-
1Academic Journal
Θεματικοί όροι: Versailles Peace Treaty, Nazism, international relations, world order, нацизм, international security, Версальский мирный договор, reparations, международная безопасность, миропорядок, Первая мировая война, League of Nations, Лига Наций, международные отношения, World War I, глобализация, globalization, репарации
-
2Academic Journal
Συγγραφείς: A. I. Muradkhanau, E. S. Sinyavskaya, A. I. Rolevich, R. I. Goncharova, N. E. Evseev, V. A. Zakharova, M. P. Smal, M. L. Parmon, S. A. Semenov, S. A. Krasny, S. L. Polyakov, А. И. Мурадханов, Е. С. Синявская, А. И. Ролевич, Р. И. Гончарова, Н. Е. Евсеев, В. А. Захарова, М. П. Смаль, М. Л. Пармон, С. А. Семенов, С. А. Красный, С. Л. Поляков
Πηγή: Cancer Urology; Том 20, № 4 (2024); 44-54 ; Онкоурология; Том 20, № 4 (2024); 44-54 ; 1996-1812 ; 1726-9776
Θεματικοί όροι: молекулярно-генетический анализ, germline mutation, DNA repair gene, treatment outcome prediction, molecular genetic analysis, герминальная мутация, ген репарации ДНК, прогнозирование результатов лечения
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1828/1586; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1828/1519; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1828/1520; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1828/1521; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1828/1522; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1828/1523; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1828/1524; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1828/1525; Рак в Беларуси: цифры и факты. Анализ данных Белорусского канцеррегистра. Под ред. С.Л. Полякова. Минск: РНПЦ ОМР им. Н.Н. Александрова, 2022. 280 с.; Robinson B.D., Mosquera J.M., Ro Jar Y. et al. Precision molecular pathology of prostate cancer. Mol Pathol Libr: Springer Cham, 2018. Pp. 13–26.; Cheng H.H., Sokolova A.O., Schaeffer E.M. et al. Germline and somatic mutations in prostate cancer for the clinician. J Natl Compr Canc Netw 2019;17(5):515–21. DOI:10.6004/jnccn.2019.7307; Al Olama A.A., KoteJarai Z., Berndt S.I. et al. A metaanalysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 2014;46(10):1103–9. DOI:10.1038/ng.3094; Eeles R., Goh C., Castro E. et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 2014;11(1):18–31. DOI:10.1038/nrurol.2013.266; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNArepair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443–53. DOI:10.1056/NEJMoa1603144; Lecarpentier J., Silvestri V., Kuchenbaecker K.B. et al. Prediction of breast and prostate cancer risks in male BRCA1 and BRCA2 muta tion carriers using polygenic risk scores. J Clin Oncol 2017;35(10):2240–50. DOI:10.1200/JCO.2016.69.4935; Robinson D., Van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215–28. DOI:10.1016/j.cell.2015.06.053; Warner E.W., Yip S.M., Chi K.N. et al. DNA repair defects in prostate cancer: impact for screening, prognostication and treatment. BJU Int 2018;123(5):769–76. DOI:10.1111/bju.14576; Castro E., Goh C., Olmos D. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31(14):1748–57. DOI:10.1200/JCO.2012.43.1882; Leongamornlert D., Saunders E., Dadaev T. et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer 2014;110(6):1663–72. DOI:10.1038/bjc.2014.30; Na R., Zheng S.L., Han M. et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol 2017;71(5):740–7. DOI:10.1016/j.eururo.2016.11.033; Abida W., Armenia J., Gopalan A. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017;2017:PO.17.00029. DOI:10.1200/PO.17.00029; Castro E., RomeroLaorden N., Del Pozo A. et al. PROREPAIRB: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration resistant prostate cancer. J Clin Oncol 2019;37(6):490–503. DOI:10.1200/JCO.18.00358; Cui M., Gao X.S., Gu X. et al. BRCA2 mutations should be screened early and routinely as markers of poor prognosis: evidence from 8,988 patients with prostate cancer. Oncotarget 2017;8(25):40222–32. DOI:10.18632/oncotarget.16712; Mok O.H., Alkhushaym N., Fallatah S. et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: A metaanalysis. Prostate 2019;79(8):880–95. DOI:10.1002/pros.23795; Kyriakopoulos C.E., Chen Y.H., Carducci M.A. et al. Chemohormonal therapy in metastatic hormonesensitive prostate cancer: longterm survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol 2018;36(11):1080–7. DOI:10.1200/JCO.2017.75.3657; https://oncourology.abvpress.ru/oncur/article/view/1828
-
3Dissertation/ Thesis
Συνεισφορές: Кругликова, Г. А.
Θεματικοί όροι: ПРОМЫШЛЕННАЯ ПОЛИТИКА, КОНВЕРСИЯ, АТОМНЫЙ ПРОЕКТ, ВОЕННО-ПРОМЫШЛЕННЫЙ КОМПЛЕКС, РЕПАРАЦИИ, НАРОДНОЕ ХОЗЯЙСТВО, СРЕДНИЙ УРАЛ, ИНОСТРАННЫЕ ВОЕННОПЛЕННЫЕ, ДЕМИЛИТАРИЗАЦИЯ, РАБОЧИЙ КЛАСС, ПОСЛЕВОЕННОЕ ВОССТАНОВЛЕНИЕ, ТЯЖЕЛАЯ ПРОМЫШЛЕННОСТЬ, РЕКОНВЕРСИЯ
Σύνδεσμος πρόσβασης: https://elar.uspu.ru/handle/ru-uspu/65583
-
4Academic Journal
Συνεισφορές: Not specified, Отсутствует
Πηγή: Current Pediatrics; Том 23, № 3 (2024); 124-130 ; Вопросы современной педиатрии; Том 23, № 3 (2024); 124-130 ; 1682-5535 ; 1682-5527
Θεματικοί όροι: УФ-излучение, premature aging syndromes, impaired DNA repair, UV radiation, синдромы преждевременного старения, нарушение репарации ДНК
Περιγραφή αρχείου: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3515/1372; Karikkineth AC, Scheibye-Knudsen M, Fivenson E, et al. Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res Rev. 2017;33:3–17. doi: https://doi.org/10.1016/j.arr.2016.08.002; Hafsi W, Saleh HM. Cockayne Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525998. Accessed on June 09, 2024.; Chikhaoui A, Kraoua I, Calmels N, et al. Heterogeneous clinical features in Cockayne syndrome patients and siblings carrying the same CSA mutations. Orphanet J Rare Dis. 2022;17(1):121. doi: https://doi.org/10.1186/s13023-022-02257-1; Milosic F, Hengstschläger M, Osmanagic-Myers S. Premature aging in genetic diseases: what conclusions can be drawn for physiological aging. Front Aging. 2024;4:1327833. doi: https://doi.org/10.3389/fragi.2023.1327833; Cockayne EA. Dwarfism with retinal atrophy and deafness. Arch Dis Child. 1936;11(61):1–8. doi: https://doi.org/10.1136/adc.11.61.1; Cockayne EA. Dwarfism with Retinal Atrophy and Deafness. Arch Dis Child. 1946;21(105):52–54.; Neill CA, Dingwall MM. A syndrome resembling progeria: A review of two cases. Arch Dis Child. 1950;25(123):213–223. doi: https://doi.org/10.1136/adc.25.123.213; Czeizel AE, Marchalkó M. Cockayne syndrome type III with high intelligence. Clin Genet. 1995;48(6):331–333. doi: https://doi.org/10.1111/j.1399-0004.1995.tb04121.x; Calmels N, Botta E, Jia N, et al. Functional and clinical relevance of novel mutations in a large cohort of patients with Cockayne syndrome. J Med Genet. 2018;55(5):329–343. doi: https://doi.org/10.1136/jmedgenet-2017-104877; Kashiyama K, Nakazawa Y, Pilz DT, et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet. 2013;92(5):807–819. doi: https://doi.org/10.1016/j.ajhg.2013.04.007; Sirchia F, Fantasia I, Feresin A, et al. Prenatal findings of cataract and arthrogryposis: recurrence of cerebro-oculo-facio-skeletal syndrome and review of differential diagnosis. BMC Med Genomics. 2021;14(1):89. doi: https://doi.org/10.1186/s12920-021-00939-6; Le Van Quyen P, Calmels N, Bonnière M, et al. Prenatal diagnosis of cerebro-oculo-facio-skeletal syndrome: Report of three fetuses and review of the literature. Am J Med Genet A. 2020;182(5): 1236–1242. doi: https://doi.org/10.1002/ajmg.a.61520; Гуцол Л.О., Минакина Л.Н., Непомнящих С.Ф. и др. Основные белки эксцизионной репарации нуклеотидов у человека // Байкальский медицинский журнал. — 2015. — Т. 137. — № 6. — С. 33–36.; Петрусева И.О., Евдокимов А.Н., Лаврик О.И. Молекулярные механизмы действия системы общегеномной эксцизионной репарации нуклеотидов // Acta Naturae. — 2014. — Т. 6. — № 1. — С. 24–36.; Hoag A, Duan M, Mao P. The role of Transcription Factor IIH complex in nucleotide excision repair. Environ Mol Mutagen. 2024;65(Suppl 1):72–81. doi: https://doi.org/10.1002/em.22568; Theil AF, Häckes D, Lans H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst). 2023;132:103568. doi: https://doi.org/10.1016/j.dnarep.2023.103568; Venema J, Mullenders LH, Natarajan AT, et al. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci U S A. 1990;87(12):4707–4711. doi: https://doi.org/10.1073/pnas.87.12.4707; Caputo M, Frontini M, Velez-Cruz R, at al. The CSB repair factor is overexpressed in cancer cells, increases apoptotic resistance, and promotes tumor growth. DNA Repair (Amst). 2013;12(4):293–299. doi: https://doi.org/10.1016/j.dnarep.2013.01.008; Scheibye-Knudsen M, Scheibye-Alsing K, Canugovi C, et al. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging (Albany NY). 2013;5(3):192–208. doi: https://doi.org/10.18632/aging.100546; Boetefuer EL, Lake RJ, Dreval K, Fan HY. Poly(ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress-induced association of Cockayne syndrome group B protein with chromatin. J Biol Chem. 2018;293(46):17863–17874. doi: https://doi.org/10.1074/jbc.RA118.004548; Crochemore C, Chica C, Garagnani P, et al. Epigenomic signature of accelerated ageing in progeroid Cockayne syndrome. Aging Cell. 2023;22(10):e13959. doi: https://doi.org/10.1111/acel.13959; Giardini MA, Segatto M, da Silva MS, et al. Telomere and telomerase biology. Prog Mol Biol Transl Sci. 2014;125:1–40. doi: https://doi.org/10.1016/B978-0-12-397898-1.00001-3; Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet. 2023;24(2):86–108. doi: https://doi.org/10.1038/s41576-022-00527-z; Moriwaki S. Cockayne Syndrome. Brain Nerve. 2019;71(4): 390–393. doi: https://doi.org/10.11477/mf.1416201282; Laugel V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev. 2013;134(5-6):161–170. doi: https://doi.org/10.1016/j.mad.2013.02.006; Wilson BT, Stark Z, Sutton RE, et al. The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med. 2016;18(5):483–493. doi: https://doi.org/10.1038/gim.2015.110; Baer S, Tuzin N, Kang PB, et al. Growth charts in Cockayne syndrome type 1 and type 2. Eur J Med Genet. 2021;64(1):104105. doi: https://doi.org/10.1016/j.ejmg.2020.104105; Natale V. A comprehensive description of the severity groups in Cockayne syndrome. Am J Med Genet A. 2011;155A(5): 1081–1095. doi: https://doi.org/10.1002/ajmg.a.33933; Spitz MA, Severac F, Obringer C, et al. Diagnostic and severity scores for Cockayne syndrome. Orphanet J Rare Dis. 2021;16(1):63. doi: https://doi.org/10.1186/s13023-021-01686-8; Dev N, Aggarwal P. Xeroderma pigmentosum-Cockayne syndrome complex. Indian J Med Res. 2020;152(Suppl 1): S74–S75. doi: https://doi.org/10.4103/ijmr.IJMR_2097_19; Piccione M, Belloni Fortina A, Ferri G, et al. Xeroderma Pigmentosum: General Aspects and Management. J Pers Med. 2021;11(11):1146. doi: https://doi.org/10.3390/jpm11111146; Natale V, Raquer H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J Rare Dis. 2017;12(1):65. doi: https://doi.org/10.1186/s13023-017-0616-2; Sartorelli J, Travaglini L, Macchiaiolo M, et al. Spectrum of ERCC6-Related Cockayne Syndrome (Type B): From Mild to Severe Forms. Genes (Basel). 2024;15(4):508. doi: https://doi.org/10.3390/genes15040508; Iwasaki S, Kaga K. Chronological changes of auditory brainstem responses in Cockayne’s syndrome. Int J Pediatr Otorhinolaryngol. 1994;30(3):211–221. doi: https://doi.org/10.1016/0165-5876(94)90062-0; Brodsky MC, Renaud DL. Pseudopapilledema in Cockayne syndrome. Am J Ophthalmol Case Rep. 2021;22:101035. doi: https://doi.org/10.1016/j.ajoc.2021.101035; McElvanney AM, Wooldridge WJ, Khan AA, et al. Ophthalmic management of Cockayne’s syndrome. Eye (Lond). 1996;10 (Pt 1):61–64. doi: https://doi.org/10.1038/eye.1996.9; Nance MA, Berry SA. Cockayne syndrome: review of 140 cases. Am J Med Genet. 1992;42(1):68–84. doi: https://doi.org/10.1002/ajmg.1320420115; Rajamani G, Stafki SA, Daugherty AL, et al. Cognitive Decline and Other Late-Stage Neurologic Complications in Cockayne Syndrome. Neurol Clin Pract. 2024;14(4):e200309. doi: https://doi.org/10.1212/CPJ.0000000000200309; Koob M, Laugel V, Durand M, et al. Neuroimaging in Cockayne syndrome. AJNR Am J Neuroradiol. 2010;31(9):1623–1630. doi: https://doi.org/10.3174/ajnr.A2135; Scaioli V, D’Arrigo S, Pantaleoni C. Unusual neurophysiological features in Cockayne’s syndrome: a report of two cases as a contribution to diagnosis and classification. Brain Dev. 2004;26(4):273–280. doi: https://doi.org/10.1016/S0387-7604(03)00130-X; Hayashi M, Miwa-Saito N, Tanuma N, et al. Brain vascular changes in Cockayne syndrome. Neuropathology. 2012;32(2):113–117. doi: https://doi.org/10.1111/j.1440-1789.2011.01241.x; Tamura A, Yamaguchi K, Yanagida R, et al. Physical, oral, and swallowing functions of three patients with type a xeroderma pigmentosum: a report of three cases. BMC Oral Health. 2024;24(1):163. doi: https://doi.org/10.1186/s12903-024-03933-3; Wilson BT, Strong A, O’Kelly S, et al. Metronidazole Toxicity in Cockayne Syndrome: A Case Series. Pediatrics. 2015;136(3): e706–e708. doi: https://doi.org/10.1542/peds.2015-0531; Stern-Delfils A, Spitz MA, Durand M, et al. Renal disease in Cockayne syndrome. Eur J Med Genet. 2020;63(1):103612. doi: https://doi.org/10.1016/j.ejmg.2019.01.002; Kubota M, Ohta S, Ando A, et al. Nationwide survey of Cockayne syndrome in Japan: Incidence, clinical course and prognosis. Pediatr Int. 2015;57(3):339–347. doi: https://doi.org/10.1111/ped.12635; Ben Chehida A, Ghali N, Ben Abdelaziz R, et al. Renal Involvement in 2 Siblings With Cockayne Syndrome. Iran J Kidney Dis. 2017;11(3):253–255.; Muzammal M, Ali MZ, Ahmad S, et al. The molecular genetics of UV-Sensitive syndrome: A rare dermal anomaly. J Pak Med Assoc. 2021;71(10):2391–2396. doi: https://doi.org/10.47391/JPMA.03-476; Yew YW, Giordano CN, Spivak G, Lim HW. Understanding photodermatoses associated with defective DNA repair: Photosensitive syndromes without associated cancer predisposition. J Am Acad Dermatol. 2016;75(5):873–882. doi: https://doi.org/10.1016/j.jaad.2016.03.044; Spivak G. UV-sensitive syndrome. Mutat Res. 2005;577(1-2): 162–169. doi: https://doi.org/10.1016/j.mrfmmm.2005.03.017; Kordon MM, Arron S, Cleaver JE, et al. The UVSSA protein is part of a genome integrity homeostasis network with links to transcription-coupled DNA repair and ATM signaling. Proc Natl Acad Sci U S A. 2022;119(11):e2116254119. doi: https://doi.org/10.1073/pnas.2116254119; Brambullo T, Colonna MR, Vindigni V, et al. Xeroderma Pigmentosum: A Genetic Condition Skin Cancer Correlated-A Systematic Review. Biomed Res Int. 2022;2022:8549532. doi: https://doi.org/10.1155/2022/8549532; Black JO. Xeroderma Pigmentosum. Head Neck Pathol. 2016; 10(2):139–144. doi: https://doi.org/10.1007/s12105-016-0707-8; Stefanini M, Kraemer KHK. Xeroderma pigmentosum. In: Neurocutaneous Diseases. Ruggieri M, Pascual-Castroviejo I, Di Rocco C, eds. Wien; New York: Springer; 2008. pp. 771–792.; Bradford PT, Goldstein AM, Tamura D, et al.Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J Med Genet. 2011;48(3): 168–176. doi: https://doi.org/10.1136/jmg.2010.083022; Ramkumar HL, Brooks BP, Cao X, et al. Ophthalmic manifestations and histopathology of xeroderma pigmentosum: two clinicopathological cases and a review of the literature. Surv Ophthalmol. 2011;56(4):348–361. doi: https://doi.org/10.1016/j.survophthal.2011.03.001; Garcia-Moreno H, Langbehn DR, Abiona A, et al. Neurological disease in xeroderma pigmentosum: prospective cohort study of its features and progression. Brain. 2023;146(12):5044–5059. doi: https://doi.org/10.1093/brain/awad266; Oleksy B, Mierzewska H, Tryfon J, et al. Aicardi-Goutières Syndrome due to a SAMHD1 Mutation Presenting with Deep White Matter Cysts. Mol Syndromol. 2022;13(2):132–138. doi: https://doi.org/10.1159/000518941; Senju C, Nakazawa Y, Shimada M, et al. Aicardi-Goutières syndrome with SAMHD1 deficiency can be diagnosed by unscheduled DNA synthesis test. Front Pediatr. 2022;10:1048002. doi: https://doi.org/10.3389/fped.2022.1048002; Ouattara ABI, Barro M, Nacro SF, et al. The Seckel syndrome: A case observed in the pediatric department of the University Hospital Center Sourou Sanou (Burkina Faso). Pediatr Rep. 2020;12(1):8231. doi: https://doi.org/10.4081/pr.2020.8231; Saeidi M, Shahbandari M. A Child with Seckel Syndrome and Arterial Stenosis: Case Report and Literature Review. Int Med Case Rep J. 2020;13:159–163. doi: https://doi.org/10.2147/IMCRJ.S241601; Wang S, Min Z, Ji Q, et al. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein Cell. 2020;11(1):1–22. doi: https://doi.org/10.1007/s13238-019-0623-2 https://doi.org/10.15690/vsp.v23i3.2752
-
5Academic Journal
Συγγραφείς: A. P. Sokolenko, S. V. Poletaeva, A. D. Shestakova, T. V. Gorodnova, I. V. Berlev, E. N. Imyanitov, А. П. Соколенко, С. В. Полетаева, А. Д. Шестакова, Т. В. Городнова, И. В. Берлев, Е. Н. Имянитов
Συνεισφορές: This work was supported by the Russian Science Foundation grant number 19-75-10062 ., Работа поддержана грантом РНФ 19-75-10062 .
Πηγή: Siberian journal of oncology; Том 23, № 2 (2024); 139-146 ; Сибирский онкологический журнал; Том 23, № 2 (2024); 139-146 ; 2312-3168 ; 1814-4861
Θεματικοί όροι: BRCA-подобный фенотип, loss of heterozygosity, BRCAness, high-grade ovarian carcinoma, homologous recombination deficiency, дефицит системы репарации путем гомологичной рекомбинации, мутации BRCA1 и BRCA2, потеря гетерозиготности
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3050/1228; Deans A.J., West S.C. DNA interstrand crosslink repair and cancer. Nat Rev Cancer. 2011; 11(7): 467–80. doi:10.1038/nrc3088.; Iyevleva A.G., Imyanitov E.N. Cytotoxic and targeted therapy for hereditary cancers. Hered Cancer Clin Pract. 2016; 14(1): 17. doi:10.1186/s13053-016-0057-2.; Swisher E.M., Lin K.K., Oza A.M., Scott C.L., Giordano H., Sun J., Konecny G.E., Coleman R.L., Tinker A.V., O'Malley D.M., Kristeleit R.S., Ma L., Bell-McGuinn K.M., Brenton J.D., Cragun J.M., Oaknin A., Ray-Coquard I., Harrell M.I., Mann E., Kaufmann S.H., Floquet A., Leary A., Harding T.C., Goble S., Maloney L., Isaacson J., Allen A.R., Rolfe L., Yelensky R., Raponi M., McNeish I.A. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017; 18(1): 75–87. doi:10.1016/S1470-2045(16)30559-9.; Abkevich V., Timms K.M., Hennessy B.T., Potter J., Carey M.S., Meyer L.A., Smith-McCune K., Broaddus R., Lu K.H., Chen J., Tran T.V., Williams D., Iliev D., Jammulapati S., FitzGerald L.M., Krivak T., DeLoia J.A., Gutin A., Mills G.B., Lanchbury J.S. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012; 107(10): 1776–82. doi:10.1038/bjc.2012.451.; Popova T., Manié E., Rieunier G., Caux-Moncoutier V., Tirapo C., Dubois T., Delattre O., Sigal-Zafrani B., Bollet M., Longy M., Houdayer C., Sastre-Garau X., Vincent-Salomon A., Stoppa-Lyonnet D., Stern M.H. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012; 72(21):5454–62. doi:10.1158/0008-5472.CAN-12-1470.; Birkbak N.J., Wang Z.C., Kim J.Y., Eklund A.C., Li Q., Tian R., Bowman-Colin C., Li Y., Greene-Colozzi A., Iglehart J.D., Tung N., Ryan P.D., Garber J.E., Silver D.P., Szallasi Z., Richardson A.L. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012; 2(4): 366–75. doi:10.1158/2159-8290.CD-11-0206. Erratum in: Cancer Discov. 2013; 3(8): 952.; Telli M.L., Timms K.M., Reid J., Hennessy B., Mills G.B., Jensen K.C., Szallasi Z., Barry W.T., Winer E.P., Tung N.M., Isakoff S.J., Ryan P.D., Greene-Colozzi A., Gutin A., Sangale Z., Iliev D., Neff C., Abkevich V., Jones J.T., Lanchbury J.S., Hartman A.R., Garber J.E., Ford J.M., Silver D.P., Richardson A.L. Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clin Cancer Res. 2016; 22(15): 3764–73. doi:10.1158/1078-0432.CCR-15-2477.; Imyanitov E., Sokolenko A. Integrative Genomic Tests in Clinical Oncology. Int J Mol Sci. 2022; 23(21): 13129. doi:10.3390/ijms232113129.; Maxwell K.N., Wubbenhorst B., Wenz B.M., De Sloover D., Pluta J., Emery L., Barrett A., Kraya A.A., Anastopoulos I.N., Yu S., Jiang Y., Chen H., Zhang N.R., Hackman N., D'Andrea K., Daber R., Morrissette J.J.D., Mitra N., Feldman M., Domchek S.M., Nathanson K.L. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun. 2017; 8(1): 319. doi:10.1038/s41467-017-00388-9.; Rempel E., Kluck K., Beck S., Ourailidis I., Kazdal D., Neumann O., Volckmar A.L., Kirchner M., Goldschmid H., Pfarr N., Weichert W., Hübschmann D., Fröhling S., Sutter C., Schaaf C.P., Schirmacher P., Endris V., Stenzinger A., Budczies J. Pan-cancer analysis of genomic scar patterns caused by homologous repair deficiency (HRD). NPJ Precis Oncol. 2022; 6(1): 36. doi:10.1038/s41698-022-00276-6.; SokolenkoA.P., Gorodnova T.V., Bizin I.V., Kuligina E.S., Kotiv K.B., Romanko A.A., Ermachenkova T.I., Ivantsov A.O., Preobrazhenskaya E.V., Sokolova T.N., Broyde R.V., Imyanitov E.N. Molecular predictors of the outcome of paclitaxel plus carboplatin neoadjuvant therapy in high-grade serous ovarian cancer patients. Cancer Chemother Pharmacol. 2021; 88(3): 439–50. doi:10.1007/s00280-021-04301-6.; Mavaddat N., Barrowdale D., Andrulis I.L., et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev. 2012; 21(1): 134–47. doi:10.1158/1055-9965.EPI-11-0775.; Li S., Silvestri V., Leslie G., et al. Cancer Risks Associated With BRCA1 and BRCA2 Pathogenic Variants. J Clin Oncol. 2022; 40(14):1529–41. doi:10.1200/JCO.21.02112.; Городнова Т.В., Соколенко А.П., Котив Х.Б., Иванцов А.О., Ибрагимов З.Н., Берлев И.В., Урманчеева А.Ф., Имянитов Е.Н. Редкий случай развития low-grade серозной карциномы яичника с мутацией NRAS у носительницы патогенного варианта BRCA1. Акушерство и гинекология 2022, 4: 176–82. doi:10.18565/aig.2022.4.176-182.; Ross D.S., Devereaux K.A., Jin C., Lin D.Y., Zhang Y., Marra A., Makker V., Weigelt B., Ellenson L.H., Chui M.H. Histopathologic features and molecular genetic landscape of HER2-amplified endometrial carcinomas. Mod Pathol. 2022; 35(7): 962–71. doi:10.1038/s41379-021-00997-2.; Котив Х.Б., Городнова Т.В., Лавринович О.Е., Берлев И.В. Малигнизированные эндометриоз-ассоциированные овариальные и экстраовариальные неоплазии: обзор литературы. Опухоли женской репродуктивной системы 2022; 18(4): 127–37. doi:10.17650/1994-4098-2022-18-4-127-137.; Sokolenko A.P., Bogdanova N., Kluzniak W., Preobrazhenskaya E.V., Kuligina E.S., Iyevleva A.G., Aleksakhina S.N., Mitiushkina N.V., Gorodnova T.V., Bessonov A.A., Togo A.V., Lubiński J., Cybulski C., Jakubowska A., Dörk T., Imyanitov E.N. Double heterozygotes among breast cancer patients analyzed for BRCA1, CHEK2, ATM, NBN/NBS1, and BLM germ-line mutations. Breast Cancer Res Treat. 2014; 145(2): 553–62. doi:10.1007/s10549-014-2971-1.; Segev Y., Iqbal J., Lubinski J., Gronwald J., Lynch H.T., Moller P., Ghadirian P., Rosen B., Tung N., Kim-Sing C., Foulkes W.D., Neuhausen S.L., Senter L., Singer C.F., Karlan B., Ping S., Narod S.A.; Hereditary Breast Cancer Study Group. The incidence of endometrial cancer in women with BRCA1 and BRCA2 mutations: an international prospective cohort study. Gynecol Oncol. 2013; 130(1): 127–31. doi:10.1016/j.ygyno.2013.03.027.; Sorouri K., Lynce F., Feltmate C.M., Davis M.R., Muto M.G., Konstantinopoulos P.A., Stover E.H., Kurian A.W., Hill S.J., Partridge A.H., Tolaney S.M., Garber J.E., Bychkovsky B.L. Endometrial Cancer Risk Among Germline BRCA1/2 Pathogenic Variant Carriers: Review of Our Current Understanding and Next Steps. JCO Precis Oncol. 2023; 7. doi:10.1200/PO.23.00290.; De Jonge M.M., Auguste A., van Wijk L.M., Schouten P.C., Meijers M., Ter Haar N.T., Smit V.T.H.B.M., Nout R.A., Glaire M.A., Church D.N., Vrieling H., Job B., Boursin Y., de Kroon C.D., Rouleau E., Leary A., Vreeswijk M.P.G., Bosse T. Frequent Homologous Recombination Deficiency in High-grade Endometrial Carcinomas. Clin Cancer Res. 2019;25(3): 1087–97. doi:10.1158/1078-0432.CCR-18-1443.; https://www.siboncoj.ru/jour/article/view/3050
-
6Academic Journal
Συγγραφείς: Motrevich, V. P.
Θεματικοί όροι: СЕЛЬСКОЕ ХОЗЯЙСТВО, SETTLEMENT OF TERRITORIES, AGRICULTURE, ЗАСЕЛЕНИЕ ТЕРРИТОРИЙ, РЕПАРАЦИИ, MATERIAL AND TECHNICAL BASE OF AGRICULTURE, ГОСУДАРСТВЕННЫЙ КОМИТЕТ ОБОРОНЫ, МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА СЕЛЬСКОГО ХОЗЯЙСТВА, СССР, STATE DEFENSE COMMITTEE, REPARATIONS, USSR
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/128444
-
7Academic Journal
Θεματικοί όροι: Версаль, великие державы, новейшая история, армия, конфликты, территории, историческая наука, соперничество, репарации, историческая германистика, мир, Первая мировая война
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.vsu.by/handle/123456789/40723
-
8Academic Journal
Συγγραφείς: Golotyuk, M. A., Berezhnoj, A. A., Kazanceva, N. V., Dorofeev, A. V., Borzunova, T. I., Голотюк, М. А., Бережной, А. А., Казанцева, Н. В., Дорофеев, А. В., Борзунова, Т. И.
Θεματικοί όροι: HEREDITARY CANCER, HEREDITARY MUTATIONS, HEREDITARY BREAST AND OVARIAN CANCER SYNDROME, DNA REPAIR GENES, PALB2, CHEK2, НАСЛЕДСТВЕННЫЙ РАК, НАСЛЕДСТВЕННЫЕ МУТАЦИИ, СИНДРОМ НАСЛЕДСТВЕННОГО РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ И ЯИЧНИКОВ, ГЕНЫ РЕПАРАЦИИ ДНК
Περιγραφή αρχείου: application/pdf
Relation: Уральский медицинский журнал. 2023. Т. 22, № 3.; http://elib.usma.ru/handle/usma/14600
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/14600
-
9Academic Journal
Συγγραφείς: A. I. Stukan, A. Yu. Goryainova, M. M. Grigoryan, V. F. Kutyan, V. S. Zhdanov, T. Yu. Semiglazova, E. N. Imyanitov, А. И. Стукань, А. Ю. Горяинова, М. М. Григорян, В. Ф. Кутян, В. С. Жданов, Т. Ю. Семиглазова, Е. Н. Имянитов
Συνεισφορές: The study was performed with the support of Russian Science Foundation (grant No. 21-75-30015)., Исследование проведено при поддержке Российского научного фонда (грант № 21-75-30015).
Πηγή: Cancer Urology; Том 19, № 1 (2023); 85-101 ; Онкоурология; Том 19, № 1 (2023); 85-101 ; 1996-1812 ; 1726-9776
Θεματικοί όροι: резистентность к антиандрогенам 2-го поколения, mutation of homologous recombination repair genes, HRR, BRCA1/2 -mutation, CHEK2 -mutation, enzalutamide, resistance to second-generation antiandrogenes, мутации генов репарации ДНК путем гомологичной рекомбинации, мутация BRCA1/2, мутация CHEK2, энзалутамид
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1695/1442; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71(3):209—49. DOI:10.3322/caac.21660; Sartor O., de Bono J.S. Metastatic prostate cancer. N Engl J Med 2018;378(17):1653-4. DOI:10.1056/NEJMra1803343; Beer T.M., Armstrong A.J., Rathkopf D.E. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014;371(5):424-33. DOI:10.1056/NEJMoa1405095; Scher H.I., Fizazi K., Saad F. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367(13):1187-97. DOI:10.1056/NEJMoa1207506; Conteduca V., Wetterskog D., Sharabiani M.T.A. et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol 2017;28(7):1508-16. DOI:10.1093/annonc/mdx155; Antonarakis E.S., Lu C., Wang H. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014;371(11):1028-38. DOI:10.1056/NEJMoa1315815; Armstrong A.J., Halabi S., Luo J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the prophecy study. J Clin Oncol 2019;37(13):1120-9. DOI:10.1200/JCO.18.01731; Liu C., Lou W., Zhu Y. et al. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res 2015;75(7):1413-22. DOI:10.1158/0008-5472.CAN-14-3080; Crona D.J., Whang Y.E. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers 2017;9(6):67. DOI:10.3390/cancers9060067; Guedes L.B., Morais C.L., Almutairi F. et al. Analytic valida of RNA in situ hybridization (RISH) for AR and AR-V7 exp ression in human prostate cancer. Clin Cancer Res 2016;22(18):4651-63. DOI:10.1158/1078-0432.CCR-16-0205; Salma B.S., Varadha B.V., Hannelore V.H. et al. Novel insights in cell cycle dysregulation during prostate cancer progression. Endocr Relat Cancer 2021;28(6):R141-55. DOI:10.1530/ERC-20-0517; Mcnair C., Urbanuccia A., Comstock C.E. et al. Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 2017;36(12):1655-68. DOI:10.1038/onc.2016.334; Schiewer M.J., Augello M.A., Knudsen K.E. The AR dependent cell cycle: mechanisms and cancer relevance. Mol Cell Endocrinol 2012;352(1-2):34-45. DOI:10.1016/j.mce.2011.06.033; Gordon V., Bhadel S., Wunderlich W. et al. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 2010;24(12):2267-80. DOI:10.1210/me.2010-0238; Chen S., Gulla S., Cai C., Balk S.P. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 2012;287(11):8571-83. DOI:10.1074/jbc.m111.325290; Koryakina Y., Knudsen K.E., Gloeli D. Cell-cycle-dependent regulation of androgen receptor function. Endocr Relat Cancer 2015;22(2):249-64. DOI:10.1530/ERC-14-0549; Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate. Cancer Cell 2015;163(4):1011-25. DOI:10.1158/1538-7445.am2016-133; Ren S., Wei G.H., Liu D. et al. Wholegenome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol 2018;73(3):322-39. DOI:10.21236/ada613308; Fraser M., Sabelnykova V.Y., Yamaguchi T.N. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017;541(7637):359-64. DOI:10.1016/j.juro.2017.09.039; Bangma C.H., Roobol M.J. Defining and predicting indolent and low risk prostate cancer. Crit Rev Oncol Hematol 2012;83(2):235-41. DOI:10.1016/j.critrevonc.2011.10.003; Irshad S., Bansal M., Castillo-Martin M. et al. A molecular signature predictive of indolent prostate cancer. Sci Transl Med 2013;5(202):202ra122. DOI:10.1126/scitranslmed.3006408; Kamoun A., Cancel-Tassin G., Fromont G. et al. Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease. Ann Oncol 2018;29(8):1814-21. DOI:10.1093/annonc/mdy224; Bancroft E.K., Page E.C., Castro E. et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the Impact study. Eur Urol 2014;66(3):489-99. DOI:10.1126/scitranslmed.3006408; Zhang W., Van Gent D.C., Incrocci L. et al. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis 2020;23(1):24-37. DOI:10.1038/s41391-019-0153-2; Hussain M., Fizazi K., Saad F. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med 2018;378(26):2465-74. DOI:10.1056/NEJMoa1800536; Edwards J., Krishna N.S., Grigor K.M., Bartlett J.M.S. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 2003;89(3):552-6. DOI:10.1038/sj.bjc.6601127; Romanel A., Gasi Tandefelt D., Conteduca V. et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med 2015;7(312):re10. DOI:10.1126/scitranslmed.aac9511; Tucci M., Zichi C., Buttigliero C. et al. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther 2018;11:7353-68. DOI:10.2147/OTT.S153764; Teply B.A., Wang H., Luber B. et al. Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol 2018;19(1):76-86. DOI:10.1016/S1470-2045(17)30906-3; Joseph J.D., Lu N., Qian J. et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 2013;3(9):1020-9. DOI:10.1158/2159-8290.CD-13-0226; Balbas M.D., Evans M.J., Hosfield D.J. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2013;2:e00499. DOI:10.7554/elife.00499; Lallous N., Volik S.V., Awrey S. et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 2016;17(1):10. DOI:10.1186/s13059-015-0864-1; Hu R., Dunn T.A., Wei S. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009;69(1):16-22. DOI:10.1158/0008-5472.CAN-08-2764; Zhang X., Morrissey C., Sun S. et al. Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS One 2011;6(11):e27970. DOI:10.1371/journal.pone.0027970; Ware K.E., Garcia-Blanco M.A., Armstrong A.J., Dehm S.M. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 2014;21(4):T87-103. DOI:10.1530/erc-13-0470; Hu R., Lu C., Mostaghel E.A. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012;72(14):3457-62. DOI:10.1158/0008-5472.CAN-11-3892; Sq T., Kwan E., Fettke H. AR-V7 and AR-V9 expression is not predictive of response to AR-axis targeting agents in metastatic castration-resistant prostate cancer. Cancer Res 2018;78(13):2593. DOI:10.1158/1538-7445.am2018-2593; Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011;32(1):81-151. DOI:10.1210/er.2010-0013; Cai C., Balk S.P. Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer 2011;18(5):R175-82. DOI:10.1530/ERC-10-0339; Galletti G., Leach B.I., Lam L., Tagawa S.T. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017;57:16-27. DOI:10.1016/j.ctrv.2017.04.008; Stanbrough M., Bubley G.J., Ross K. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006;66(5):2815-25. DOI:10.1158/0008-5472.CAN-05-4000; Puhr M., Hoefer J., Eigentler A. et al. The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy. Clin Cancer Res 2018;24(4):927-38. DOI:10.1158/1078-0432.ccr-17-0989; Arora V.K., Schenkein E., Murali R. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013;155(6):1309-22. DOI:10.1016/j.cell.2013.11.012; Venkitaraman R., Lorente D., Murthy V. et al. A randomised phase 2 trial of dexamethasone versus prednisolone in castration-resistant prostate cancer. Eur Urol 2015;67(4):673-9. DOI:10.1016/j.eururo.2014.10.004; Akamatsu S., Inoue T., Ogawa O., Gleave M.E. Clinical and mo-lecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 2018;25(4):345-51. DOI:10.1111/iju.13526; Flechon A., Pouessel D., Ferlay C. et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Oncol 2011;22(11):2476-81. DOI:10.1093/annonc/mdr004; Culine S., El Demery M., Lamy P.J. et al. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers. J Urol 2007;178(3 Pt 1): 844-8. DOI:10.1016/j.juro.2007.05.044; McKay R.R., Kwak L., Crowdis J.P. Phase II multicenter study of enzalutamide in metastatic castration-resistant prostate cancer to identify mechanisms driving resistance. Clin Cancer Res 2021;27(13):3610-9. DOI:10.1158/1078-0432.CCR-20-4616; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74. DOI:10.1016/j.cell.2011.02.013; Ceccaldi R., Rondinelli B., D'Andrea A.D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 2015;26(1):52-64. DOI:10.1016/j.tcb.2015.07.009; Bhattacharjee S., Nandi S. Choices have consequences: The nexus between DNA repair pathways and genomic instability in cancer. Clin Transl 2016;5(1):45. DOI:10.1186/s40169-016-0128-z; Hustedt N., Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol 2016;19(1):1-9. DOI:10.1038/ncb3452; Jeggo P.A., Pearl L.H., Carr A.M. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 2016;16(1):35-42. DOI:10.1038/nrc.2015.4; Roos W.P., Thomas A.D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 2016;16(1):20-33. DOI:10.1038/nrc.2015.2; Schiewer M.J., Knudsen K.E. DNA damage response in prostate cancer. Cold Spring Harb Perspect Med 2019;9(1):a030486. DOI:10.1101/cshperspect.a030486; Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215-28. DOI:10.1016/j.cell.2015.05.001; Annala M., Vandekerkhove G., Khalaf D. et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 2018;8(4):444-57. DOI:10.1158/2159-8290.CD-17-0937; Thangavel C., Boopathi E., Liu Y. et al. RB loss promotes prostate cancer metastasis. Cancer Res 2017;77(4):982-95. DOI:10.1158/0008-5472.CAN-16-1589; Ku S.Y., Rosario S., Wang Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355(6320):78-83. DOI:10.1126/science.aah4199; McNair C., Xu K., Mandigo A.C. et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J Clin Invest 2018;128(1):341-58. DOI:10.1172/JCI93566; Abida W., Cyrta J., Heller G. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA 2019;116(23):11428-36. DOI:10.1073/pnas.1906812116; Annala M., Struss W.J., Warner E.W. et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol 2017;72(1):34-42. DOI:10.1016/j.eururo.2017.02.023; Chakraborty G., Armenia J., Mazzu Y.Z. et al. Significance of BRCA2 and RB1 co-loss in aggressive prostate cancer progression. Clin Cancer Res 2020;26(8):2047-64. DOI:10.1158/1078-0432.CCR-19-1570.; Матвеев В.Б., Киричек А.А., Филиппова М.Г. и др. Влияние герминальных мутаций в генах BRCA2 и CHEK2 на время до развития кастрационной резистентности у больных метастатическим гормоночувствительным раком предстательной железы. Урология 2019;(5):79-85. DOI:10.18565/urology.2019.5.79-85; Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком. Онкоурология 2018;14(4):53-67. DOI:10.17650/1726-9776-2018-14-4-53-67; https://oncourology.abvpress.ru/oncur/article/view/1695
-
10Academic Journal
Συγγραφείς: Magadeev, I.
Πηγή: Quaestio Rossica, Vol 10, Iss 2 (2022)
Θεματικοί όροι: АНТАНТА, INTERNATIONAL RELATIONS, CANNES CONFERENCE, TSARIST DEBTS, ENTENTE, ЛЛОЙД ДЖОРДЖ, МЕЖДУНАРОДНЫЕ ОТНОШЕНИЯ, ARISTIDE BRIAND, международные отношения, международный консорциум, репарации, Каннская конференция, Антанта, Ллойд Джордж, Аристид Бриан, History of Russia. Soviet Union. Former Soviet Republics, LLOYD GEORGE, DK1-4735, РЕПАРАЦИИ, МЕЖДУНАРОДНЫЙ КОНСОРЦИУМ, КАННСКАЯ КОНФЕРЕНЦИЯ, INTERNATIONAL CONSORTIUM, АРИСТИД БРИАН, REPARATIONS, 'RUSSIAN QUESTION'
Περιγραφή αρχείου: application/pdf
-
11Book
Συγγραφείς: Poleev, Andrej
Θεματικοί όροι: faith, schizophrenia, шизофрения, денежная реформа, психопатология, Путинизм, reparations, war, psychopathology, война, Putinism, репарации
-
12Academic Journal
Συγγραφείς: Марущак, Анна Владимировна, Торгунакова, Анастасия Владимировна, Титов, Руслан Александрович, Соболева, Ольга Александровна, Елисейкин, Алексей Михайлович, Киселева, Елена Александровна, Савченко, Яна Александровна, Минина, Варвара Ивановна
Πηγή: Вестник Томского государственного университета. Биология. 2025. № 71. С. 217-236
Θεματικοί όροι: микроядерный тест, угольные теплоэлектростанции, гены репарации ДНК
Περιγραφή αρχείου: application/pdf
Relation: http_0210-37860. Вестник Томского государственного университета. Биология; koha:001268180; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001268180
-
13Academic Journal
Συγγραφείς: T. M. Zavarykina, M B Stenina, V. I. Loginov, M. V. Atkarskaya, M A Kapralova, A. M. Burdennyy, A S Tyulyandina, P K Brenner
Πηγή: Nauchno-prakticheskii zhurnal «Patogenez». :72-81
Θεματικοί όροι: 2. Zero hunger, 03 medical and health sciences, polymorphic marker, 0302 clinical medicine, гены репарации, ovarian cancer, genes of DNA reparation, cell cycle control, рак яичника, полиморфный маркер, контроль клеточного цикла, 3. Good health
-
14Conference
Θεματικοί όροι: ФЕРМЕНТЫ РЕПАРАЦИИ, ГЛИОБЛАСТОМА, ДЕГИДРОАБИЕТИЛАМИН
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/96938
-
15Academic Journal
Συγγραφείς: O. A. Mailyan, A. S. Kalpinskiy, I. V. Reshetov, Yu. V. Anzhiganova, K. M. Nyushko, А. D. Kaprin, M. P. Golovashchenko, S. P. Kokin, V. A. Stakanov, B. Ya. Alekseev, О. А. Маилян, А. С. Калпинский, И. В. Решетов, Ю. В. Анжиганова, К. М. Нюшко, А. Д. Каприн, М. П. Головащенко, С. П. Кокин, В. А. Стаканов, Б. Я. Алексеев
Συνεισφορές: The study was performed without external funding., Исследование проведено без спонсорской поддержки.
Πηγή: Cancer Urology; Том 18, № 3 (2022); 60-66 ; Онкоурология; Том 18, № 3 (2022); 60-66 ; 1996-1812 ; 1726-9776
Θεματικοί όροι: мутации в российской популяции, metastatic castration-resistant prostate cancer, mutations in DNA repair genes, somatic mutations, mutations in the Russian population, метастатический кастрационно-резистентный рак предстательной железы, мутации в генах репарации ДНК, соматические мутации
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1570/1397; Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.; Scher H.I., Morris M.J., Stadler W.M. et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol 2016;34(12):1402–18. DOI:10.1200/JCO.2015.64.2702; Oh M., Alkhushaym N., Fallatah S. et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate 2019;79(8):880–95. DOI:10.1002/pros.23795; De Bono J.S., Oudard S., Ozguroglu M. et al. 2010 Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010;376(9747):1147–54. DOI:10.1016/S0140-6736(10)61389-X; Fizazi K., Shore N., Teuvo L. Tammela et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N Engl J Med 2020;383(11):1040–9. DOI:10.1056/NEJMoa2001342; Smith M.R., Saad F., Chowdhury S. et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018;378(15):1408–18. DOI:10.1056/NEJMoa1715546; Scher H.I., Fizazi K., Saad F. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367(13):1187–97. DOI:10.1056/NEJMoa1207506; Beer T.M., Armstrong A.J., Rathkopf D.E. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014;371(5):424–33. DOI:10.1056/NEJMoa1405095; Fizazi K., Tran N., Fein L. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017;377(4):352–60. DOI:10.1056/NEJMoa1704174; Ku S.Y., Gleave M.E., Beltran H. Towards precision oncology in advanced prostate cancer. Nat Rev Urol 2019;16(11):645–54. DOI:10.1038/s41585-019-0237-8; De Bono J., Mateo J., Fizazi K. et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020;382(22):2091–102. DOI:10.1056/NEJMoa1911440; Abida W., Patnaik A., Campbell D. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 2020;38(32):3763–72. DOI:10.1200/JCO.20.01035; Abida W., Campbell D., Patnaik A. et al. Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study. Clin Cancer Res 2020;26(11):2487–96. DOI:10.1158/1078-0432.CCR-20-0394; Abida W., Cheng M., Armenia J. et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 2019;5(4):471–8. DOI:10.1001/jamaoncol.2018.5801; Alexeev B., Lyubchenko L., Gordiev M. et al. ADAM: a multicenter, non-interventional, prospective cohort study for determination of prevalence of homologous recombination repair genes mutations (HRRm) in metastatic castrate-resistant prostate cancer (mCRPC) – Interim analysis. J Clin Oncol 2022;40(6_suppl):169. DOI:10.1200/JCO.2022.40.6_suppl.169; Castro E., Romero-Laorden N., Del Pozo A. et al. PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2019;37(6):490–503. DOI:10.1200/jco.18.00358; Abida W., Armenia J. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017;2017:PO.17.00029. DOI:10.1200/PO.17.00029; De Bono J.S., Mateo J., Fizazi K. et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020;382:2091–102. DOI:10.1056/NEJMoa1911440; De Bono J.S., Fizazi K., Saad F. et al. Central, prospective detection of homologous recombination repair gene mutations (HRRm) in tumour tissue from >4000 men with metastatic castration-resistant prostate cancer (mCRPC) screened for the PROfound study. Annal Oncol 2019;30(suppl_5):v325–55. DOI:10.1093/annonc/mdz248; https://oncourology.abvpress.ru/oncur/article/view/1570
-
16Academic Journal
Συγγραφείς: N. P. Babushkina, M. A. Nikitina, E. Yu. Bragina, V. M. Alifirova, A. E. Postrigan, Ye. A. Deviatkina, D. E. Gomboeva, M. S. Nazarenko, Н. П. Бабушкина, М. А. Никитина, Е. Ю. Брагина, В. М. Алифирова, А. Е. Постригань, Е. А. Девяткина, Д. Е. Гомбоева, М. С. Назаренко
Συνεισφορές: Исследование выполнено при частичной грантовой поддержке научно-исследовательских проектов, выполняемых молодыми учёными («Роль генов репарации в патогенезе болезни Паркинсона, болезни Гентингтона и нормального (здорового) старения», 2021–2023 гг.) Работа выполнена при частичном финансировании Государственного задания Министерства науки и высшего образования № 122020300041-7.
Πηγή: Acta Biomedica Scientifica; Том 7, № 6 (2022); 12-21 ; 2587-9596 ; 2541-9420
Θεματικοί όροι: митохондриальная дисфункция, SNP, DNA repair systems genes, mitochondrial dysfunction, гены систем репарации ДНК
Περιγραφή αρχείου: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/3878/2460; Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson’s disease. Rev Neurol (Paris). 2016; 172(1): 14-26. doi:10.1016/j.neurol.2015.09.012; Siitonen A, Nalls MA, Hernandez D, Gibbs JR, Ding J, Ylikotila P, et al. Genetics of early-onset Parkinson’s disease in Finland: Exome sequencing and genome-wide association study. Neurobiol Aging. 2017; 53: 195.e7-195.e10. doi:10.1016/j.neurobiolaging.2017.01.019; Cherian A, Divya KP. Genetics of Parkinson’s disease. Acta Neurol Belg. 2020; 120(6): 1297-1305. doi:10.1007/s13760-020-01473-5; Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021; 397(10291): 2284-2303. doi:10.1016/S0140-6736(21)00218-X; Schormair B, Kemlink D, Mollenhauer B, Fiala O, Machetanz G, Roth J, et al. Diagnostic exome sequencing in early-onset Parkinson’s disease confirms VPS13C as a rare cause of autosomal-recessive Parkinson’s disease. Clin Genet. 2018; 93(3): 603-612. doi:10.1111/cge.13124; Puschmann A. New genes causing hereditary Parkinson’s disease or Parkinsonism. Curr Neurol Neurosci Rep. 2017; 17(9): 66. doi:10.1007/s11910-017-0780-8; Lin CH, Chen PL, Tai CH, Lin HI, Chen CS, Chen ML, et al. A clinical and genetic study of early-onset and familial parkinsonism in Taiwan: An integrated approach combining gene dosage analysis and next-generation sequencing. Mov Disord. 2019; 34(4): 506-515. doi:10.1002/mds.27633; Li N, Wang L, Zhang J, Tan EK, Li J, Peng J, et al. Wholeexome sequencing in early-onset Parkinson’s disease among ethnic Chinese. Neurobiol Aging. 2020; 90: 150.e5-150.e11. doi:10.1016/j.neurobiolaging.2019.12.023; OMIM. URL: https://www.ncbi.nlm.nih.gov/omim [date of access: 16.05.2022].; Wu YY, Kuo HC. Functional roles and networks of noncoding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci. 2020; 27(1): 49. doi:10.1186/s12929-020-00636-z; Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett. 2018; 592(5): 692-702. doi:10.1002/1873-3468.12964; Vodickova A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion. 2022; 64: 1-18. doi:10.1016/j.mito.2022.02.004; Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, et al. Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochim Biophys Acta. 2009; 1787(5): 335-344. doi:10.1016/j.bbabio.2009.02.021; Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013; 106-107: 17-32. doi:10.1016/j.pneurobio.2013.04.004; Paillusson S, Gomez-Suaga P, Stoica R, Little D, Gissen P, Devine MJ, et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 2017; 134(1): 129-149. doi:10.1007/s00401-017-1704-z; Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020; 15: 235-259. doi:10.1146/annurev-pathmechdis-012419-032711; Iwata R, Casimir P, Vanderhaeghen P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science. 2020; 369(6505): 858-862. doi:10.1126/science.aba9760; Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016; 139(Suppl 1): 216-231. doi:10.1111/jnc.13731; Franco R, Rivas-Santisteban R, Navarro G, Pinna A, ReyesResina I. Genes implicated in familial Parkinson’s disease provide a dual picture of nigral dopaminergic neurodegeneration with mitochondria taking center stage. Int J Mol Sci. 2021; 22(9): 4643. doi:10.3390/ijms22094643; Flones IH, Tzoulis C. Mitochondrial respiratory chain dysfunction – A hallmark pathology of idiopathic Parkinson’s disease? Front Cell Dev Biol. 2022; 10: 874596. doi:10.3389/fcell.2022.874596; Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989; 1(8649): 1269. doi:10.1016/s0140-6736(89)92366-0; Hoglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, Feger J, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 2005; 95(4): 930-939. doi:10.1111/j.1471-4159.2005.03493.x; Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis. 2018; 109(Pt B): 249-257. doi:10.1016/j.nbd.2017.04.004; Zambon F, Cherubini M, Fernandes HJR, Lang C, Ryan BJ, Volpato V, et al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum Mol Genet. 2019; 28(12): 2001-2013. doi:10.1093/hmg/ddz038; Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson’s disease: From pathogenesis to treatment. Cells. 2019; 8(7): 712. doi:10.3390/cells8070712; Van Laar VS, Berman SB. Mitochondrial dynamics in Parkinson’s disease. Exp Neurol. 2009; 218(2): 247-256. doi:10.1016/j.expneurol.2009.03.019; Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, et al. Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol. 2000; 162(1): 37-50. doi:10.1006/exnr.2000.7333; Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: From mechanism to therapy. Trends Biochem Sci. 2021; 46(4): 329-343. doi:10.1016/j.tibs.2020.11.007; Ra D, Sa B, Sl B, Js M, Sj M, Da D, et al. Is exposure to BMAA a risk factor for neurodegenerative diseases? A response to a critical review of the BMAA hypothesis. Neurotox Res. 2021; 39(1): 81-106. doi:10.1007/s12640-020-00302-0; Song S, Pursell ZF, Copeland WC, Longley MJ, Kunkel TA, Mathews CK. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. PNAS USA. 2005; 102: 4990-4995. doi:10.1073/pnas.0500253102; Vasileiou PVS, Mourouzis I, Pantos C. Principal aspects regarding the maintenance of mammalian mitochondrial genome integrity. Int J Mol Sci. 2017; 18: 1821. doi:10.3390/ijms18081821; Storr SJ, Woolston CM, Martin SG. Base excision repair, the redox environment and therapeutic implications. Curr Mol Pharmacol. 2012; 5: 88-101.; Zinovkina LA. Mechanisms of mitochondrial DNA repair in mammals. Biochemistry (Mosc). 2018; 83(3): 233-249. doi:10.1134/S0006297918030045; Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, et al. Mitochondrial dysfunction in ataxiatelangiectasia. Blood. 2012; 119: 1490-1500. doi:10.1182/blood-2011-08-373639; Rashid S. Targeting the mitochondria for the treatment of MLH1-deficient disease: Thesis. 2017. URL: http://qmro.qmul.ac.uk/xmlui/handle/123456789/30924 [date of access: 16.05.2022].; Rashid S, Freitas MO, Cucchi D, Bridge G, Yao Z, Gay L, et al. MLH1 deficiency leads to deregulated mitochondrial metabolism. Cell Death Dis. 2019; 10(11): 795. doi:10.1038/s41419-019-2018-y; Coene ED, Hollinshead MS, Waeytens AA, Schelfhout VR, Eechaute WP, Shaw MK, et al. Phosphorylated BRCA1 is predominantly located in the nucleus and mitochondria. Mol Biol Cell. 2005; 16: 997-1010. doi:10.1091/mbc.e04-10-0895; Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell. 2016; 27: 223-235. doi:10.1091/mbc.E15-05-0260; Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res. 2018; 809: 81-87. doi:10.1016/j.mrfmmm.2017.07.002; Maciejczyk M, Mikoluc B, Pietrucha B, HeropolitanskaPliszka E, Pac M, Motkowski R, et al. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome. Redox Biol. 2017; 11: 375-383. doi:10.1016/j.redox.2016.12.030; Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn. 2018; 247: 33-46. doi:10.1002/dvdy.24522; Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015; 30(12): 1591-601. doi:10.1002/mds.26424; Manual guide. Applied Biosystems user bulletin: Using the SNaPshot® Multiplex System. 2005. URL: https://tools.thermofisher.com/content/sfs/manuals/cms_041203.pdf [date of access: 20.05.2022].; Resseguie EA, Staversky RJ, Brookes PS, O’Reilly MA. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction. Redox Biol. 2015; 5: 176-185. doi:10.1016/j.redox.2015.04.012; Shimura T. ATM-mediated mitochondrial radiation responses of human fibroblasts. Genes (Basel). 2021; 12(7): 1015. doi:10.3390/genes12071015; Lee JH, Paull TT. Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol. 2021; 22(12): 796-814. doi:10.1038/s41580-021-00394-2; Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, et al. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci Signal. 2018; 11(512): eaan5598. doi:10.1126/scisignal.aan5598; Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003; 115(5): 629-640. doi:10.1016/s0092-8674(03)00926-7; Brown KD, Rathi A, Kamath R, Beardsley DI, Zhan Q, Mannino JL, et al. The mismatch repair system is required for S-phase checkpoint activation.Nat Genet. 2003; 33: 80-84. doi:10.1038/ng1052; https://www.actabiomedica.ru/jour/article/view/3878
-
17Academic Journal
Συγγραφείς: R. A. Karateev, O. A. Nikitinskaya, N. V. Toroptsova, A. E. Karateev, Р. А. Каратеев, О. А. Никитинская, Н. В. Торопцова, А. Е. Каратеев
Πηγή: Rheumatology Science and Practice; Vol 60, No 3 (2022); 299-305 ; Научно-практическая ревматология; Vol 60, No 3 (2022); 299-305 ; 1995-4492 ; 1995-4484
Θεματικοί όροι: нарушение репарации костной ткани, bone fractures, nonunion, bone healing, переломы костей, несращение
Περιγραφή αρχείου: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3177/2191; Шаповал ИН (ред.). Здравоохранение в России 2019: Статистический сборник. Москва:Росстат;2019.; Elsevier H, Cannada LK. Management of pain associated with fractures. Curr Osteoporos Rep. 2020;18(3):130-137. doi:10.1007/s11914-020-00578-3; Gottlieb M, Alerhand S. Nonsteroidal anti-inflammatory drugs may be considered in patients with acute fractures. Ann Emerg Med. 2020;76(5):675-676. doi:10.1016/j.annemergmed.2019.08.424; Busse JW, Sadeghirad B, Oparin Y, Chen E, Goshua A, May C, et al. Management of acute pain from non-low back, musculoskeletal injuries: A systematic review and network meta-analysis of randomized trials. Ann Intern Med. 2020;173(9):730-738. doi:10.7326/M19-3601; Qaseem A, McLean RM, O’Gurek D, Batur P, Lin K, Kansagara DL, et al.; Clinical Guidelines Committee of the American College of Physicians; Commission on Health of the Public and Science of the American Academy of Family Physicians. Nonpharmacologic and pharmacologic management of acute pain from non-low back, musculoskeletal injuries in adults: A clinical guideline from the American College of Physicians and American Academy of Family Physicians. Ann Intern Med. 2020;173(9):739-748. doi:10.7326/M19-3602; Каратеев АЕ, Лила АМ, Загородний НВ, Амирджанова ВН, Погожева ЕЮ, Филатова ЕС, и др. Острая боль в раннем периоде после травм в амбулаторной практике: возможность медикаментозного контроля. Результаты многоцентрового наблюдательного исследования РАПТОР (Рациональная Анальгезия После Травм: Оценка Результатов). Терапевтический архив. 2020;92(5):69-77. doi:10.26442/00403660.2020.05.000678; Насонов ЕЛ (ред.). Российские клинические рекомендации. Ревматология. М.:ГЭОТАР-Медиа;2020.; Magni A, Agostoni P, Bonezzi C, Massazza G, Menè P, Savarino V, et al. Management of osteoarthritis: Expert opinion on NSAIDs. Pain Ther. 2021;10(2):783-808. doi:10.1007/s40122-021-00260-1; White AE, Henry JK, Dziadosz D. The effect of nonsteroidal antiinflammatory drugs and selective COX-2 inhibitors on bone healing. HSS J. 2021;17(2):231-234. doi:10.1177/1556331621998634; George MD, Baker JF, Leonard CE, Mehta S, Miano TA, Hennessy S. Risk of nonunion with nonselective NSAIDs, COX-2 inhibitors, and opioids. J Bone Joint Surg Am. 2020;102(14):1230-1238. doi:10.2106/JBJS.19.01415; Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, et al. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells. 2021;13(11): 1667-1695. doi:10.4252/wjsc.v13.i11.1667; Ono T, Takayanagi H. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep. 2017;15(4):367-375. doi:10.1007/s11914-017-0381-0; Borrelli J Jr, Pape C, Hak D, Hsu J, Lin S, Giannoudis P, et al. Physiological challenges of bone repair. J Orthop Trauma. 2012;26(12):708-711. doi:10.1097/BOT.0b013e318274da8b; Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: Bad cop, good cop? Trends Endocrinol Metab. 2010;21(5):294-301. doi:10.1016/j.tem.2009.12.004; Lisowska B, Kosson D, Domaracka K. Lights and shadows of NSAIDs in bone healing: The role of prostaglandins in bone metabolism. Drug Des Devel Ther. 2018;12:1753-1758. doi:10.2147/DDDT.S164562; Su B, O’Connor JP. NSAID therapy effects on healing of bone, tendon, and the enthesis. J Appl Physiol (1985). 2013;115(6):892- 899. doi:10.1152/japplphysiol.00053.2013; Boursinos LA, Karachalios T, Poultsides L, Malizos KN. Do steroids, conventional non-steroidal anti-inflammatory drugs and selective Cox-2 inhibitors adversely affect fracture healing? J Musculoskelet Neuronal Interact. 2009;9(1):44-52.; Pountos I, Panteli M, Walters G, Giannoudis PV. NSAIDs inhibit bone healing through the downregulation of TGF-β3 expression during endochondral ossification. Injury. 2021;52(6):1294-1299. doi:10.1016/j.injury.2021.01.007; Janssen MP, Caron MM, van Rietbergen B, Surtel DA, van Rhijn LW, Welting TJ, et al. Impairment of the chondrogenic phase of endochondral ossification in vivo by inhibition of cyclooxygenase-2. Eur Cell Mater. 2017;34:202-216. doi:10.22203/eCM.v034a13; Al-Waeli H, Reboucas AP, Mansour A, Morris M, Tamimi F, Nicolau B. Non-steroidal anti-inflammatory drugs and bone healing in animal models-a systematic review and meta-analysis. Syst Rev. 2021;10(1):201. doi:10.1186/s13643-021-01690-w; Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775. doi:10.1001/jamasurg.2016.2775; Al Farii H, Farahdel L, Frazer A, Salimi A, Bernstein M. The effect of NSAIDs on postfracture bone healing: A metaanalysis of randomized controlled trials. OTA Int. 2021;4(2):e092. doi:10.1097/OI9.0000000000000092; Wheatley BM, Nappo KE, Christensen DL, Holman AM, Brooks DI, Potter BK. Effect of NSAIDs on bone healing rates: A meta-analysis. J Am Acad Orthop Surg. 2019;27(7):e330-e336. doi:10.5435/JAAOS-D-17-00727; Dodwell ER, Latorre JG, Parisini E, Zwettler E, Chandra D, Mulpuri K, et al. NSAID exposure and risk of nonunion: A metaanalysis of case-control and cohort studies. Calcif Tissue Int. 2010;87(3):193-202. doi:10.1007/s00223-010-9379-7; Li J, Ajiboye RM, Orden MH, Sharma A, Drysch A, Pourtaheri S. The effect of ketorolac on thoracolumbar posterolateral fusion: A systematic review and meta-analysis. Clin Spine Surg. 2018;31(2):65-72. doi:10.1097/BSD.0000000000000613; Tucker WA, Birt MC, Heddings AA, Horton GA. The effect of postoperative nonsteroidal anti-inflammatory drugs on nonunion rates in long bone fractures. Orthopedics. 2020;43(4):221-227. doi:10.3928/01477447-20200428-06; Quan K, Xu Q, Zhu M, Liu X, Dai M. Analysis of risk factors for non-union after surgery for limb fractures: A case-control study of 669 subjects. Front Surg. 2021;8:754150. doi:10.3389/fsurg.2021.754150; Wang Z, Bhattacharyya T. Trends of non-union and prescriptions for non-steroidal anti-inflammatory drugs in the United States, 1993–2012. Acta Orthop. 2015;86(5):632-637. doi:10.3109/17453674.2015.1028860; Sagi HC, Jordan CJ, Barei DP, Serrano-Riera R, Steverson B. Indomethacin prophylaxis for heterotopic ossification after acetabular fracture surgery increases the risk for nonunion of the posterior wall. J Orthop Trauma. 2014;28(7):377-383. doi:10.1097/BOT.0000000000000049; Nuelle JAV, Coe KM, Oliver HA, Cook JL, Hoernschemeyer DG, Gupta SK. Effect of NSAID use on bone healing in pediatric fractures: A preliminary, prospective, randomized, blinded study. J Pediatr Orthop. 2020;40(8):e683-e689. doi:10.1097/BPO.0000000000001603; Hughes JM, McKinnon CJ, Taylor KM, Kardouni JR, Bulathsinhala L, Guerriere KI, et al. Nonsteroidal antiinflammatory drug prescriptions are associated with increased stress fracture diagnosis in the US army population. J Bone Miner Res. 2019;34(3):429-436. doi:10.1002/jbmr.3616; Barnds B, Heenan M, Ayres J, Tarakemeh A, Schroeppel JP, Mullen S, et al. Comparison of the rate of delayed/nonunion in fifth metatarsal fractures receiving anti-inflammatory medications. J Exp Orthop. 2021;8(1):115. doi:10.1186/s40634-021-00435-x; Kim H, Kim DH, Kim DM, Kholinne E, Lee ES, Alzahrani WM, et al. Do nonsteroidal anti-inflammatory or COX-2 inhibitor drugs increase the nonunion or delayed union rates after fracture surgery? A propensity-score-matched study. J Bone Joint Surg Am. 2021;103(15):1402-1410. doi:10.2106/JBJS.20.01663; Pradhan BB, Tatsumi RL, Gallina J, Kuhns CA, Wang JC, Dawson EG. Ketorolac and spinal fusion: Does the perioperative use of ketorolac really inhibit spinal fusion? Spine (Phila Pa 1976). 2008;33(19):2079-2082. doi:10.1097/BRS.0b013e31818396f4; Kay RM, Directo MP, Leathers M, Myung K, Skaggs DL. Complications of ketorolac use in children undergoing operative fracture care. J Pediatr Orthop. 2010;30(7):655-658. doi:10.1097/BPO.0b013e3181efb8b4; McDonald E, Winters B, Nicholson K, Shakked R, Raikin S, Pedowitz DI, et al. Effect of postoperative ketorolac administration on bone healing in ankle fracture surgery. Foot Ankle Int. 2018;39(10):1135-1140. doi:10.1177/1071100718782489; McDonald EL, Daniel JN, Rogero RG, Shakked RJ, Nicholson K, Pedowitz DI, et al. How does perioperative ketorolac affect opioid consumption and pain management after ankle fracture surgery? Clin Orthop Relat Res. 2020;478(1):144-151. doi:10.1097/CORR.0000000000000978; Donohue D, Sanders D, Serrano-Riera R, Jordan C, Gaskins R, Sanders R, et al. Ketorolac administered in the recovery room for acute pain management does not affect healing rates of femoral and tibial fractures. J Orthop Trauma. 2016;30(9):479-482. doi:10.1097/BOT.0000000000000620; Hunter AM, Montgomery TP, Pitts CC, Moraes L, Anderson M, Wilson J, et al. Postoperative aspirin use and its effect on bone healing in the treatment of ankle fractures. Injury. 2020;51(2):554- 558. doi:10.1016/j.injury.2019.11.039; Borgeat A, Ofner C, Saporito A, Farshad M, Aguirre J. T he effect of nonsteroidal anti-inflammatory drugs on bone healing in humans: A qualitative, systematic review. J Clin Anesth. 2018;49:92-100. doi:10.1016/j.jclinane.2018.06.020; Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture healing in the elderly: A review. Maturitas. 2016;92:49-55. doi:10.1016/j.maturitas.2016.07.014; Richards CJ, Graf KW Jr, Mashru RP. The effect of opioids, alcohol, and nonsteroidal anti-inflammatory drugs on fracture union. Orthop Clin North Am. 2017;48(4):433-443. doi:10.1016/j.ocl.2017.06.002; Makaram NS, Leow JM, Clement ND, Oliver WM, Ng ZH, Simpson C, et al. Risk factors associated with delayed and aseptic nonunion following tibial diaphyseal fractures managed with intramedullary nailing. Bone Jt Open. 2021;2(4):227-235. doi:10.1302/2633-1462.24.BJO-2021-0012.R1
-
18Conference
Συγγραφείς: Иванов А.В., Евдокимова Т.В.
Θεματικοί όροι: Германия, страны-победительницы, Версальский мирный договор, репарации
Relation: https://zenodo.org/records/4589735; oai:zenodo.org:4589735
-
19Academic Journal
Συγγραφείς: Полеев, Андрей
Θεματικοί όροι: возмещение ущерба, репарации, Нюрнбергские принципы, Нюрнбергские принципы права, СССР, reparations, Nuremberg principles of law, Nürnberger Prinzipien des Rechts, Schadensersatz
Relation: http://enzymes.at/download/reparations.pdf; https://zenodo.org/records/4460497; oai:zenodo.org:4460497; http://constitution.fund/judgments/reparations.pdf; https://doi.org/10.5281/zenodo.4460497
-
20Academic Journal
Συγγραφείς: O. N. Churuksaeva, L. A. Kolomiets, A. B. Villert, О. Н. Чуруксаева, Л. А. Коломиец, А. Б. Виллерт
Πηγή: Siberian journal of oncology; Том 20, № 1 (2021); 162-168 ; Сибирский онкологический журнал; Том 20, № 1 (2021); 162-168 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-1
Θεματικοί όροι: пембролизумаб, microsatellite instability, MSI, disruption in the repair system, MMR, chemotherapy, lenvatinib, pembrolizumab, микросателлитная нестабильность, нарушение в системе репарации, химиотерапия, ленватиниб
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1705/840; Waki K., Yokomizo K., Kawano K., Tsuda N., Komatsu N., Yamada A. Integrity of plasma cell-free DNA as a prognostic factor for vaccine therapy in patients with endometrial cancer. Mol Clin Oncol. 2021 Feb; 14(2): 29. doi:10.3892/mco.2020.2191.; Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov; 68(6): 394–424. doi:10.3322/caac.21492.; de Haydu C., Black J.D., Schwab C.L., English D.P., Santin A.D. An update on the current pharmacotherapy for endometrial cancer. Expert Opin Pharmacother. 2016; 17(4): 489–99. doi:10.1517/14656566.2016.1127351.; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018 Jan; 68(1): 7–30. doi:10.3322/caac.21442.; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019 Jan; 69(1): 7–34. doi:10.3322/caac.21551.; Cancer Genome Atlas Research Network, Kandoth C., Schultz N., Cherniack A.D., Akbani R., Liu Y., Shen H., Robertson A.G., Pashtan I., Shen R., Benz C.C., Yau C., Laird P.W., Ding L., Zhang W., Mills G.B., Kucherlapati R., Mardis E.R., Levine D.A. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May; 497(7447): 67–73. doi:10.1038/nature12113.; Трякин А.А., Федянин М.Ю., Цуканов А.С., Шелыгин Ю.А., Покатаев И.А., Игнатова Е.О., Хакимова Г.Г., Фролова М.А., Тюляндин С.А. Микросателлитная нестабильность как уникальная характеристика опухолей и предиктор эффективности иммунотерапии. Злокачественные опухоли. 2019; 9(4): 59–69. doi:10.18027/2224-5057-2019-9-4-59-69.; Hause R.J., Pritchard C.C., Shendure J., Salipante S.J. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016 Nov; 22(11): 1342–1350. doi:10.1038/nm.4191.; Boland C.R., Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010; 138(6): 2073–87. doi:10.1053/j.gastro.2009.12.064.; Ta R.M., Hecht J.L., Lin D.I. Discordant loss of mismatch repair proteins in advanced endometrial endometrioid carcinoma compared to paired primary uterine tumors. Gynecol Oncol. 2018 Dec; 151(3): 401–406. doi:10.1016/j.ygyno.2018.10.012.; Makker V., Taylor M.H., Aghajanian C., Oaknin A., Mier J., Cohn A.L., Romeo M., Bratos R., Brose M.S., DiSimone C., Messing M., Stepan D.E., Dutcus C.E., Wu J., Schmidt E.V., Orlowski R., Sachdev P., Shumaker R., Casado Herraez A. Lenvatinib Plus Pembrolizumab in Patients With Advanced Endometrial Cancer. J Clin Oncol. 2020 Sep; 38(26): 2981–92. doi:10.1200/JCO.19.02627.; Тюляндин С.А. Новая эффективная комбинация для лечения рака эндометрия [Интернет]. URL: https://rosoncoweb.ru/news/oncology/2020/04/20-1 (дата обращения: 01.02.2020).; Rossi E.C., Kowalski L.D., Scalici J., Cantrell L., Schuler K., Hanna R.K., Method M., Ade M., Ivanova A., Boggess J.F. A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): a multicentre, prospective, cohort study. Lancet Oncol. 2017; 18(3): 384–92. doi:10.1016/S1470-2045(17)30068-2.; Holloway R.W., Gupta S., Stavitzski N.M., Zhu X., Takimoto E.L. Gubbi A., Bigsby G.E., Brudie L.A., Kendrick J.E., Ahmad S. Sentinel lymph node mapping with staging lymphadenectomy for patients with endometrial cancer increases the detection of metastasis. Gynecol Oncol. 2016; 141(2): 206–10. doi:10.1016/j.ygyno.2016.02.018.; Wang L., Liu F. Meta-analysis of laparoscopy sentinel lymph node mapping in endometrial cancer. Arch Gynecol Obstet. 2018 Sep; 298(3): 505–510. doi:10.1007/s00404-018-4845-y.; Очиров М.О., Коломиец Л.А., Чернов В.И., Синилкин И.Г., Чернышова А.Л., Виллерт А.Б., Молчанов С.В., Чуруксаева О.Н., Кишкина А.Ю. Первый опыт клинического применения лапароскопического гамма-зонда для интраоперационной визуализации «сторожевых» лимфатических узлов при гинекологическом раке. Сибирский онкологический журнал. 2018; 17(5): 45–51.; Румянцев П.О., Романов И.С., Мудунов А.М., Шаварова Е.К., Слащук К.Ю., Волкова М.И., Исаев П.А., Шатохина Е.А. Бородавина Е.В. персонализированная терапия ленватинибом (Ленвима®). Методическое пособие для врачей. 14 с.; https://www.siboncoj.ru/jour/article/view/1705