–164. https://doi.org/10.1080/00150199408244737; Lencka M.M., Riman R.E. Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders. Chem. Mater. 1993;5(1):61–70. https://doi.org/10.1021/cm00025a014; Akbulut Özen S., Özen M., Şahin M., Mertens M. Study of the hydrothermal crystallization process of barium titanate by means of X-ray mass attenuation coefficient measurements at an energy of 59.54 keV. Mater. Charact. 2017;129:329–335. https://doi.org/10.1016/j.matchar.2017.05.006; Neubrand A., Lindner R., Hoffmann P. Room-Temperature Solubility Behavior of Barium Titanate in Aqueous Media. J. Am. Ceram. Soc. 2004;83(4):860–864. https://doi.org/10.1111/j.1151-2916.2000.tb01286.x; Kholodkova A.A., Danchevskaya M.N., Ivakin Y.D., Muravieva G.P. Synthesis of fine-crystalline tetragonal barium titanate in low-density water fluid. J. Supercrit. Fluids. 2015;105:201–208. https://doi.org/10.1016/j.supflu.2015.05.004; Kholodkova A.A., Danchevskaya M.N., Ivakin Y.D., Muravieva G.P., Tyablikov A.S. Crystalline barium titanate synthesized in sub- and supercritical water. J. Supercrit. Fluids. 2016;117:194–202. https://doi.org/10.1016/j.supflu.2016.06.018; Hayashi H., Noguchi T., Islam N.M., Hakuta Y., Imai Y., Ueno N. Hydrothermal synthesis of BaTiO3 nanoparticles using a supercritical continuous flow reaction system. J. Cryst. Growth. 2010;312(12–13):1968–1972. https://doi.org/10.1016/j.jcrysgro.2010.03.034; Hakuta Y., Ura H., Hayashi H., Arai K. Effect of water density on polymorph of BaTiO3 nanoparticles synthesized under sub and supercritical water conditions. Mater. Lett. 2005;59(11):1387–1390. https://doi.org/10.1016/j.matlet.2004.11.063; Aoyagi S., Kuroiwa Y., Sawada A., Kawaji H., Atake T. Size effect on crystal structure and chemical bonding nature in BaTiO3 nanopowder. J. Therm. Anal. Calorim. 2005;81(3): 627–630. https://doi.org/10.1007/s10973-005-0834-z; Frey M.H., Payne D.A. Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B. Condens. Matter. 1996;54(5):3158–3168. https://doi.org/10.1103/physrevb.54.3158; Hennings D., Schnell A., Simon G. Diffuse Ferroelectric Phase Transitions in Ba(Ti1−yZry)O3 Ceramics. J. Am. Ceram. Soc. 1982;65(11):539–544. https://doi.org/10.1111/j.1151-2916.1982.tb10778.x; Lee T., Aksay I.A. Hierarchical Structure−Ferroelectricity Relationships of Barium Titanate Particles. Cryst. Growth Des. 2001;1(5):401–419. https://doi.org/10.1021/cg010012b; Kozawa T., Onda A., Yanagisawa K. Accelerated formation of barium titanate by solid-state reaction in water vapour atmosphere. J. Eur. Ceram. Soc. 2009;29(15):3259–3264. https://doi.org/10.1016/j.jeurceramsoc.2009.05.031; Buscaglia V., Buscaglia M.T. Synthesis and Properties of Ferroelectric Nanotubes and Nanowires: A Review. In: Alguero M., Gregg J.M., Mitoseriu L. (Eds.). Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects. First Edit. John Wiley & Sons; 2016. P. 200–231. https://doi.org/10.1002/9781118935743.ch8; Bao N., Shen L., Gupta A., Tatarenko A., Srinivasan G., Yanagisawa K. Size-controlled one-dimensional monocrystalline BaTiO3 nanostructures. Appl. Phys. Lett. 2009;94(25):253109. https://doi.org/10.1063/1.3159817; Maxim F., Ferreira P., Vilarinho P. Strategies for the Structure and Morphology Control of BaTiO3 Nanoparticles. In: New Applications for Nanomaterials. Series: Micro and Nanoengineering. 2014. V. 22. P. 83–97.; Yosenick T.J., Miller D.V., Kumar R., Nelson J.A., Randall C.A., Adair J.H. Synthesis of nanotabular barium titanate via a hydrothermal route. J. Mater. Res. 2005;20(4):837–843. https://doi.org/10.1557/JMR.2005.0117; Kong X., Hu D., Ishikawa Y., Tanaka Y., Feng Q. Solvothermal Soft Chemical Synthesis and Characterization of Nanostructured Ba1−x(Bi0.5K0.5)xTiO3 Platelike Particles with Crystal-Axis Orientation. Chem. Mater. 2011;23(17): 3978–3986. https://doi.org/10.1021/cm2015252; Huang K.C., Huang T.C., Hsieh W.F. Morphology-controlled synthesis of barium titanate nanostructures. Inorg. Chem. 2009;48(19):9180–9184. https://doi.org/10.1021/ic900854x; Feng Q., Hirasawa M., Yanagisawa K. Synthesis of crystalaxis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process. Chem. Mater. 2001;13(2):290–296. https://doi.org/10.1021/cm000411e; Kang S.O., Park B.H., Kim Y.Il. Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction. Cryst. Growth Des. 2008;8(9):3180–3186. https://doi.org/10.1021/cg700795q; Li Y., Gao X.P., Pan G.L., Yan T.Y., Zhu H.Y. Titanate nanofiber reactivity: Fabrication of MTiO3 (M = Ca, Sr, and Ba) perovskite oxides. J. Phys. Chem. C. 2009;113(11): 4386–4394. https://doi.org/10.1021/jp810805f; Xue L., Yan Y. Controlling the morphology of nanostructured barium titanate by hydrothermal method. J. Nanosci. Nanotechnol. 2010;10(2):973–979. https://doi.org/10.1166/jnn.2010.1884; Bao N., Shen L., Srinivasan G., Yanagisawa K., Gupta A. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C. 2008;112(23):8634–8642. https://doi.org/10.1021/jp802055a; Kanatzidis M.G., Poeppelmeier K.R., Bobev S., Guloy A.M., Hwu S.J., Lachgar A., et al. Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences. Prog. Solid State Chem. 2008;36(1–2):1–133. https://doi.org/10.1016/j.progsolidstchem.2007.02.002; Özen M., Mertens M., Snijkers F., Hondt H.D., Cool P. Molten-salt synthesis of tetragonal micron-sized barium titanate from a peroxo-hydroxide precursor. Adv. Powder Technol. 2017;28(1):146–154. https://doi.org/10.1016/j.apt.2016.09.007; Gorokhovsky A.V., Escalante-Garcia J.I., Sánches-Monjarás T., Vargas-Gutierrez G. Synthesis of barium titanate powders and coatings by treatment of TiO2 with molten mixtures of Ba(NO3)2, KNO3 and KOH. Mater. Lett. 2004;58(17–18):2227–3220. https://doi.org/10.1016/j.matlet.2004.01.025; Zhang Y., Wang L., Xue D. Molten salt route of well dispersive barium titanate nanoparticles. Powder Technol. 2012;217: 629–633. https://doi.org/10.1016/j.powtec.2011.11.043; Zhao W., E L., Ya J., Liu Z., Zhou H. Synthesis of HighAspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics. Bull. Korean Chem. Soc. 2012;33(7):2305–2308. https://doi.org/10.5012/bkcs.2012.33.7.2305

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20