Showing 1 - 20 results of 145 for search '"СЕГНЕТОЭЛЕКТРИК"', query time: 0.83s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: The study was carried out at the expense of the grant of the Russian Science Foundation, No. 22-19-00493, https://rscf.ru/en/project/22-19-00493/, Исследование выполнено за счет гранта Российского научного фонда № 22-19-00493, https://rscf.ru/project/22-19-00493/

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 3 (2024); 278-282 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 3 (2024); 278-282 ; 2413-6387 ; 1609-3577

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/586/461; Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат; 2011. 175 с.; Park J.Y., Yang K., Lee D.H., Kim S.H., Lee Y., Reddy P.R.S., Jones J.L., Park M.H. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials-device integration perspective. Journal of Applied Physics. 2020; 128(24): 240904. https://doi.org/10.1063/5.0035542; Wang B., Huang W., Chi L., Al-Hashimi M., Marks T.J., Facchetti A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chemical Reviews. 2018; 118(11): 5690—5754. https://doi.org/10.1021/acs.chemrev.8b00045; Du D., Hu J., Kawasaki J.K. Strain and strain gradient engineering in membranes of quantum materials featured. Applied Physics Letters. 2023; 122(17): 170501. https://doi.org/10.1063/5.0146553; Zhang K., Ren Y., Cao Y. Mechanically tunable elastic modulus of freestanding Ba1-xSrxTiO3 membranes via phase-field simulation. Applied Physics Letters. 2022; 121(15): 152902. https://doi.org/10.1063/5.0099772; Ko D.L., Tsai M.F., Chen J.W., Shao P.W., Tan Y.Z., Wang J.J., Ho S.Z., Lai Y.H., Chueh Y.L., Chen Y.C., Tsai D.P., Chen L-Q., Chu Y.H. Mechanically controllable nonlinear dielectrics. Science Advances. 2020; 6(10): eaaz3180. https://doi.org/10.1126/sciadv.aaz3180; Xu R., Huang J., Barnard E.S., Hong S.S., Singh P., Wong E.K., Jansen T., Harbola V., Xiao J., Wang B.Y., Crossley S., Lu D., Liu S., Hwang H.Y. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nature Communications. 2020; 11: 3141. https://doi.org/10.1038/s41467-020-16912-3; Wang B., Lu H., Bark C.W., Eom C-B., Gruverman A., Chen L-Q. Mechanically induced ferroelectric switching in BaTiO3 thin films. Acta Materialia. 2020; 193: 151—162. https://doi.org/10.1016/j.actamat.2020.04.032; Иванов М.С., Афанасьев М.С. Особенности формирования тонких сегнетоэлектрических пленок BaxSr1-xTiO3 на различных подложках методом высокочастотного распыления. Физика твердого тела. 2009; 51(7): 1259—1262.; Киселев Д.А., Афанасьев М.С., Левашов С.А., Чучева Г.В. Кинетика роста индуцированных доменов в сегнетоэлектрических тонких пленках Ba0.8Sr0.2TiO3. Физика твердого тела. 2015; 57(6): 1134—1137.; Goldman E.I., Chucheva G.V., Belorusov D.A. On the form of high-frequency voltage-capacitance characteristics of metal-insulator-semiconductor structures with a ferroelectric insulating layer BaxSr1-хTiO3. Ceramics International. 2021; 47(15): 21248—21252. https://doi.org/10.1016/j.ceramint.2021.04.129; Goldman E.I., Chucheva G.V., Belorusov D.A. The role of а buffer layer at the contact with silicon in structures with an insulating gap made of a material replacing SiO2. Ceramics International. 2024; 50(6): 9678—9681. https://doi.org/10.1016/j.ceramint.2023.12.286; https://met.misis.ru/jour/article/view/586

  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Source: The Herald of the Siberian State University of Telecommunications and Information Science; № 3 (2009); 10-22 ; Вестник СибГУТИ; № 3 (2009); 10-22 ; 1998-6920

    File Description: application/pdf

    Relation: https://vestnik.sibsutis.ru/jour/article/view/630/585; Волков Б.А., Панкратов О.А. Ян-теллеровская неустойчивость кристаллического окружения точечных дефектов в полупроводниках А4В6 // ДАН СССР. 1980. Т. 255, № 1. С. 93 - 97.; Драбкин И.А., Мойжес Б.Я. Спонтанная диссоциация нейтральных состояний примесей на положительно и отрицательно заряженные состояния // ФТП. 1981. Т. 15, № 4. С. 625 - 647.; Акимов А.Н., Ерков В.Г., Климов А.Э., Молодцова Е.Л., Супрун С.П., Шумский В.Н. Токи инжекции в узкозонном диэлектрике Pb1-xSnxTe // ФТП. 2005. Т. 39, № 5. С. 563 - 568.; Насыббулин Р.А., Калимуллин Р.Х., Шапкин В.В., Харионовский Ю.С., Джумиго А.М., Бурсиан Э.В. Высокотемпературные фазовые переходы в твёрдых растворах Pb1-xSnxTe // ФТТ. 1981. Т. 23, № 1. С. 300 - 302.; Климов А.Э., Шумский В.Н. Фотодиэлектрический эффект в эпитаксиальных плёнках PbSnTe , полученных методом молекулярно-лучевой эпитаксии // Автометрия. 2001. № 3. С. 65 - 75.; Вул Б.М., Воронова И.Д., Калюжная Г.А., Мамедов Т.С., Рагимова Т.Ш. Особенности явлений переноса в Pb0.78Sn0.22Te с большим содержанием индия // Письма ЖЭТФ. 1979. Т. 29, № 1. С. 21 - 25.; Акимов Б.А., Брандт Б.А., Богословский С.А., Рябова Л.И., Чудинов С.М. Неравновесное металлическое состояние в сплавах Pb1-xSnxTe(In) // Письма ЖЭТФ. 1979. Т. 29, № 1. С. 11 - 14.; Виноградов B.C., Воронова И.Д., Калюжная Г.А., Рагимова Т.Ш., Шотов А.П. Эффект Холла и фотопроводимость в Pb1-xSnxTe с индием // Письма в ЖЭТФ. 1980. Т. 32, № 1. С. 22 - 26.; Каган Ю., Кикоин К.А. Туннельная примесная автолокализация в полупроводниках. Природа аномальных свойств соединений Pb1-xSnxTe с примесью In // Письма ЖЭТФ. 1980. Т. 31, № 6. С. 367 - 371.; Виноградов В.С., Воронова И.Д., Рагимова Т.Ш., Шотов А.П. Модель флуктуационного примесного потенциала. Описание фотоэлектрических и гальваномагнитных явлений в Pb1-xSnxTe с примесью In // ФТП. 1981. Т. 15, № 2. С. 361 - 368.; Herrmann K. H., Kalyuzhnaya G. A., Möllmann K.-P., and Wendt M. Photoelectric behaviour in Pb0.78Sn0.22Te:In // Phys. Stat. Sol (a). 1982. V. 71. P. K21 - K24.; Драбкин И.А., Мойжес Б.Я. О фотопроводимости Pb1-xSnxTe, легированного In // ФТП. 1983. Т. 17, № 6. С. 969 - 972.; Засавицкий И.И., Матвеенко А.В., Мацоношвили Б.Н., Трофимов В.Т. Спектр фотопроводимости эпитаксиальных слоёв Pb1-xSnxTe : In // ФТП. 1986. Т. 20, № 2. С. 214 - 220.; Хохлов Д.Р., Чесноков С.Н. Релаксация задержанной фотопроводимости в электрическом поле в сплавах Pb1-xSnxTe (In) // ФТП. 1992. Т. 26, № 6. С. 1135 - 1138.; Акимов Б.А., Зломанов В.П., Рябова Л.И., Хохлов Д.Р. Перспективные материалы ИК-оптоэлектроники на основе соединений группы АIVВVI // Высокочистые вещества. 1991. № 6. С. 22 - 34.; Климов А.Э., Шумский В.Н. Многоэлементные фотоприёмные устройства дальнего ИК- диапазона на основе гетероэпитаксиальных плёнок PbSnTe, легированных In, на BaF2. В кн. «Матричные фотоприемные устройства инфракрасного диапазона». Под ред. С.П. Синицы. Новосибирск: Наука, 2001. С. 308 - 372.; Emtage P.R. Auger recombination and junction resistance in lead-tin-telluride // J. Appl. Phys. 1976. V. 47, № 6. P. 2565 - 2576.; Lishka K., Durstberger, Lindermann G., Staudinger H. Defect states in Рb1-xSnxТе // Phys. Stat. Sol. 1984. V. 123. P. 319 - 324.; Borodin V.V., Klimov A.E., Shumsky V.N. Recombination in PbSnTe at low temperatures // Narrow Gap Semiconductors. Eds. Shen S.C., Tang D.V., Zheng G.V., Bauer G. World Scientific, 1997. P. 361 - 364.; Климов А.Э., Шумский В.Н. Фоточувствительность плёнок Pb1-xSnxTe:In в области собственного поглощения // ФТП. 2008. Т. 42, № 2. С. 147 - 152.; Khokhlov D.R, Ivanchik I.I., Raines S.N., Watson D.M. and Pipher J.L. Performance and spectral response of Pb1-xSnxTe (In) far-infrared detectors // Appl. Phys. Lett. 2000.V.76, № 20. P.2835 - 2837.; Климов А.Э., Шумский В.Н. Фотоёмкостной эффект в узкозонном PbSnTe // Прикладная физика. 2004. № 3. C.74 - 78.; Klimov A., Shumsky V. and Kubarev V. Terahertz sensitivity of Pb1-xSnxTe:In. Ferroelectrics. 2007. V. 347. P. 111 - 119.; Акимов А.Н., Беленчук А.В., Ерков В.Г., Климов А.Э., Неизвестный И.Г., Шаповал О.М., Шумский В.Н. Чувствительность плёнок PbSnTe:In к субмиллиметровому излучению в условиях полевой инжекции электронов. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 2007. № 12. С. 20 - 26.; Ламперт М., Марк П. Инжекционные токи в твёрдых телах. М.: Мир, 1973. 416 с.; Белогорохов А.И., Белов А.Г., Неизвестный И.Г., Пусеп Ю.А, Синюков М.П. Определение температуры фазового перехода в твёрдом растворе по размягчению длинноволновой плазмон-фононной моды // ЖЭТФ. 1987. T. 92, № 3. С. 869 - 873.; https://vestnik.sibsutis.ru/jour/article/view/630

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 65, № 2 (2020); 145-152 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 65, № 2 (2020); 145-152 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2020-65-2

    File Description: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/593/483; Пятаков, А.П. Магнитоэлектрические материалы и мультиферроики / А.П. Пятаков, А.К. Звездин // Успехи физ. наук. – 2012. – Т. 182, № 5. – С. 593–620. https://doi.org/10.3367/UFNr.0182.201206b.0593; Белоус, А. Г. Мультиферроики: синтез, структура и свойства / А.Г. Белоус, О.И. Вьюнов // Украин. хим. журн. – 2012. – Т. 78, № 7. – С. 41–70.; Смоленский, Г. А. Сегнетомагнетики / Г. А. Смоленский, И. Е. Чупис // Успехи физ. наук. – 1982. – Т.137, № 4. – С. 415–448. https://doi.org/10.3367/UFNr.0137.198207b.0415; Multiferroic magnetoelectric composites: Historical perspective, status, and future directions / Nan Ce-Wen [et al.] // J. Appl. Phys. – 2008. – Vol. 103, iss. 3. – P. 031101-1. https://doi.org/10.1063/1.2836410; Giant Magneto-Electric Effect in Laminate Composites / S. X. Dong [et al.] // IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. – 2003. – Vol. 50. – P. 1236–1239. https://doi.org/10.1080/09500830310001621605; Novel magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides / G. Srinivasan [et al.] // Phys. Rev. B: Condens. Matter. – 2001. – Vol. 64. – 214408-1-6. https://doi.org/10.1103/PhysRevB.64.214408; Перов, Н.С. Резонансное магнитоэлектрическое взаимодействие в несимметричной биморфной структуре ферромагнетик-сегнетоэлектрик. / Н. С. Перов, Л.Ю. Фетисов, Ю. К. Фетисов // Письма в Журн. техн. физики. – 2011. – Т. 37, вып. 6. – C. 1–7.; Srinivasan, G. Influence of bias electrical field on magnetoelectric interactions in ferromagnetic-piezoelectric layered structures / G. Srinivasan, Y. K. Fetisov, L. Y. Fetisov // Appl. Phys. Lett. – 2009. – Vol. 94. – P.132507-3. https://doi.org/10.1063/1.3114406.; Формирование плоскопараллельной межфазной границы в гетероструктуре Ni/PbZr0.2Ti0.8O3 / А. И. Стогний [и др.] // Неорган. материалы. – 2012. – Т. 48, №8. – С. 947–951.; Магнитоэлектрический эффект в планарных структурах аморфный ферромагнетик FeNiSiC – пьезоэлектрик / Л.Ю. Фетисов [и др.] // Журн. техн. физики. – 2011. – Т. 81, № 4. – C. 56–61.; Preparation and investigation of the magnetoelectric properties in layered cermet structures / A. I. Stognij [et al.] // Ceramics International. – 2019. – Vol. 45, № 10. – P. 13030–13036. https://doi.org/10.1016/j.ceramint.2019.03.234; Магнитоэлектрический эффект в структурах на основе металлизированных подложек арсенида галлия / В. М. Лалетин [и др.] // Письма в Журн. техн. физики. – 2014. – Т. 40, №21. – С. 71–78.; Processing, Structure, Properties, and Applications of PZT Thin Films / N. Izyumskaya [et al.] // Crit. Rev. Solid State Mater. Sci. – 2007. – Vol. 32, №3. – P. 111–202. https://doi.org/10.1080/10408430701707347; Magnetoelectric effects in porous ferromagnetic-piezoelectric bulk composites: Experiment and theory / V.M. Petrov [et al.] // Phys. Rev. B. – 2007. – Vol. 75. – P. 174422. https://doi.org/10.1103/PhysRevB.75.174422; Dependence of magnetoelectric effect in layered lead zirconate-titanate/nickel heterostructures on the interface type / N. N. Poddubnaya [et al.] // Funct. Mater. – 2010. – Vol. 17, №3. – P. 329–334.; Ziegler, J.F. The Stopping and Range of Ions in Solids / J. F. Ziegler, J.P. Birsack, U. Littmark. – New York: Pergamon Press, 1985. – 485 p.; О визуализации области магнитоэлектрического взаимодействия тонкого слоя ферромагнетика на сегнетоэлектрической подложке / А.И. Стогний [и др.] // Неорган. материалы. – 2019. – Т. 55, № 3. – С. 311–316.; Ионно-лучевая инженерия многослойной наноструктуры Co/TiO2 / А.И. Стогний [и др.] // Письма в Журн. техн. физики. – 2010. – Т. 36, вып. 9. – С. 73–81.; https://vestift.belnauka.by/jour/article/view/593

  14. 14
    Academic Journal

    Contributors: Ministry of Science and Higher Education of the Russian Federation, Russian Science Foundation, Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках Государственного задания (фундаментальные исследования, проект № 0718-2020-0031 «Новые магнитоэлектрические композитные материалы на основе оксидных сегнетоэлектриков с упорядоченной доменной структурой: получение и свойства». Авторы благодарят Российский научный фонд за финансовую поддержку в части подготовки глав обзора, посвященных прикладному применению бидоменных кристаллов, оказанную в рамках проекта № 19-19-00626 «Разработка высокоскоростного сканирующего ион-проводящего микроскопа для изучения динамических процессов мембран живых клеток».

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 1 (2020); 5-56 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 1 (2020); 5-56 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-1

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/383/340; Wong K. K. (Ed.) Properties of Lithium Niobate. London: The Institution of Electrical Engineers, 2002. 429 p.; Volk T., Wöhlecke M. Lithium Niobate. V. 115. Berlin; Heidelberg: Springer, 2008. DOI:10.1007/978-3-540-70766-0; Wooten E. L., Kissa K. M., Yi-Yan A., Murphy E. J., Lafaw D. A., Hallemeier P. F., Maack D., Attanasio D. V., Fritz D. J., McBrien G. J., Bossi D. E. A review of lithium niobate modulators for fiber-optic communications systems // IEEE J. Sel. Top. Quantum Electron. 2000. V. 6, N 1. P. 69—82. DOI:10.1109/2944.826874; Turner R. C., Fuierer P. A., Newnham R. E., Shrout T. R. Materials for high temperature acoustic and vibration sensors: A review // Appl. Acoust. 1994. V. 41, N 4. P. 299—324. DOI:10.1016/0003-682X(94)90091-4; Ruppel C. C. W. Acoustic Wave Filter Technology. A Review // IEEE Tran. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64, N 9. P. 1390—1400. DOI:10.1109/TUFFC.2017.2690905; Passaro V. M. N., Magno F. Holographic gratings in photorefractive materials: A review // Laser Phys. 2007. V. 17, N 3. P. 231—243. DOI:10.1134/S1054660X07030012; Kwak C. H., Kim G. Y., Javidi B. Volume holographic optical encryption and decryption in photorefractive LiNbO3: Fe crystal // Opt. Commun. 2019. V. 437. P. 95—103. DOI:10.1016/j.optcom.2018.12.049; Chauvet M., Henrot F., Bassignot F., Devaux F., Gauthier-Manuel L., Pêcheur V., Maillotte H., Dahmani B. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon // J. Opt. 2016. V. 18, N 8. P. 085503. DOI:10.1088/2040-8978/18/8/085503; Tomita I. Highly efficient cascaded difference-frequency generation in periodically poled LiNbO3 devices with resonators // IEEJ Trans. Electr. Electron. Eng. 2018. V. 13, N 8. P. 1214—1215. DOI:10.1002/tee.22687; Sharapova P. R., Luo K. H., Herrmann H., Reichelt M., Meier T., Silberhorn C. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits // New J. Phys. 2017. V. 19, N 12. P. 123009. DOI:10.1088/1367-2630/aa9033; Zaltron A., Bettella G., Pozza G., Zamboni R., Ciampolillo M., Argiolas N., Sada C., Kroesen S., Esseling M., Denz C. Integrated optics on Lithium Niobate for sensing applications // Proc. SPIE. Optical Sensors. 2015. V. 9506. P. 950608. DOI:10.1117/12.2178457; Janaideh M. Al, Rakheja S., Su C.-Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator // Mechatronics. 2009. V. 19, N 5. P. 656—670. DOI:10.1016/j.mechatronics.2009.02.008; Devasia S., Eleftheriou E., Moheimani S. O. R. A Survey of control issues in nanopositioning // IEEE Trans. Control Syst. Technol. 2007. V. 15, N 5. P. 802—823. DOI:10.1109/TCST.2007.903345; Hall D. A. Nonlinearity in piezoelectric ceramics // J. Mater. Sci. 2001. V. 36, N 19. P. 4575—4601. DOI:10.1023/A:1017959111402; Zhou D., Kamlah M. Room-temperature creep of soft PZT under static electrical and compressive stress loading // Acta Mater. 2006. V. 54, N 5. P. 1389—1396. DOI:10.1016/j.actamat.2005.11.010; Zhao X., Zhang C., Liu H., Zhang G., Li K. Analysis of Hysteresis-Free Creep of the Stack Piezoelectric Actuator // Math. Probl. Eng. 2013. V. 2013. P. 1—10. DOI:10.1155/2013/187262; Croft D., Shed G., Devasia S. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application // J. Dynamic Systems, Measurement and Control. 2001. V. 123, N 1. P. 35—43. DOI:10.1115/1.1341197; Rosenman G., Kugel V. D., Shur D. Diffusion-induced domain inversion in ferroelectrics // Ferroelectrics. 1995. V. 172, N 1. P. 7—18. DOI:10.1080/00150199508018452; Kubasov I. V., Kislyuk A. M., Turutin A. V., Bykov A. S., Kiselev D. A., Temirov A. A., Zhukov R. N., Sobolev N. A., Malinkovich M. D., Parkhomenko Y. N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal // Sensors. 2019. V. 19, N 3. P. 614. DOI:10.3390/s19030614; Palatnikov M. N., Sandler V. A., Sidorov N. V., Makarova O. V., Manukovskaya D. V. Conditions of application of LiNbO3 based piezoelectric resonators at high temperatures // Phys. Lett. A. 2020. V. 384, N 14. P. 126289. DOI:10.1016/j.physleta.2020.126289; Islam M. S., Beamish J. Piezoelectric creep in LiNbO3, PMN-PT and PZT-5A at low temperatures // J. Appl. Phys. 2019. V. 126, N 20. P. 204101. DOI:10.1063/1.5119351; Nakamura K., Shimizu H. Local domain inversion in ferroelectric crystals and its application to piezoelectric devices // Proc. IEEE Ultrasonics Symposium. P. 309—318. DOI:10.1109/ULTSYM.1989.67000; Nakamura K. antipolarity domains formed by heat treatment of ferroelectric crystals and their applications // Jpn. J. Appl. Phys. 1992. V. 31, N S1. P. 9. DOI:10.7567/JJAPS.31S1.9; Zhang Z.-Y., Zhu Y., Wang H., Wang L., Zhu S., Ming N. Domain inversion in LiNbO3 and LiTaO3 induced by proton exchange // Phys. B: Condensed Matter. 2007. V. 398, N 1. P. 151—158. DOI:10.1016/j.physb.2007.05.011; Кузьминов Ю. С. Ниобат и танталат лития: материалы для нелинейной оптики. М.: Наука, 1975. 224 c.; Weis R. S., Gaylord T. K. Lithium niobate: Summary of physical properties and crystal structure // Appl. Phys. A.: Solids and Surfaces. 1985. V. 37, N 4. P. 191—203. DOI:10.1007/BF00614817; Toyoura K., Ohta M., Nakamura A., Matsunaga K. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate // J. Appl. Phys. 2015. V. 118, N 6. P. 064103. DOI:10.1063/1.4928461; Zhang Z.-G., Abe T., Moriyoshi C., Tanaka H., Kuroiwa Y. Synchrotron-radiation X-ray diffraction evidence of the emergence of ferroelectricity in LiTaO3 by ordering of a disordered Li ion in the polar direction // Appl. Phys. Express. 2018. V. 11, N 7. P. 071501. DOI:10.7567/APEX.11.071501; Sanna S., Schmidt W. G. Lithium niobate X -cut, Y-cut, and Z-cut surfaces from ab initio theory // Phys. Rev. B. 2010. V. 81, N 21. P. 214116. DOI:10.1103/PhysRevB.81.214116; IEEE 176-1987 Standard on Piezoelectricity. New York: IEEE, 1988. DOI:10.1109/IEEESTD.1988.79638; Abrahams S. C., Buehler E., Hamilton W. C., Laplaca S. J. Ferroelectric lithium tantalate - 3. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940°K // J. Phys. Chem. Solids. 1973. V. 34, N 3. P. 521—532. DOI:10.1016/0022-3697(73)90047-4; Nakamura K., Hosoya M., Shimizu H. estimation of thickness of ferroelectric inversion layers in LiTaO3 plates by measuring piezoelectric responses // Jpn. J. Appl. Phys. 1990. V. 29, N S1. P. 95. DOI:10.7567/JJAPS.29S1.95; Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices // IEEE Ultrasonics Symposium, 1986. P. 719—722 DOI:10.1109/ULTSYM.1986.198828; Boyd G. D., Miller R. C., Nassau K., Bond W. L., Savage A. LiNbO3: an efficient phase matchable nonlinear optical material // Appl. Phys. Lett. 1964. V. 5, N 11. P. 234—236. DOI:10.1063/1.1723604; Kugel V. D., Rosenman G. Ferroelectric domain switching in heat-treated LiNbO3 crystals // Ferroelectr. Lett. Section. 1993. V. 15, N 3–4. P. 55—60. DOI:10.1080/07315179308204239; Малинкович М. Д., Кубасов И. В., Темиров А. А., Кислюк А. М., Игнатьева Я. В., Гончарова Ю. В., Jachalke S., Stöcker H., Пархоменко Ю. Н. Пироэлектрические свойства бидоменных кристаллов ниобата лития // Фундаментальные проблемы радиоэлектронного приборостроения. 2018. Т. 18, № 2. С. 426–429.; Nassau K., Levinstein H. J., Loiacono G. M. The domain structure and etching of ferroelectric lithium niobate // Appl. Phys. Lett. 1965. V. 6, N 11. P. 228—229. DOI:10.1063/1.1754147; Yamada T., Niizeki N., Toyoda H. Piezoelectric and elastic properties of lithium niobate single crystals // Jpn. J. Appl. Phys. 1967. V. 6, N 2. P. 151—155. DOI:10.1143/JJAP.6.151; Sones C. L., Mailis S., Brocklesby W. S., Eason R. W., Owen J. R. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations // J. Mater. Chem. 2002. V. 12, N 2. P. 295—298. DOI:10.1039/b106279b; Webjorn J., Laurell F., Arvidsson G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation // J. Lightwave Technology. 1989. V. 7, N 10. P. 1597—1600. DOI:10.1109/50.39103; Niizeki N., Yamada T., Toyoda H. Growth ridges, etched hillocks, and crystal structure of lithium niobate // Jpn. J. Appl. Phys. 1967. V. 6, N 3. P. 318—327. DOI:10.1143/JJAP.6.318; Sones C. L. Domain engineering techniques and devices in lithium niobate. Doctoral Thesis. University of Southampton, 2003, 167 p. URL: https://eprints.soton.ac.uk/15474/1/Sones_2003_thesis_2744.pdf; Güthner P., Dransfeld K. Local poling of ferroelectric polymers by scanning force microscopy // Appl. Phys. Lett. 1992. V. 61, N 9. P. 1137—1139. DOI:10.1063/1.107693; Soergel E. Piezoresponse force microscopy (PFM) // J. Phys. D: Appl. Phys. 2011. V. 44, N 46. P. 464003. DOI:10.1088/0022-3727/44/46/464003; Kalinin S. V., Bonnell D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces // Phys. Rev. B. 2002. V. 65, N 12. P. 125408. DOI:10.1103/PhysRevB.65.125408; Kubasov I. V., Timshina M. S., Kiselev D. A., Malinkovich M. D., Bykov A. S., Parkhomenko Y. N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing // Crystallogr. Rep. 2015. V. 60, N 5. P. 700—705. DOI:10.1134/S1063774515040136; Kubasov I. V., Kislyuk A. . M., Bykov A. S., Malinkovich M. D., Zhukov R. N., Kiselev D. A., Ksenich S. V., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing // Crystallogr. Rep. 2016. V. 61, N 2. P. 258—262. DOI:10.1134/S1063774516020115; Kislyuk A. M., Ilina T. S., Kubasov I. V., Kiselev D. A., Temirov A. A., Turutin A. V., Malinkovich M. D., Polisan A. A., Parkhomenko Y. N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy // Mod. Electron. Mater. 2019. V. 5, N 2. P. 51—60. DOI:10.3897/j.moem.5.2.51314; Кислюк А. М., Ильина Т. С., Кубасов И. В., Киселев Д. А., Темиров А. А., Турутин А. В., Малинкович М. Д., Полисан А. А., Пархоменко Ю. Н. Формирование стабильных индуцированных доменов в области заряженной междоменной границы в ниобате лития с помощью зондовой микроскопии // Известия вузов. Материалы электронной техники. 2019. Т. 22, № 1. С. 5—17. DOI:10.17073/1609-3577-2019-1-5-17; Yin Q. R., Zeng H. R., Li G. R., Xu Z. K. Near-field acoustic microscopy of ferroelectrics and related materials // Mater. Sci. Eng. B. 2003. V. 99, N 1–3. P. 2—5. DOI:10.1016/S0921-5107(02)00438-5; Yin Q. R., Zeng H. R., Yu H. F., Li G. R. Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material // J. Mater. Sci. 2006. V. 41, N 1. P. 259—270. DOI:10.1007/s10853-005-7244-2; Berth G., Hahn W., Wiedemeier V., Zrenner A., Sanna S., Schmidt W. G. Imaging of the ferroelectric domain structures by confocal raman spectroscopy // Ferroelectrics. 2011. V. 420, N 1. P. 44—48. DOI:10.1080/00150193.2011.594774; Rüsing M., Neufeld S., Brockmeier J., Eigner C., Mackwitz P., Spychala K., Silberhorn C., Schmidt W. G., Berth G., Zrenner A., Sanna S. Imaging of 180° ferroelectric domain walls in uniaxial ferroelectrics by confocal Raman spectroscopy: Unraveling the contrast mechanism // Phys. Rev. Mater. 2018. V. 2, N 10. P. 103801. DOI:10.1103/PhysRevMaterials.2.103801; Dierolf V., Sandmann C., Kim S., Gopalan V., Polgar K. Ferroelectric domain imaging by defect-luminescence microscopy // J. Appl. Phys. 2003. V. 93, N 4. P. 2295—2297. DOI:10.1063/1.1538333; Otto T., Grafström S., Chaib H., Eng L. M. Probing the nanoscale electro-optical properties in ferroelectrics // Appl. Phys. Lett. 2004. V. 84, N 7. P. 1168—1170. DOI:10.1063/1.1647705; Pei S.-C., Ho T.-S., Tsai C.-C., Chen T.-H., Ho Y., Huang P.-L., Kung A. H., Huang S.-L. Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics // Opt. Express. 2011. V. 19, N 8. P. 7153. DOI:10.1364/OE.19.007153; Bozhevolnyi S. I., Pedersen K., Skettrup T., Zhang X., Belmonte M. Far- and near-field second-harmonic imaging of ferroelectric domain walls // Opt. Commun. 1998. V. 152, N 4–6. P. 221—224. DOI:10.1016/S0030-4018(98)00176-X; Neacsu C. C., van Aken B. B., Fiebig M., Raschke M. B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3 // Phys. Rev. B. 2009. V. 79, N 10. P. 100107. DOI:10.1103/PhysRevB.79.100107; Sheng Y., Best A., Butt H.-J., Krolikowski W., Arie A., Koynov K. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation // Opt. Express. 2010. V. 18, N 16. P. 16539. DOI:10.1364/OE.18.016539; Kämpfe T., Reichenbach P., Schröder M., Haußmann A., Eng L. M., Woike T., Soergel E. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation // Phys. Rev. B. 2014. V. 89, N 3. P. 035314. DOI:10.1103/PhysRevB.89.035314; Cherifi-Hertel S., Bulou H., Hertel R., Taupier G., Dorkenoo K. D., Andreas C., Guyonnet J., Gaponenko I., Gallo K., Paruch P. Non-ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy // Nature Commun. 2017. V. 8, N 1. P. 15768. DOI:10.1038/ncomms15768; Irzhak D. V., Kokhanchik L. S., Punegov D. V., Roshchupkin D. V. Study of the specific features of lithium niobate crystals near the domain walls // Phys. Solid State. 2009. V. 51, N 7. P. 1500—1502. DOI:10.1134/S1063783409070452; Tasson M., Legal H., Peuzin J. C., Lissalde F. C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie // Phys. Status Solidi (a). 1975. V. 31, N 2. P. 729—737. DOI:10.1002/pssa.2210310246; Ballman A. A., Brown H. Ferroelectric domain reversal in lithium metatantalate // Ferroelectrics. 1972. V. 4, N 1. P. 189—194. DOI:10.1080/00150197208235761; Shur V. Y. Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 // J. Mater. Sci. 2006. V. 41, N 1. P. 199—210. DOI:10.1007/s10853-005-6065-7; Rosenman G., Urenski P., Agronin A., Rosenwaks Y., Molotskii M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy // Appl. Phys. Lett. 2003. V. 82, N 1. P. 103—105. DOI:10.1063/1.1534410; Shur V. Y., Chezganov D. S., Smirnov M. M., Alikin D. O., Neradovskiy M. M., Kuznetsov D. K. Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate // Appl. Phys. Lett. 2014. V. 105, N 5. P. 052908. DOI:10.1063/1.4891842; Kuroda A., Kurimura S., Uesu Y. Domain inversion in ferroelectric MgO : LiNbO3 by applying electric fields // Appl. Phys. Lett. 1996. V. 69, N 11. P. 1565—1567. DOI:10.1063/1.117031; Volk T. R., Kokhanchik L. S., Gainutdinov R. V., Bodnarchuk Y. V., Lavrov S. D. Domain formation on the nonpolar lithium niobate surfaces under electron-beam irradiation: A review // J. Advanced Dielectrics. 2018. V. 08, N 02. P. 1830001. DOI:10.1142/S2010135X18300013; Makio S., Nitanda F., Ito K., Sato M. Fabrication of periodically inverted domain structures in LiTaO3 and LiNbO3 using proton exchange // Appl. Phys. Lett. 1992. V. 61, N 26. P. 3077—3079. DOI:10.1063/1.107990; Pendergrass L. L. Ferroelectric microdomain reversal at room temperature in lithium niobate // J. Appl. Phys. 1987. V. 62, N 1. P. 231—236. DOI:10.1063/1.339186; Bermúdez V., Dutta P. S., Serrano M. D., Diéguez E. In situ poling of LiNbO3 bulk crystal below the Curie temperature by application of electric field after growth // J. Crystal Growth. 1996. V. 169, N 2. P. 409—412. DOI:10.1016/S0022-0248(96)00742-7; Malinkovich M. D., Bykov A. S., Kubasov I. V., Kiselev D. A., Ksenich S. V., Zhukov R. N., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators // Russ. Microelectron. 2016. V. 45, N 8–9. P. 582—586. DOI:10.1134/S1063739716080096; Tasson M., Legal H., Gay J. C., Peuzin J. C., Lissalde F. C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point // Ferroelectrics. 1976. V. 13, N 1. P. 479—481. DOI:10.1080/00150197608236646; Luh Y. S., Feigelson R. S., Fejer M. M., Byer R. L. Ferroelectric domain structures in LiNbO3 single-crystal fibers // J. Crystal Growth. 1986. V. 78, N 1. P. 135—143. DOI:10.1016/0022-0248(86)90510-5; Luh Y. S., Fejer M. M., Byer R. L., Feigelson R. S. Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications // J. Crystal Growth. 1987. V. 85, N 1–2. P. 264—269. DOI:10.1016/0022-0248(87)90233-8; Bykov A. S., Grigoryan S. G., Zhukov R. N., Kiselev D. A., Ksenich S. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method // Russ. Microelectron. 2014. V. 43, N 8. P. 536—542. DOI:10.1134/S1063739714080034; Быков А. С., Григорян С. Г., Жуков Р. Н., Киселев Д. А., Кубасов И. В., Малинкович М. Д., Пархоменко Ю. Н. Формирование бидоменной структуры в пластинах монокристаллических сегнетоэлектриков стационарным распределением температурных полей // Известия вузов. Материалы электронной техники. 2013. Т. 16, № 1. С. 11—17.; Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment // Appl. Phys. Lett. 1987. V. 50, N 20. P. 1413—1414. DOI:10.1063/1.97838; Barns R. L., Carruthers J. R. Lithium tantalate single crystal stoichiometry // J. Appl. Crystallogr. 1970. V. 3, N 5. P. 395—399. DOI:10.1107/s0021889870006490; Fukuma M., Noda J. Li in- and out-diffusion processes in LiNbO3 // Jpn. J. Appl. Phys. 1981. V. 20, N 10. P. 1861—1865. DOI:10.1143/JJAP.20.1861; Carruthers J. R., Kaminow I. P., Stulz L. W. diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate // Appl. Opt. 1974. V. 13, N 10. P. 2333. DOI:10.1364/AO.13.002333; Kaminow I. P., Carruthers J. R. Optical waveguiding layers in LiNbO3 and LiTaO3 // Appl. Phys. Lett. 1973. V. 22, N 7. P. 326—328. DOI:10.1063/1.1654657; Svaasand L. O., Eriksrud M., Nakken G., Grande A. P. Solid-solution range of LiNbO3 // J. Crystal Growth. 1974. V. 22, N 3. P. 230—232. DOI:10.1016/0022-0248(74)90099-2; Allemann J. A., Xia Y., Morriss R. E., Wilkinson A. P., Eckert H., Speck J. S., Levi C. G., Lange F. F., Anderson S. Crystallization behavior of Li1-5xTa1+xO3 glasses synthesized from liquid precursors // J. Mater. Res. 1996. V. 11, N 09. P. 2376—2387. DOI:10.1557/JMR.1996.0301; Bordui P. F., Norwood R. G., Bird C. D., Carella J. T. Stoichiometry issues in single-crystal lithium tantalate // J. Appl. Phys. 1995. V. 78, N 7. P. 4647—4650. DOI:10.1063/1.359811; Holman R. L. Novel uses of gravimetry in the processing of crystalline ceramics / In: Processing of Crystalline Ceramics (Materials Science Research, V. 11), H. (III) Palmour, R. F. Davis and T. M. Hare, Eds. New York: Plenum Press, 1978. P. 343—357.; Евланова Н. Ф., Рашкович Л. Н. Влияние отжига на доменную структуру монокристаллов метаниобата лития // Физика твердого тела. 1974. Т. 16, № 2. С. 555—557.; Evlanova N. L., Rashkovich L. N. Annealing Effect on domain-structure of lithium meta-niobate single-crystals // Sov. Phys. Solid State. 1974. V. 16. P. 354; Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3 // Jpn. J. Appl. Phys. 1977. V. 16, N 6. P. 1069—1070. DOI:10.1143/JJAP.16.1069; Hsu W.-Y., Gupta M. C. Domain inversion in MgO-diffused LiNbO3 // Appl. Opt. 1993. V. 32, N 12. P. 2049. DOI:10.1364/AO.32.002049; Kugel V. D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals // Appl. Phys. Lett. 1993. V. 62, N 23. P. 2902—2904. DOI:10.1063/1.109191; Kugel V. D., Rosenman G. Polarization reversal in LiNbO3 crystals under asymmetric diffusion conditions // Appl. Phys. Lett. 1994. V. 65, N 19. P. 2398—2400. DOI:10.1063/1.112687; Åhlfeldt H. Single-domain layers formed in heat-treated LiTaO3 // Appl. Phys. Lett. 1994. V. 64, N 24. P. 3213—3215. DOI:10.1063/1.111340; Pryakhina V. I., Greshnyakov E. D., Lisjikh B. I., Akhmatkhanov A. R., Alikin D. O., Shur V. Y., Bartasyte A. As-grown domain structure in lithium tantalate with spatially nonuniform composition // Ferroelectrics. 2018. V. 525, N 1. P. 47—53. DOI:10.1080/00150193.2018.1432926; Rosenman G., Kugel V. D., Angert N. Domain inversion in LiNbO3 optical waveguides // Ferroelectrics. 1994. V. 157, N 1. P. 111—116. DOI:10.1080/00150199408229491; Kubasov I., Kislyuk A., Ilina T., Shportenko A. Kiselev D., Turutin A., Temirov A., Malinkovich M., Parhomenko Yu. Charged domain walls in reduced bidomain lithium niobate single crystals. 2020. DOI:10.13140/RG.2.2.15387.00804; Yamamoto K., Mizuuchi K., Takeshige K., Sasai Y., Taniuchi T. Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation // J. Appl. Phys. 1991. V. 70, N 4. P. 1947—1951. DOI:10.1063/1.349477; Fujimura M., Suhara T., Nishihara H. Ferroelectric-domain inversion induced by SiO2 cladding for LiNbO3 waveguide SHG // Electronics Lett. 1991. V. 27, N 13. P. 1207. DOI:10.1049/el:19910752; Fujimura M., Suhara T., Nishihara H. LiNbO3 waveguide SHG devices based on a ferroelectric domain-inverted grating induced by SiO2 cladding // Electron. Commun. Jpn. (Pt II: Electronics). 1992. V. 75, N 12. P. 40—49. DOI:10.1002/ecjb.4420751205; Webjorn J., Laurell F., Arvidsson G. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide // IEEE Photonics Technol. Lett. 1989. V. 1, N 10. P. 316–318. DOI:10.1109/68.43360; Jackel J. L. Suppression of outdiffusion in titanium diffused LiNbO3: A review // J. Opt. Commun. 1982. V. 3, N 3. P. 82—85. DOI:10.1515/JOC.1982.3.3.82; Naumova I. I., Evlanova N. F., Gliko O. A., Lavrichev S. V. Czochralski-grown lithium niobate with regular domain structure // Ferroelectrics. 1997. V. 190, N 1. P. 107—112. DOI:10.1080/00150199708014101; Kracek F. C. The binary system Li2O–SiO2 // J. Phys. Chem. 1930. V. 34, N 12. P. 2641—2650. DOI:10.1021/j150318a001; Duan Y., Pfeiffer H., Li B., Romero-Ibarra I. C., Sorescu D. C., Luebke D. R., Halley J. W. CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach // Phys. Chem. Chem. Phys. 2013. V. 15, N 32. p. 13538—13558. DOI:10.1039/c3cp51659h; Migge H. Estimation of free energies for Li8SiO6 and Li4SiO4 and calculation of the phase diagram of the Li-Si-O system // J. Nuclear Mater. 1988. V. 151, N 2. P. 101—107. DOI:10.1016/0022-3115(88)90061-X; Kulkarni N. S., Besmann T. M., Spear K. E. Thermodynamic optimization of lithia-alumina // J. Am. Ceram. Soc. 2008. V. 91, N 12. P. 4074—4083. DOI:10.1111/j.1551-2916.2008.02753.x; Zuev M. G. Subsolidus phase relations in the Al2O3-Li2O-Ta2O5 (Nb2O5) systems // Russ. J. Inorg. Chem. 2007. V. 52, N 3. P. 424—426. DOI:10.1134/S0036023607030217; Konar B., Van Ende M.-A., Jung I.-H. Critical evaluation and thermodynamic optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 systems // Metall. Mater. Trans. B. 2018. V. 49, N 5. P. 2917—2944. DOI:10.1007/s11663-018-1349-x; Konar B., Kim D.-G., Jung I.-H. Coupled phase diagram experiments and thermodynamic optimization of the binary Li2O-MgO and Li2O-CaO systems and ternary Li2O-MgO-CaO system // Ceram. Int. 2017. V. 43, N 16. P. 13055—13062. DOI:10.1016/j.ceramint.2017.06.143; Ferriol M., Dakki A., Cohen-Adad M. T., Foulon G., Brenier A., Boulon G. Growth and characterization of MgO-doped single-crystal fibers of lithium niobate in relation to high temperature phase equilibria in the ternary system Li2O-Nb2O5-MgO // J. Crystal Growth. 1997. V. 178, N 4. P. 529—538. DOI:10.1016/S0022-0248(97)00002-X; Caccavale F., Chakraborty P., Mansour I., Gianello G., Mazzoleni M., Elena M. A secondary-ion-mass spectrometry study of magnesium diffusion in lithium niobate // J. Appl. Phys. 1994. V. 76, N 11. P. 7552—7558. DOI:10.1063/1.357988; Bremer T., Hertel P., Oelschig S., Sommerfeldt R., Heiland W. Depth profiling of magnesium- and titanium-doped LiNbO3 waveguides // Thin Solid Films. 1989. V. 175. P. 235—239. DOI:10.1016/0040-6090(89)90833-X; Koyama C., Nozawa J., Fujiwara K., Uda S. Effect of point defects on Curie temperature of lithium niobate // J. Am. Ceram. Soc. 2017. V. 100, N 3. P. 1118—1124. DOI:10.1111/jace.14701; Palatnikov M. N., Biryukova I. V., Makarova O. V., Efremov V. V., Kravchenko O. E., Skiba V. I., Sidorov N. V., Efremov I. N. Growth of heavily doped LiNbO3 crystals // Inorganic Mater. 2015. V. 51, N 4. P. 375—379. DOI:10.1134/S0020168515040123; Paul M., Tabuchi M., West A. R. Defect structure of Ni,Co-doped LiNbO3 and LiTaO3 // Chem. Mater. 1997. V. 9, N 12. P. 3206—3214. DOI:10.1021/cm970511t; Grabmaier B. C., Otto F. Growth and investigation of MgO-doped LiNbO3 // J. Crystal Growth. 1986. V. 79, N 1–3. P. 682—688. DOI:10.1016/0022-0248(86)90537-3; Hao L., Li Y., Zhu J., Wu Z., Deng J., Liu X., Zhang W. Fabrication and electrical properties of LiNbO3/ZnO/n-Si heterojunction // AIP Advances. 2013. V. 3, N 4. P. 042106. DOI:10.1063/1.4800705; Gupta V., Bhattacharya P., Yuzyuk Y. I., Katiyar R. S., Tomar M., Sreenivas K. Growth and characterization of c-axis oriented LiNbO3 film on a transparent conducting Al : ZnO inter-layer on Si // J. Mater. Res. 2004. V. 19, N 8. P. 2235—2239. DOI:10.1557/JMR.2004.0322; Lau C.-S., Wei P.-K., Su C.-W., Wang W.-S. Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides // IEEE Photonics Technol. Lett. 1992. V. 4, N 8. P. 872—875. DOI:10.1109/68.149892; Ohlendorf G., Richter D., Sauerwald J., Fritze H. High-temperature electrical conductivity and electro-mechanical properties of stoichiometric lithium niobate // Diffusion Fundamentals. 2008. V. 8. P. 6.1—6.7. URL: https://diffusion.uni-leipzig.de/pdf/volume8/diff_fund_8(2008)6.pdf; Schmidt R. V., Kaminow I. P. Metal-diffused optical waveguides in LiNbO3 // Appl. Phys. Lett. 1974. V. 25, N 8. P. 458—460. DOI:10.1063/1.1655547; Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide // J. Appl. Phys. 1979. V. 50, N 7. P. 4599—4603. DOI:10.1063/1.326568; Thaniyavarn S., Findakly T., Booher D., Moen J. Domain inversion effects in Ti-LiNbO3 integrated optical devices // Appl. Phys. Lett. 1985. V. 46, N 10. P. 933—935. DOI:10.1063/1.95825; Nozawa T., Miyazawa S. Ferroelectric microdomains in Ti-diffused LiNbO3 optical devices // Jpn. J. Appl. Phys. 1996. V. 35, N 1R. P. 107—113. DOI:10.1143/JJAP.35.107; Lim E. J., Fejer M. M., Byer R. L. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide // Electron. Lett. 1989. V. 25, N 3. P. 174. DOI:10.1049/el:19890127; Lim E. J., Hertz H. M., Bortz M. L., Fejer M. M. Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide // Appl. Phys. Lett. 1991. V. 59, N 18. P. 2207—2209. DOI:10.1063/1.106071; Cao X., Srivastava R., Ramaswamy R. V. Efficient quasi-phase-matched blue second-harmonic generation in LiNbO3 channel waveguides by a second-order grating // Opt. Lett. 1992. V. 17, N 8. P. 592. DOI:10.1364/OL.17.000592; Hua P.-R., Dong J.-J., Ren K., Chen Z.-X. Erasure of ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide by Li-rich vapor-transport equilibration // J. Alloys Compd. 2015. V. 626. P. 203—207. DOI:10.1016/j.jallcom.2014.12.001; Guenais B., Baudet M., Minier M., Le Cun M. Phase equilibria and curie temperature in the LiNbO3-xTiO2 system, investigated by DTA and x-ray diffraction // Mater. Res. Bull. 1981. V. 16, N 6. P. 643—653. DOI:10.1016/0025-5408(81)90263-4; Bordui P. F., Norwood R. G., Jundt D. H., Fejer M. M. Preparation and characterization of off-congruent lithium niobate crystals // J. Appl. Phys. 1992. V. 71, N 2. P. 875—879. DOI:10.1063/1.351308; Caccavale F., Chakraborty P., Quaranta A., Mansour I., Gianello G., Bosso S., Corsini R., Mussi G. Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides // J. Appl. Phys. 1995. V. 78, N 9. P. 5345—5350. DOI:10.1063/1.359713; Izquierdo G., West A. R. Phase equilibria in the system Li2O-TiO2 // Mater. Res. Bull. 1980. V. 15, N 11. P. 1655—1660. DOI:10.1016/0025-5408(80)90248-2; Villafuerte-Castrejón M. E., Aragón-Piña A., Valenzuela R., West A. R. Compound and solid-solution formation in the system Li2O-Nb2O5-TiO2 // J. Solid State Chem. 1987. V. 71, N 1. P. 103—108. DOI:10.1016/0022-4596(87)90147-2; Rice C. E., Holmes R. J. A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3 // J. Appl. Phys. 1986. V. 60, N 11. P. 3836—3839. DOI:10.1063/1.337777; Jackel J. L., Ramaswamy V., Lyman S. P. Elimination of out-diffused surface guiding in titanium-diffused LiNbO3 // Appl. Phys. Lett. 1981. V. 38, N 7. P. 509—511. DOI:10.1063/1.92433; Ranganath T. R., Wang S. Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides // Appl. Phys. Lett. 1977. V. 30, N 8. P. 376—379. DOI:10.1063/1.89438; Chen B., Pastor A. C. Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3 // Appl. Phys. Lett. 1977. V. 30, N 11. P. 570—571. DOI:10.1063/1.89263; Baron C., Cheng H., Gupta M. C. Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals // Appl. Phys. Lett. 1995. V. 481, N 1996. P. 481. DOI:10.1063/1.116420; Burns W. K., Bulmer C. H., West E. J. Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides // Appl. Phys. Lett. 1978. V. 33, N 1. P. 70—72. DOI:10.1063/1.90149; Miyazawa S., Guglielmi R., Carenco A. A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide // Appl. Phys. Lett. 1977. V. 31, N 11. P. 742—744. DOI:10.1063/1.89523; Tangonan G. L., Barnoski M. K., Lotspeich J. F., Lee A. High optical power capabilities of Ti-diffused LiTaO3 waveguide modulator structures // Appl. Phys. Lett. 1977. V. 30, N 5. P. 238—239. DOI:10.1063/1.89348; Rice C. E., Jackel J. L. HNbO3 and HTaO3: New cubic perovskites prepared from LiNbO3 and LiTaO3 via ion exchange // J. Solid State Chem. 1982. V. 41, N 3. P. 308—314. DOI:10.1016/0022-4596(82)90150-5; Jackel J. L., Rice C. E. Variation in waveguides fabricated by immersion of LiNbO3 in AgNO3 and TlNO3: The role of hydrogen // Appl. Phys. Lett. 1982. V. 41, N 6. P. 508—510. DOI:10.1063/1.93589; Jackel J. L., Rice C. E., Veselka J. J. Proton exchange for high-index waveguides in LiNbO3 // Appl. Phys. Lett. 1982. V. 41, N 7. P. 607—608. DOI:10.1063/1.93615; Jackel J. L., Rice C. E. Topotactic LiNbO3 to cubic perovskite structural transformation in LiNbO3 and LiTaO3 // Ferroelectrics. 1981. V. 38, N 1. P. 801—804. DOI:10.1080/00150198108209543; Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040603. DOI:10.1063/1.4931601; Ganshin V. A., Korkishko Y. N. H:LiNbO3 waveguides: effects of annealing // Opt. Commun. 1991. V. 86, N 6. P. 523—530. DOI:10.1016/0030-4018(91)90156-8; Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3 // Appl. Phys. Lett. 1990. V. 56, N 16. P. 1535—1536. DOI:10.1063/1.103213; Tourlog A., Nakamura K. Influence of proton-exchange conditions on ferroelectric domain inversion caused in LiTaO3 crystals // Proc. IEEE International Symposium on Applications of Ferroelectrics, 1994. P. 222—225. DOI:10.1109/ISAF.1994.522343; Åhlfeldt H., Webjörn J., Arvidsson G., Ahlfeldt H., Webjorn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides // IEEE Photonics Technol. Lett. 1991. V. 3, N 7. P. 638—639. DOI:10.1109/68.87938; Mizuuchi K., Yamamoto K. Characteristics of periodically domain-inverted LiTaO3 // J. Appl. Phys. 1992. V. 72, N 11. P. 5061—5069. DOI:10.1063/1.352035; Mizuuchi K., Yamamoto K., Taniuchi T. Second-harmonic generation of blue light in a LiTaO3 waveguide // Appl. Phys. Lett. 1991. V. 58, N 24. P. 2732. DOI:10.1063/1.104769; Mizuuchi K., Yamamoto K., Taniuchi T. Fabrication of first-order periodically domain-inverted structure in LiTaO3 // Appl. Phys. Lett. 1991. V. 59, N 13. P. 1538—1540. DOI:10.1063/1.106275; Yamamoto K., Mizuuchi K. Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide // IEEE Photonics Technol. Lett. 1992. V. 4, N 5. P. 435—437. DOI:10.1109/68.136477; Åhlfeldt H., Webjörn J. Single-domain layers formed in multidomain LiTaO3 by proton exchange and heat treatment // Appl. Phys. Lett. 1994. V. 64, N 1. P. 7—9. DOI:10.1063/1.110875; Mizuuchi K., Yamamoto K., Sato H. Domain inversion in LiTaO3 using proton exchange followed by heat treatment // J. Appl. Phys. 1994. V. 75, N 3. P. 1311—1318. DOI:10.1063/1.356409; Zhu Y.-Y., Zhu S.-N., Hong J.-F., Ming N.-B. Domain inversion in LiNbO3 by proton exchange and quick heat treatment // Appl. Phys. Lett. 1994. V. 65, N 5. P. 558—560. DOI:10.1063/1.112295; Zhu S.-N., Zhu Y.-Y., Zhang Z.-Y., Shu H., Hong J.-F., Ge C.-Z., Ming N.-B. The mechanism for domain inversion in LiNbO3 by proton exchange and rapid heat treatment // J. Phys.: Condensed Matter. 1995. V. 7, N 7. P. 1437—1440. DOI:10.1088/0953-8984/7/7/023; Zhang Z.-Y., Zhu Y.-Y., Zhu S.-N., Shu H., Wang H.-F., Hong J.-F., Ge C.-Z., Ming N.-B. Study on the formation mechanism of a complex domain structure in LiNbO3 // J. Appl. Phys. 1995. V. 77, N 8. P. 4136—4138. DOI:10.1063/1.359502; Zhu Y., Zhu S., Zhang Z., Shu H., Hong J., Ge C., Ming N. Formation of single-domain layers in multidomain LiNbO3 crystals by proton exchange and quick heat treatment // Appl. Phys. Lett. 1995. V. 66, N 4. P. 408—409. DOI:10.1063/1.114038; Zhang Z.-Y., Zhu Y.-Y., Zhu S.-N., Ming N.-B. Domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3 // Phys. Status Solidi (a). 1996. V. 153, N 1. P. 275—279. DOI:10.1002/pssa.2211530128; Kawaguchi T., Kitayama H., Imaeda M., Fukuda T. Domain-inverted growth of LiNbO3 films by liquid-phase epitaxy // J. Crystal Growth. 1997. V. 178, N 4. P. 524—528. DOI:10.1016/S0022-0248(97)00003-1; Tamada H., Yamada A., Saitoh M. LiNbO3 thin-film optical waveguide grown by liquid phase epitaxy and its application to second-harmonic generation // J. Appl. Phys. 1991. V. 70, N 5. P. 2536—2541. DOI:10.1063/1.349409; Ming N.-B., Hong J.-F., Feng D. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals // J. Mater. Sci. 1982. V. 17, N 6. P. 1663—1670. DOI:10.1007/BF00540793; Bender G., Meisen S., Herres N., Wild C., Koidl P. Deformation-induced ferroelectric domain pinning in chromium doped LiNbO3 // J. Crystal Growth. 1995. V. 152, N 4. P. 307—313. DOI:10.1016/0022-0248(95)00150-6; Uda S., Tiller W. A. The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3 // J. Crystal Growth. 1992. V. 121, N 1–2. P. 93—110. DOI:10.1016/0022-0248(92)90179-M; Bermúdez V., Callejo D., Caccavale F., Segato F., Agulló-Rueda F., Diéguez E. On the compositional nature of bulk doped periodic poled lithium niobate crystals // Solid State Commun. 2000. V. 114, N 10. P. 555—559. DOI:10.1016/S0038-1098(00)00086-7; Bermúdez V., Serrano M. D., Dutta P. S., Diéguez E. On the opposite domain nature of Er-doped lithium niobate crystals // Solid State Commun. 1999. V. 109, N 9. P. 605—609. DOI:10.1016/S0038-1098(98)00589-4; Capmany J., Montoya E., Bermúdez V., Callejo D., Diéguez E., Bausá L. E. Self-frequency doubling in Yb3+ doped periodically poled LiNbO3:MgO bulk crystal // Appl. Phys. Lett. 2000. V. 76, N 11. P. 1374—1376. DOI:10.1063/1.126036; Chen J., Zhou Q., Hong J. F., Wang W. S., Ming N. B., Feng D., Fang C. G. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3 // J. Appl. Phys. 1989. V. 66, N 1. P. 336—341. DOI:10.1063/1.343879; Sorokin N. G., Antipov V. V., Blistanov A. A. The regular domain structure in LiNbO3 and LiTaO3 // Ferroelectrics. 1995. V. 167, N 1. P. 267—274. DOI:10.1080/00150199508232322; Antipov V. V., Bykov A. S., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate single crystals by electrothermal method // Ferroelectrics. 2008. V. 374, N 1. P. 65—72. DOI:10.1080/00150190802427127; Miyazawa S. Response to "Comment on “Domain inversion effects in Ti-LiNbO3 integrated optical devices”" // Appl. Phys. Lett. 1986. V. 48, N 16. P. 1104—1105. DOI:10.1063/1.96612; Glass A. M. Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3 // Phys. Rev. 1968. V. 172, N 2. P. 564—571. DOI:10.1103/PhysRev.172.564; Savage A. Pyroelectricity and spontaneous polarization in LiNbO3 // J. Appl. Phys. 1966. V. 37, N 8. P. 3071—3072. DOI:10.1063/1.1703164; Seibert H., Sohler W. Ferroelectric microdomain reversal on Y-cut LiNbO3 surfaces // Proc. SPIE, Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications. 1991. V. 1362. P. 370. DOI:10.1117/12.24553; Pendergrass L. L. Ferroelectric Microdomains in Lithium Niobate // IEEE Ultrasonics Symposium, 1987. P. 231—236. DOI:10.1109/ULTSYM.1987.198960; Jorgensen P. J., Bartlett R. W. High temperature transport processes in lithium niobate // J. Phys. Chem. Solids. 1969. V. 30, N 12. P. 2639—2648. DOI:10.1016/0022-3697(69)90037-7; Tomeno I., Matsumura S. Elastic and dielectric properties of LiNbO3 // J. Phys. Soc. Jpn. 1987. V. 56, N 1. P. 163—177. DOI:10.1143/JPSJ.56.163; Peuzin J. C. Comment on “Domain inversion effects in Ti-LiNbO3 integrated optical devices” (Appl. Phys. Lett. 1985. V. 46. P. 933) // Appl. Phys. Lett. 1986. V. 48, N 16. P. 1104. DOI:10.1063/1.97016; Huanosta A., West A. R. The electrical properties of ferroelectric LiTaO3 and its solid solutions // J. Appl. Phys. 1987. V. 61, N 12. P. 5386—5391. DOI:10.1063/1.338279; Choi J. K., Auh K. H. Stress induced domain formation in LiNbO3 single crystals // J. Mater. Sci. 1996. V. 31, N 3. P. 643—647. DOI:10.1007/BF00367880; Lehnert H., Boysen H., Frey F., Hewat A., Radaelli P. A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3 // Zeitschrift für Kristallographie – Crystalline Materials. 1997. V. 212, N 10. DOI:10.1524/zkri.1997.212.10.712; Sugii K., Fukuma M., Iwasaki H. A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and X-ray diffraction methods // J. Mater. Sci. 1978. V. 13, N 3. P. 523—533. DOI:10.1007/BF00541802; Chen F., Kong L., Song W., Jiang C., Tian S., Yu F., Qin L., Wang C., Zhao X. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications // J. Materiomics. 2019. V. 5, N 1. P. 73—80. DOI:10.1016/j.jmat.2018.10.001; Nye J. F. Physical Properties of Crystals. Oxford: Clarendon Press, 1985. 352 p.; Rice C. E. The structure and properties of Li1-xHxNbO3 // J. Solid State Chem. 1986. V. 64, N 2. P. 188—199. DOI:10.1016/0022-4596(86)90138-6; Åhlfeldt H., Webjörn J., Thomas P. A., Teat S. J. Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3 // J. Appl. Phys. 1995. V. 77, N 9. P. 4467—4476. DOI:10.1063/1.359477; Ueda T., Takai Y., Shimizu R., Yagyu H., Matsushima T., Souma M. Cross-sectional transmission electron microscopic observation of etch hillocks and etch pits in LiTaO3 single crystal // Jpn. J. Appl. Phys. 2000. V. 39, N 3A. P. 1200—1202. DOI:10.1143/JJAP.39.1200; Malovichko G., Cerclier O., Estienne J., Grachev V., Kokanyan E., Boulesteix C. Lattice constants of K- and Mg-doped LiNbO3. Comparison with nonstoichiometric lithium niobate // J. Phys. Chem. Solids. 1995. V. 56, N 9. P. 1285—1289. DOI:10.1016/0022-3697(95)00058-5; Nakamura K., Fukazawa K., Yamada K., Saito S. An ultrasonic transducer for second imaging using a LiNbO3 plate with a local ferroelectric inversion layer // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006. V. 53, N 3. P. 651—655. DOI:10.1109/TUFFC.2006.1610575; Huang L., Jaeger N. A. F. Discussion of domain inversion in LiNbO3 // Appl. Phys. Lett. 1994. V. 65, N 14. P. 1763—1765. DOI:10.1063/1.112911; Mizuuchi K., Yamamoto K., Sato H. Fabrication of periodic domain inversion in an x-cut LiTaO3 // Appl. Phys. Lett. 1993. V. 62, N 16. P. 1860—1862. DOI:10.1063/1.109524; Gureev M. Y., Tagantsev A. K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric // Phys. Rev. B. 2011. V. 83, N 18. P. 184104. DOI:10.1103/PhysRevB.83.184104; Wan Z., Xi Y., Wang Q., Lu Y., Zhu Y., Ming N. Growth of LiNbO3 crystal with periodic ferroelectric domain structure by current-induction and its acoustic application // Ferroelectrics. 2001. V. 252, N 1. P. 273—280. DOI:10.1080/00150190108016266; Xi Y., Cross L. E. Lithium niobate bicrystal // Ferroelectrics. 1981. V. 38, N 1. P. 829—832. DOI:10.1080/00150198108209550; Smits J. G., Dalke S. I., Cooney T. K. The constituent equations of piezoelectric bimorphs // Sensors and Actuators A: Phys. 1991. V. 28, N 1. P. 41—61. DOI:10.1016/0924-4247(91)80007-C; Smits J. G., Ballato A. Dynamic admittance matrix of piezoelectric cantilever bimorphs // J. Microelectromechanical Systems. 1994. V. 3, N 3. P. 105—112. DOI:10.1109/84.311560; Goli J., Smits J. G., Ballato A. Dynamic bimorph matrix of end-loaded bimorphs // Proc. IEEE International Frequency Control Symposium (49th Annual Symposium), 1995. P. 794—797. DOI:10.1109/FREQ.1995.484086; Malinkovich M. D., Kubasov I. V., Kislyuk A. M., Turutin A. V., Bykov A. S., Kiselev D. A., Temirov A. A., Zhukov R. N., Sobolev N. A., Teixeira B. M. S., Parkhomenko Y. N. Modelling of vibration sensor based on bimorph structure // J. Nano- Electron. Phys. 2019. V. 11, N 2. P. 02033-1—02033-8. DOI:10.21272/jnep.11(2).02033; Uchino K. Piezoelectric ceramics for transducers / In: Ultrasonic Transducers, K. Nakamura (Ed.) Cambridge: Woodhead Publishing, 2012. P. 70—116. DOI:10.1533/9780857096302.1.70; Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer // Jpn. J. Appl. Phys. 1987. V. 26, N S2. P. 198. DOI:10.7567/JJAPS.26S2.198; Kubasov I. V., Popov A. V., Bykov A. S., Temirov A. A., Kislyuk A. M., Zhukov R. N., Kiselev D. A., Chichkov M. V., Malinkovich M. D., Parkhomenko Yu. N. Deformation anisotropy of Y+128°-cut single crystalline bidomain wafers of lithium niobate // Russ. Microelectron. 2017. V. 46, N 8. P. 557—563. DOI:10.1134/S1063739717080108; Warner A. W., Onoe M., Coquin G. A. determination of elastic and piezoelectric constants for crystals in class (3m) // J. Acoust. Soc. Am. 1967. V. 42, N 6. P. 1223—1231. DOI:10.1121/1.1910709; Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer // Jpn. J. Appl. Phys. 1993. V. 32, N 5B. P. 2415—2417. DOI:10.1143/JJAP.32.2415; Buryy O., Sugak D., Syvorotka I., Yakhnevych U., Suhak Y., Ubizskii S., Fritze H. Simulation, making and testing of the actuator of precise positioning based on the bimorph plate of lithium niobate // IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), 2019. P. 148—152. DOI:10.1109/MEMSTECH.2019.8817401; Kawamata A., Hosaka H., Morita T. Non-hysteresis and perfect linear piezoelectric performance of a multilayered lithium niobate actuator // Sensors and Actuators A: Phys. 2007. V. 135, N 2. P. 782—786. DOI:10.1016/j.sna.2006.08.025; Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer // Ferroelectrics. 1989. V. 93, N 1. P. 211—216. DOI:10.1080/00150198908017348; Ueda M., Sawada H., Tanaka A., Wakatsuki N. Piezoelectric actuator using a LiNbO3 bimorph for an optical switch // IEEE Symposium on Ultrasonics, 1990. P. 1183—1186. DOI:10.1109/ULTSYM.1990.171548; Nakamura K., Kurosawa Y., Ishikawa K. Tunable optical filters using a LiNbO3 torsional actuator with a Fabry–Perot etalon // Appl. Phys. Lett. 1996. V. 68, N 20. P. 2799—2800. DOI:10.1063/1.116611; Nakamura K. Piezoelectric applications of ferroelectric single crystals // Proc. 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. P. 389–394. DOI:10.1109/ISAF.2002.1195950; Blagov A. E., Bykov A. S., Kubasov I. V., Malinkovich M. D., Pisarevskii Y. V., Targonskii A. V., Eliovich I. A., Kovalchuk M. V. An electromechanical x-ray optical element based on a hysteresis-free monolithic bimorph crystal // Instruments and Experimental Techniques. 2016. V. 59, N 5. DOI:10.1134/S0020441216050043; Blagov A. E., Kulikov A. G., Marchenkov N. V., Pisarevsky Y. V., Kovalchuk M. V. Bimorph actuator: a new instrument for time-resolved x-ray diffraction and spectroscopy // Experimental Techniques. 2017. V. 41, N 5. P. 517—523. DOI:10.1007/s40799-017-0194-1; Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Static and quasistatic modes // Sensors and Actuators A: Phys. 2019. V. 291. P. 68—74. DOI:10.1016/j.sna.2019.03.041; Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode // Sensors and Actuators A: Phys. 2019. V. 293. P. 48—55. DOI:10.1016/j.sna.2019.04.028; Пат. 196011 (РФ). Трехкоординатное устройство позиционирования / И. В. Кубасов, А. М. Кислюк, А. В. Турутин, А. А. Темиров, М. Д. Малинкович, Ю. Н. Пархоменко, А. А. Полисан, 2019.; Kubasov I. V., Kislyuk A. M., Turutin A. V., Temirov A. A., Ksenich S. V., Malinkovich M. D., Parkhomenko Y. N. Use of ferroelectric single-crystal bimorphs for precise positioning in scanning probe microscope // Microscopy and Microanalysis. 2020. V. 26. DOI:10.1017/S1431927620023417; Kubasov I. V., Kislyuk A. M., Turutin A. V., Shportenko A. S., Temirov A. A., Malinkovich M. D., Parkhomenko Y. N. Cell stretcher based on single-crystal bimorph piezoelectric actuators // Microscopy and Microanalysis. 2020. V. 26. DOI:10.1017/S1431927620022746; Uchino K. Advanced piezoelectric materials. Cambridge: Woodhead Publishing Limited, 2010. 848 p. DOI:10.1533/9781845699758; Ma T., Wang J., Du J., Yuan L., Zhang Z., Zhang C. Effect of the ferroelectric inversion layer on resonance modes of LiNbO3 thickness-shear mode resonators // Appl. Phys. Express. 2012. V. 5, N 11. P. 116501. DOI:10.1143/APEX.5.116501; Kugel V. D., Rosenman G., Shur D. Piezoelectric properties of bidomain LiNbO3 crystals // J. Appl. Phys. 1995. V. 78, N 9. P. 5592—5596. DOI:10.1063/1.359681; Huang D., Yang J. Flexural vibration of a lithium niobate piezoelectric plate with a ferroelectric inversion layer // Mech. Adv. Mater. Struct. 2020. V. 27, N 10. P. 831—839. DOI:10.1080/15376494.2018.1500664; Nakamura K., Tourlog A. Propagation characteristics of leaky surface acoustic waves and surface acoustic waves on LiNbO3 substrates with a ferrroelectric inversion layer // Jpn. J. Appl. Phys. 1995. V. 34, N 9B. P. 5273—5275. DOI:10.1143/JJAP.34.5273; Nakamura K., Fukazawa K., Yamada K., Saito S. Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer // IEEE Tran. Ultrason. Ferroelectr. Freq. Control. 2003. V. 50, N 11. P. 1558—1562. DOI:10.1109/TUFFC.2003.1251139; Wang Z., Zhao M., Yang J. A piezoelectric gyroscope with self-equilibrated coriolis force based on overtone thickness-shear modes of a lithium niobate plate with an inversion layer // IEEE Sensors J. 2014. P. 1—1. DOI:10.1109/JSEN.2014.2366235; Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. A novel vibration sensor based on bidomain lithium niobate crystal // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 106—108. DOI:10.12693/APhysPolA.134.106; Burdin D. A., Chashin D. V., Ekonomov N. A., Fetisov Y. K., Stashkevich A. A. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect // J. Magn. Magn. Mater. 2016. V. 405. P. 244—248. DOI:10.1016/j.jmmm.2015.12.079; Vidal J. V., Turutin A. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64, N 7. P. 1102—1119. DOI:10.1109/TUFFC.2017.2694342; Turutin A. V., Vidal J. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars // J. Phys. D: Appl. Phys. 2018. V. 51, N 21. P. 214001. DOI:10.1088/1361-6463/aabda4; Bichurin M. I., Sokolov O. V., Leontiev V. S., Petrov R. V., Tatarenko A. S., Semenov G. A., Ivanov S. N., Turutin A. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kholkin A. L., Sobolev N. A. Magnetoelectric effect in the bidomain lithium niobate/nickel/metglas gradient structure // Phys. Status Solidi (B). 2020. V. 257, N 3. DOI:10.1002/pssb.201900398; Parkhomenko Y. N., Sobolev N. A., Kislyuk A. M., Kholkin A. L., Malinkovich M. D., Turutin A. V., Kobeleva S. P., Vidal J. V., Pakhomov O. V., Kubasov I. V. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields // Appl. Phys. Lett. 2018. V. 112, N 26. P. 262906. DOI:10.1063/1.5038014; Пат. 188677 (РФ). Магнитоэлектрический сенсор магнитных полей / А. В. Турутин, И. В. Кубасов, А. М. Кислюк, М. Д. Малинкович, С. П. Кобелева, Ю. Н. Пархоменко, Н. А. Соболев, 2019.; Turutin A. V., Vidal J. V., Kubasov I. V., Kislyuk A. M., Kiselev D. A., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork // J. Magn. Magn. Mater. 2019. V. 486. DOI:10.1016/j.jmmm.2019.04.061; Vidal J. V., Turutin A. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Pakhomov O. V., Sobolev N. A., Kholkin A. L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019. V. 66, N 9. P. 1480—1487. DOI:10.1109/TUFFC.2019.2908396; Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. Vibrational power harvester based on lithium niobate bidomain plate // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 90—92. DOI:10.12693/APhysPolA.134.90; Vidal J. V., Turutin A. V., Kubasov I. V., Kislyuk A. M., Kiselev D. A., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Sobolev N. A., Kholkin A. L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3 based composite // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020. V. 67, N 6. P. 1219—1229. DOI:10.1109/TUFFC.2020.2967842; Пат. 2643151 (РФ). Радиоизотопный механо-электрический генератор / М. Д. Малинкович, А. С. Быков, Р. Н. Жуков, И. В. Кубасов, Ю. Н. Пархоменко, Д. А. Киселев, А. А. Полисан, А. А. Темиров, С. В. Ксенич, 2016.; https://met.misis.ru/jour/article/view/383

  15. 15
    Academic Journal

    Contributors: Казанский (Приволжский) федеральный университет

    Relation: ИТОГОВАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ПРОФЕССОРСКО-ПРЕПОДАВАТЕЛЬСКОГО СОСТАВА ИНСТИТУТА ФИЗИКИ КАЗАНСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА; http://dspace.kpfu.ru/xmlui/bitstream/net/183852/-1/59_3___Tezisy_14_02_2023_fin_047.pdf; https://dspace.kpfu.ru/xmlui/handle/net/183852; 538.9

  16. 16
  17. 17
  18. 18
    Academic Journal

    Contributors: Амурский государственный университет

    Source: Mathematics and Mathematical Modeling; № 2 (2019); 29-47 ; Математика и математическое моделирование; № 2 (2019); 29-47 ; 2412-5911

    File Description: application/pdf

    Relation: https://www.mathmelpub.ru/jour/article/view/185/149; Божокин С.В., Паршин Д.А. Фракталы и мультифракталы: учеб. пособие. М.; Ижевск: Регуляр. и хаот. динамика, 2001. 128 с.; Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. San Diego: Academic Press, 1999. 340 p.; Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит, 2003. 271 с.; Псху А.В. Уравнения в частных производных дробного порядка. М.: Наука, 2005. 199 с.; Luchko Yu. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation // Computers and Mathematics with Applications. 2010. Vol. 59. No. 5. Pp. 1766–1772. DOI:10.1016/j.camwa.2009.08.015; Kemppainen J.T. Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition // Abstract and Applied Analysis. 2011. Article ID 321903. 11 p. DOI:10.1155/2011/321903; Zhou Yong. Basic theory of fractional differential equations. New Jersey: World Scientific, [2014]. 293 p.; Журавков М.А., Романова Н.С. О перспективах использования теории дробного исчисления в механике. Минск: Изд-во БГУ, 2013. 53 с.; Корчагина А.Н. Использование производных дробного порядка для решения задач механики сплошных сред // Изв. Алтайского гос. ун-та. 2014. T. 1. № 1(81). С. 65–67. DOI:10.14258/izvasu(2014)1.1-14; Учайкин В.В., Сибатов Р.Т. Дробно-дифференциальная кинетика дисперсионного переноса как следствие его автомодельности // Письма в ЖЭТФ. 2007. Т. 86. Вып. 8. С. 584–588.; Кочубей А.Н. Диффузия дробного порядка // Дифференциальные уравнения. 1990. Т. 26. № 4. С. 660–670.; Ревизников Д.Л., Сластушенский Ю.В. Численное моделирование аномальной диффузии бильярдного газа в полигональном канале // Математическое моделирование. 2013. № 5. С. 3–14.; Овсиенко А.С. Идентификация параметров процесса аномальной диффузии на основе разностных уравнений // Вычислительные технологии. 2013. Т. 18. № 1. С. 65–73.; Бабенко Ю.И. Метод дробного дифференцирования в прикладных задачах теории тепломассобмена. СПб.: Профессионал, 2009. 584 с.; Sierociuk D., Dzielinski A., Sarwas G., Petras I., Podlubny I., Skovranek T. Modelling heat transfer in heterogeneous media using fractional calculus // Philosophical Trans. of the Royal Soc. A: Mathematical Physical and Engineering Sciences. 2013. Vol. 371. No. 1990. Article ID 20120146. 10 p. DOI:10.1098/rsta.2012.0146; Zecová M., Terpák J. Heat conduction modeling by using fractional-order derivatives // Applied Mathematics and Computation. 2015. Vol. 257. Pp. 365–373. DOI:10.1016/j.amc.2014.12.136; Петухов А.А., Ревизников Д.Л. Алгоритмы численного решения дробно-дифференциальных уравнений // Вестник МАИ. 2009. Т. 16. № 6. С. 228–234.; Al-Shibani F.S., Ismail A.I.Md., Abdullah F.A. Compact finite difference methods for the solution of one dimensional anomalous sub-diffusion equation // General Mathematical Notes. 2013. Vol. 18. No. 2. Pp. 104–119.; Mahdy A.M.S., Khader M.M., Sweilam N.H. Сrank-Nicolson finite difference method for solving time-fractional diffusion equation // J. of Fractional Calculus and Applications. 2012. Vol. 2. No. 2. Pp. 1–9.; Ali U., Abdullah F.A., Ismail A.I. Crank-Nicolson finite difference method for two-dimensional fractional sub-diffusion equation // J. of Interpolation and Approximation in Scientific Computing. 2017. No. 2. Pp. 18–29. DOI:10.5899/2017/jiasc-00117; Sontakke B.R., Shelke A.S. Approximate scheme for time fractional diffusion equation and its applications // Global J. of Pure and Applied Mathematics. 2017. Vol. 13. No. 8. Pp. 4333–4345.; Scherer R., Kalla S.L., Yifa Tang, Jianfei Huang. The Grünwald-Letnikov method for fractional differential equations // Computers & Mathematics with Applications. 2011. Vol. 62. No. 3. Pp. 902–917. DOI:10.1016/j.camwa.2011.03.054; Galiyarova N.M., Bey A.B., Kuznetzov E.A., Korchmariyuk Ia.I. Fractal dimensionalities and microstructure parameters of piezoceramic PZTNB-1 // Ferroelectrics. 2004. Vol. 307. No. 1. Pp. 205–211. DOI:10.1080/00150190490492970; Roy M.K., Paul J., Dattagupta S. Domain dynamics and fractal growth analysis in thin ferroelectric films // J. of Applied Physics. 2010. Vol. 108. No. 1. Article ID 014108. DOI:10.1063/1.3456505; Мейланов Р.П., Садыков С.А. Фрактальная модель кинетики переключения поляризации в сегнетоэлектриках // Журнал технической физики. 1999. Т. 69. № 5. С. 128–129.; Maslovskaya A.G., Barabash T.K. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation // J. of Physics: Conf. Ser. 2018. Vol. 973. No. 1. Pp. 012038–012049. DOI:10.1088/1742-6596/973/1/012038; Bin Zhang. Model for coupled ferroelectric hysteresis using time fractional operators: Application to innovative energy harvesting. Doct. diss. Lyon, 2014. 95 p.; Lines M.E, Glass A.M. Principles and applications of ferroelectrics and related materials. Oxford: Clarendon Press; N.Y.: Oxford Univ. Press, 2001. 680 p.; Масловская А.Г. Моделирование взаимодействия электронных пучков с полярными диэлектриками: дис. … канд. физ.-мат. наук. Благовещенск, 2004. 174 с.; Malyshkina O.V., Movchikova A.A., Grechishkin R.M., Kalugina O.N. Use of the thermal square wave method to analyze polarization state in ferroelectric materials // Ferroelectrics. 2010. Vol. 400. No. 1. Pp. 63–75. DOI:10.1080/00150193.2010.505470; Струков Б.А., Рагула Е.П., Архангельская С.В., Шнайдшейн И.В. О логарифмической сингулярности теплоемкости вблизи фазовых переходов в одноосных сегнетоэлектриках // Физика твердого тела. 1998. Т. 40. № 1. С. 106–108.; https://www.mathmelpub.ru/jour/article/view/185

  19. 19
  20. 20