Εμφανίζονται 1 - 20 Αποτελέσματα από 67 για την αναζήτηση '"РНК-ИНТЕРФЕРЕНЦИЯ"', χρόνος αναζήτησης: 0,81δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: Работа выполнена при финансовой поддержке Российского научного фонда (грант 23-45-10031).

    Πηγή: Medical Immunology (Russia); Том 26, № 5 (2024); 1107-1114 ; Медицинская иммунология; Том 26, № 5 (2024); 1107-1114 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3108/2015; Козулина И.Е., Курбачева О.М., Ильина Н.И. Аллергия сегодня. Анализ новых эпидемиологических данных. Российский аллергологический журнал // Российский аллергологический журнал, 2014. Т. 3. С. 3-10.; Bernstein D.I., Schwartz G., Bernstein J.A. Allergic rhinitis: mechanisms and treatment. Immunol. Allergy Clin. North Am., 2016, Vol. 36, pp. 261-278.; Bousquet J., Anto J.M., Bachert C., Baiardini I., Bosnic-Anticevich S., Walter Canonica G., Melén E., Palomares O., Scadding G.K., Togias A., Toppila-Salmi S. Allergic rhinitis. Nat. Rev. Dis. Primers, 2020, Vol. 6, no. 1, 95. doi:10.1038/s41572-020-00227-0.; Deng C., Peng N., Tang Y., Yu N., Wang C., Cai X., Zhang L., Hu D., Ciccia F., Lu L. Roles of IL-25 in Type 2 Inflammation and Autoimmune Pathogenesis. Front. Immunol., 2021, Vol. 12, 691559. doi:10.3389/fimmu.2021.691559.; Elbashir S. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, Vol. 26, pp. 199-213.; Hong H., Liao S., Chen F., Yang Q., Wang D.Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy, 2020, Vol. 75, pp. 2794-2804.; Muñoz-Bellido F.J., Moreno E., Dávila I. Dupilumab: A review of present indication. J. Investig. Allergol. Clin. Immunol., 2022, Vol. 32, pp. 97-115.; Nikonova A., Shilovskiy I., Galitskaya M., Sokolova A., Sundukova M., Dmitrieva-Posocco O., Mitin A., Komogorova V., Litvina M., Sharova N., Zhernov Y., Kudlay D., Dvornikov A., Kurbacheva O., Khaitov R., Khaitov M. Respiratory syncytial virus upregulates IL-33 expression in mouse model of virus-induced inflammation exacerbation in OVA-sensitized mice and in asthmatic subjects. Cytokine, 2021, Vol. 138, 155349. doi:10.1016/j.cyto.2020.155349.; Traber G.M., Yu A.M. Special section on non-coding RNAs in clinical practice: from biomarkers to therapeutic tools-minireview RNAi-based therapeutics and novel RNA bioengineering technologies. J. Pharmacol. Exp. Ther., 2023, Vol. 384, pp. 133-154.; Wang C., Liu Q., Chen F., Xu W., Zhang C., Xiao W. IL-25 Promotes Th2 Immunity responses in asthmatic mice via nuocytes activation. PLoS One, 2016, Vol. 11, no. 9, e0162393. doi:10.1371/journal.pone.0162393.; Weber C., Müller C., Podszuweit A., Montino C., Vollmer J., Forsbach A. Toll-like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR-mediated effects). Immunology, 2012, Vol. 136, pp. 64-77.; https://www.mimmun.ru/mimmun/article/view/3108

  3. 3
  4. 4
    Academic Journal

    Πηγή: Russian Journal of Parasitology; Том 17, № 4 (2023); 501-509 ; Российский паразитологический журнал; Том 17, № 4 (2023); 501-509 ; 2541-7843 ; 1998-8435 ; 10.31016/1998-8435-2023-17-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://vniigis.elpub.ru/jour/article/view/1094/788; Малютина Т. А., Воронин М. В. FMRFамидподобные нейропептиды – модуляторы локомоторных реакций у растительных цистообразующих паразитических нематод // Российский паразитологический журнал. 2022; Т. 16. № 1. С. 50-62. https://doi.org/10.31016/1998-8435-2022-16-1-50-62; Зиновьева С. В. Общая характеристика фитопаразитических нематод / В кн. «Фитопаразитические нематоды растений»; под ред. Зиновьевой С. В., Чижова В. Н. Москва: Товарищество научных изданий KMK, 2012. С. 10–45.; Abad P., Gouzy J. M. et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology. 2008; 26: 909-915. https://doi.org/10.1038/nbt.1482.; Atkinson L. E., Stevenson M., Mckoy C. J., Marks N. J., Fleming C., Zamanian M., Day T. A., Kimber M. J., Maule A. G., Mousley A. Flp-32 Ligand/receptor silencing phenocopy faster plant pathogenic nematodes. PLoS Pathogens. 2013; 9 (2): 1003169. https://doi.org/10.1371/joumal.ppat.1003169.; Holden-Dye L., Walrer R. J. Neurobiology of plant parasitic nematodes. Invertebrate Neurosciences. 2011; 11. 9-11. https://doi.org/10.1007/s10158-011-0117-2.; Johnston M. J. G., Veigh P. M., Masler S., Fleming C. C., Maule A. G. FMRFamide-like peptides in rootknot nematodes and their potential role in nematode physiology. Journal of Helminthology. 2010; 84 (3): 253-265. https://doi.org/10.1017/S0022149X09990630.; Kimber M. J., Fleming C. C. Neuromuscular function in plant parasitic nematodes: a target for novel control stratеgies? Parasitology. 2005; 131 (l): 129-142. https://doi.org/10.1017/S0031182005009157.; Kimber M. J., Fleming C. C., Bjourson A. J., Halton D. W., Maule A. G. FMRFavmide-related peptides in potato cyst nematodes. Molecular and Biochemical Parasitology. 2001; 116 (2): 199-208. https://doi.org/10.1016/s0166-6851(01)00323-1; Kumari C., Dutta T. K., Banakar P., Rao U. Сomparing the defense related gene expression changes upon root-knot attack in susceptible versus resistant kultivars of rice. Scientific Reports. 2016; 6: 22846. https://doi.org/10.1038/srep22846; Kumari С., Tushar K. Dutta, Sonam Chaudhary, Prakash Banakar, Pradeep K. Papolu, Uma Rao. Molecular characterization of FMRFamide-like peptides in Meloidogyne graminicola and analysis of their knockdown effect on nematode infectivity. Gene. 2017; 619: 50-60. https://doi.org/10.1016/j.gene.2017.03.042; Martin R. J., Robertson A. P. Control of nematode parasites with agents acting on neuro-musculature systems: lessons for neuropeptide ligand discovery. Advances in Experimental Medicine and Biology. 2010; 692: 138-154. https://doi.org/10.1007/978-1-4419-6902-6_7.; Masler E. P. Behaviour of Heterodera glycines and Meloidogyne incognita infective juveniles exposed to nematode FMRFamide-lice peptides in vitro. Nematology. 2012; 14 (5): 605-612. https://doi.org/10.1163/156854111X617879; Maule A. G., Mousley A., Marks N. J., Day T. A., Thompson D. P., Geary T. G., Halton D. W. Neuropeptide signaling systems – potential drug targets for parasite and pest control. Current Topics in Medicinal Chemistry. 2002; 2: 733–758. https://doi.org/10.2174/1568026023393697; McCoy C. J. , Atkinson L. E. , Mostafa Zamanian, Paul McVeigh, Tim A Day, Michael J. Kimber, Nikki J. Marks, Aaron G. Maule, Angela Mousley. New insights into the FLPergic complements of parasitic nematodes: Informing diaphanization approaches. EuPA Open Proteomics. 2014; 3: 262-272. https://doi.org/10.1016/j.euprot.2014.04.002; Mertens Inge, Anick Vandingenen, Tom Meeusen, Tom Janssen, Walter Luyten, Ronald J. Nachman, Arnold De Loof, Liliane Schoofs. Functional characterization of the putative orphan neuropeptide G-protein coupled receptor C26F1.6 in Caenorhabditis elegans. FEBS Letters. 2004; 573 (1-3): 55-60.; Papolu P. K., Gantasala N. P., Kamaraju D., Banakar P., Sreevathsa R., Rao. Utility of host delivered RNAI of two FMRFamide like peptides, flp-14 and flp-18, for the management of root-knot nematode, Meloidogyne incognita. PloS ONE 2013; 8 (11): e80603. https://doi.org/10.1371/journal.pone.0080603.; Peymen K., Watteyne J., Frooninckx L., Schoofs L., Beets I. The FMRFamide-like peptide family in nematodes. Frontiers in endocrinology. 2014; 90 (5): 1-21. https://doi.org/10.3389/fendo.2014.00090; Sasser J. N. Root-knot nematodes: a global menace to crop production. Plant Disease. 1980; 64: 36-41.; Singh S., Singh B., Singh A. P. Nematodes: A threat to sustainability of agriculture. Procedia Environmental Sciences. 2015; 29: 215–216. https://doi.org/10.1016/j.proenv.2015.07.270.; White J. D., Southgate E., Thompson J. N., Brenner S. The structure of the nervous system of Caenorhabditis elegans. Philosoph. Transactions of the Royal Society of London. 1985; Series B 314, 1-340.; https://vniigis.elpub.ru/jour/article/view/1094

  5. 5
    Academic Journal

    Πηγή: Neuromuscular Diseases; Том 13, № 1 (2023); 22-32 ; Нервно-мышечные болезни; Том 13, № 1 (2023); 22-32 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/523/339; Bakels H.S., Roos R.A.C., van Roon-Mom W.M.C. et al. Juvenileonset huntington disease pathophysiology and neurodevelopment: a review. Mov Disord 2022;37(1):16–24. DOI:10.1002/mds.28823; Клюшников С.А. Болезнь Гентингтона. Неврологический журнал им. Л.О. Бадаляна 2020;1(3):139–58. DOI:10.17816/2686-8997-2020-1-3-139-158 Klyushnikov S.A. Huntington’s disease. Mevrologicheskiy zhurnal im. L.O. Badalyana = L.O. Badalyan Neurological Journal 2020;1(3):139–58. (In Russ.). DOI:10.17816/2686-8997-2020-1-3-139-158; Jarosińska O.D., Rüdiger S.G.D. Molecular strategies to target protein aggregation in Huntington’s disease. Front Mol Biosci 2021;8:769184. DOI:10.3389/fmolb.2021.769184; Sharon I., Sharon R., Wilkens J.P. et al. Huntington disease dementia. Available at: https://emedicine.medscape.com/article/289706overview?reg=1&icd=login_success_email_match_norm#a6.; Caron N.S., Wright G.E.B., Hayden M.R. Huntington disease. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1305/.; Tabrizi S.J., Ghosh R., Leavitt B.R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 2019;101(5):801–19. DOI:10.1016/j.neuron.2019.01.039; Fields E., Vaughan E., Tripu D. et al. Gene targeting techniques for Huntington's disease. Ageing Res Rev 2021;70:101385. DOI:10.1016/j.arr.2021.101385; Shannon K.M. Recent Advances in the treatment of Huntington’s disease: targeting DNA and RNA. CNS Drugs 2020;34(3):219–28. DOI:10.1007/s40263-019-00695-3; Świtońska-Kurkowska K., Krist B., Delimata J. et al. Juvenile Huntington’s disease and other PolyQ diseases, update on neurodevelopmental character and comparative bioinformatic review of transcriptomic and proteomic data. Front Cell Dev Biol 2021;9:642773. DOI:10.3389/fcell.2021.642773; Beatriz M., Lopes C., Ribeiro A.C.S. et al. Revisiting cell and gene therapies in Huntington’s disease. J Neurosci Res 2021;99(7):1744–62. DOI:10.1002/jnr.24845; Kumar A., Kumar V., Singh K. et al. Therapeutic advances for Huntington’s disease. Brain Sci 2020;10(1):43. DOI:10.3390/brainsci10010043; Frank W., Lindenberg K.S., Mühlbäck A. et al. Krankheitsmodifizierende Therapieansätze bei der Huntington-Krankheit: Blicke zurück und Blicke voraus [Disease-modifying treatment approaches in Huntington disease : Past and future]. Nervenarzt 2022;93(2):179–90. DOI:10.1007/s00115-021-01224-8; Vachey G., Déglon N. CRISPR/Cas9-Mediated genome editing for Huntington’s disease. Methods Mol Biol 2018;1780:463–81. DOI:10.1007/978-1-4939-7825-0_21; Marxreiter F., Stemick J., Kohl Z. Huntington lowering strategies. Int J Mol Sci 2020;21(6):2146. DOI:10.3390/ijms21062146; Dabrowska M., Juzwa W., Krzyzosiak W.J. et al. Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases. Front Neurosci 2018;12:75. DOI:10.3389/fnins.2018.00075; Kolli N., Lu M., Maiti P. et al. CRISPR-Cas9 mediated genesilencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease. Int J Mol Sci 2017;18(4):754. DOI:10.3390/ijms18040754; Pfister E.L., Kennington L., Straubhaar J. et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 2009;19(9):774–8. DOI:10.1016/j.cub.2009.03.030; Vigont V.A., Grekhnev D.A., Lebedeva O.S. et al. STIM2 mediates excessive store-operated calcium entry in patient-specific iPSCderived neurons modeling a juvenile form of Huntington’s disease. Front Cell Dev Biol 2021;9:625231. DOI:10.3389/fcell.2021.625231; Harding R.J., Tong Y.F. Proteostasis in Huntington’s disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018;39(5):754–69. DOI:10.1038/aps.2018.11; Monk R., Connor B. Cell Replacement therapy for Huntington’s disease. Adv Exp Med Biol 2020;1266:57–69. DOI:10.1007/978-981-15-4370-8_5; Goold R., Hamilton J., Menneteau T. et al. FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington’s disease. Cell Rep 2021;36(9):109649. DOI:10.1016/j.celrep.2021.109649; Wheeler V.C., Dion V. Modifiers of CAG/CTG repeat instability: insights from mammalian models. J Huntingtons Dis 2021;10(1):123–48. DOI:10.3233/JHD-200426; Fjodorova M., Louessard M., Li Z. et al. CTIP2-regulated reduction in PKA-dependent DARPP32 phosphorylation in human medium spiny neurons: implications for Huntington disease. Stem Cell Rep 2019;13(3):448–57. DOI:10.1016/j.stemcr.2019.07.015; Paulsen J.S. Early detection of Huntington disease. Future Neurol 2010;5(1):10.2217/fnl.09.78. DOI:10.2217/fnl.09.78; Иллариошкин С.Н. Болезнь Гентингтона как модель для изучения нейродегенеративных заболеваний. Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений 2016;(1):3–11.; Akrich M., Paterson F., Rabeharisoa V. Social and ethical issues regarding presymptomatic diagnosis: a literature review. Available at: https://hal-mines-paristech.archives-ouvertes.fr/hal-03040870/ document.; https://nmb.abvpress.ru/jour/article/view/523

  6. 6
  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: The authors are grateful to the Center for Shared Use of the I.I. Mechnikov Research Institute of Vaccines and Sera, Авторы выражают благодарность центру коллективного пользования НИИВС им И.И. Мечникова. Исследование не имело спонсорской поддержки

    Πηγή: Fine Chemical Technologies; Vol 16, No 6 (2021); 476-489 ; Тонкие химические технологии; Vol 16, No 6 (2021); 476-489 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1770/1806; https://www.finechem-mirea.ru/jour/article/view/1770/1813; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1770/519; Hussain M., Galvin H.D., Haw T.Y., Nutsford A.N., Husain M. Drug resistance in influenza A virus: the epidemiology and management. Infect. Drug Resist. 2017 Apr 20;10:121–134. https://doi.org/10.2147/IDR.S105473; Peasah S.K., Azziz-Baumgartner E., Breese J, Meltzer M.I., Widdowson MA. Influenza cost and cost-effectiveness studies globally – a review. Vaccine. 2013;31(46):5339–5348. https://doi.org/10.1016/j.vaccine.2013.09.013; Rezkalla S.H., Kloner R.A. Influenza-related viral myocarditis. WMJ. 2010;109(4):209–213. PMID: 20945722. URL: https://wmjonline.org/wp-content/uploads/2010/109/4/209.pdf; Nguyen J.L., Yang W., Ito K., Matte T.D., Shaman J., Kinney P.L. Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA Cardiol. 2016;1(3):274–281. PMID: 27438105; PMCID: PMC5158013 https://doi.org/10.1001/jamacardio.2016.0433; Ekstrand J.J. Neurologic complications of influenza. Semin. Pediatr. Neurol. 2012;19(3):96–100. https://doi.org/10.1016/j.spen.2012.02.004; Edet A., Ku K., Guzman I., Dargham H.A. Acute Influenza Encephalitis/Encephalopathy Associated with Influenza A in an Incompetent Adult. Case Rep. Crit. Care. 2020;2020:6616805. https://doi.org/10.1155/2020/6616805; Err H., Wiwanitkit V. Emerging H6N1 influenza infection: renal problem to be studied. Ren. Fail. 2014;36(4):662. https://doi.org/10.3109/0886022X.2014.883934; Ленева И.А., Егоров А.Ю., Фалынскова И.Н., Махмудова Н.Р., Карташова Н.П., Глубокова Е.А., Вартанова Н.О., Поддубиков А.В. Индукция вторичной бактериальной пневмонии у мышей при заражении пандемическим и лабораторным штаммами вируса гриппа H1N1. Журнал микробиологии, эпидемиологии и иммунобиологии. 2019;(1):68–74. https://doi.org/10.36233/0372-9311-2019-1-68-74; Metersky M.L., Masterton R.G., Lode H., File T.M. Jr., Babinchak T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int. J. Infect. Dis. 2012;16(5):e321–31. https://doi.org/10.1016/j.ijid.2012.01.003; Vanderbeke L., Spriet I., Breynaert C., Rijnders B.J.A., Verweij P.E., Wauters J. Invasive pulmonary aspergillosis complicating severe influenza: epidemiology, diagnosis and treatment. Curr. Opin. Infect. Dis. 2018;31(6):471–480. https://doi.org/10.1097/QCO.0000000000000504; Van der Vries E., Schutten M., Fraaij P., Boucher C., Osterhaus A. Influenza virus resistance to antiviral therapy. Adv. Pharmacol. 2013;67:217–246. https://doi.org/10.1016/B978-0-12-405880-4.00006-8; Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., Manicassamy B. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr. Med. Chem. 2018;25(38):5115–5127. https://doi.org/10.2174/0929867324666170920165926; Looi Q.H., Foo J.B., Lim M.T., Le C.F., Show P.L. How far have we reached in development of effective influenza vaccine? Int. Rev. Immunol. 2018;37(5):266–276. https://doi.org/10.1080/08830185.2018.1500570; Pleguezuelos O., James E., Fernandez A., Lopes V., Rosas L.A., Cervantes-Medina A., Cleath J., Edwards K., Neitzey D., Gu W., Hunsberger S., Taubenberger J.K., Stoloff G., Memoli M.J. Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study. NPJ Vaccines. 2020;5(1):22. https://doi.org/10.1038/s41541-020-0174-9; Wang F., Chen G., Zhao Y. Biomimetic nanoparticles as universal influenza vaccine. Smart Mater. Med. 2020;1:21–23. https://doi.org/10.1016/j.smaim.2020.03.001; Smith M. Vaccine safety: medical contraindications, myths, and risk communication. Pediatr. Rev. 2015;36(6):227–238.; Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc. Natl. Acad. Sci. USA. 2013;110(4):1315–1320. https://doi.org/10.1073/pnas.1216526110; Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 2009;81(2):132–140. https://doi.org/10.1016/j.antiviral.2008.10.009; Hurt A.C., Ernest J., Deng Y.M., Iannello P., Besselaar T.G., Birch C., et al. Emergence and spread of oseltamivirresistant influenza A (H1N1) viruses in Oceania, Southeast Asia and South Asia. Antiviral Res. 2009;83(1):90–93. https://doi.org/10.1016/j.antiviral.2009.03.003; Hurt A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol. 2014;8:22–29. https://doi.org/10.1016/j.coviro.2014.04.009; Lampejo T. Influenza and antiviral resistance: an overview. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39(7):1201–1208. https://doi.org/10.1007/s10096-020-03840-9; Fire A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 2007;14(12):1998–2012. https://doi.org/10.1038/sj.cdd.4402253; Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mell C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669): 806–811. https://doi.org/10.1038/35888; Файзулоев Е.Б., Никонова А.А., Зверев В.В. Перспективы создания противовирусных препаратов на основе малых интерферирующих РНК. Вопросы вирусологии. 2013;(S1):155–169. URL: https://cyberleninka.ru/article/n/perspektivy-sozdaniya-protivovirusnyh-preparatov-na-osnove-malyh-interferiruyuschih-rnk; McManus M.T., Sharp P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002;3(10):737–747. https://doi.org/10.1038/nrg908; Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018;13(5):e0197246. https://doi.org/10.1371/journal.pone.0197246; Janssen H.L., Reesink H.W., Lawitz E.J., Zeuzem S., Rodriguez-Torres M., Patel K., van der Meer A.J., Patick A.K., Chen A., Zhou Y., Persson R., King B.D., Kauppinen S., Levin A.A., Hodges M.R. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013;368(18):1685–1394. https://doi.org/10.1056/nejmoa1209026; Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018;28(4):e1976. https://doi.org/10.1002/rmv.1976; Hoy S.M. Patisiran: First Global Approval. Drugs. 2018;78(15):1625–1631. https://doi.org/10.1007/s40265-0180983-6; Lesch M., Luckner M., Meyer M., Weege F., Gravenstein I., Raftery M., Sieben C., Martin-Sancho L., ImaiMatsushima A., Welke R.W., Frise R., Barclay W., Schönrich G., Herrmann A., Meyer T.F, Karlas A. RNAi-based small molecule repositioning reveals clinically approved ureabased kinase inhibitors as broadly active antivirals. PLoS Pathog. 2019;15(3):e1007601. https://doi.org/10.1371/journal.ppat.1007601; Karlas A., Machuy N., Shin Y., Pleissner K.P., Artarini A., Heuer D., et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature. 2010;463(7282):818–822. https://doi.org/10.1038/nature08760; Arenas-Hernandez M., Vega-Sanchez R. Housekeeping gene expression stability in reproductive tissues after mitogen stimulation. BMC Res. Notes. 2013;6:285. https://doi.org/10.1186/1756-0500-6-285; Lee H.K., Loh T.P., Lee C.K., Tang J.W., Chiu L., Koay E.S. A universal influenza A and B duplex real-time RTPCR assay. J. Med. Virol. 2012;84(10):1646–1651. https://doi.org/10.1002/jmv.23375; Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016;5(2):85–86. https://doi.org/10.5501/wjv.v5.i2.85; Eierhoff T., Hrincius E.R., Rescher U., Ludwig S., Ehrhardt C. The Epidermal Growth Factor Receptor (EGFR) promotes uptake of influenza А viruses (IAV) into host cells. PLoS Pathog. 2010;6(9):e1001099. https://doi.org/10.1371/journal.ppat.1001099; Shaw M.L., Stertz S. Role of Host Genes in Influenza Virus Replication. In: Tripp R., Tompkins S. (Eds.). Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Current Topics in Microbiology and Immunology. 2017;419:151–189. https://doi.org/10.1007/82_2017_30; Watanabe T., Watanabe S., Kawaoka Y. Cellular networks involved in the influenza virus life cycle. Cell Host & Microbe. 2010;7(6):427–439. https://doi.org/10.1016/j.chom.2010.05.008; Hussain M., Galvin H.D., Haw T.Y., Nutsford A.N., Husain M. Drug resistance in influenza A virus: the epidemiology and management. Infect. Drug Resist. 2017;10:121–134. https://doi.org/10.2147/IDR.S105473; Sanjuán R., Domingo-Calap P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 2016;73(23):4433–4448. https://doi.org/10.1007/s00018-016-2299-6; Presloid J.B., Novella I.S. RNA viruses and RNAi: quasispecies implications for viral escape. Viruses. 2015;7(6):3226–3240. https://doi.org/10.3390/v7062768; Das A.T., Brummelkamp T.R., Westerhout E.M., Vink M., Madiredjo M., Bernards R., et al. Human immunodeficiency virus type 1 escapes from RNA interferencemediated inhibition. J. Virol. 2004;78(5):2601–5. https://doi.org/10.1128/JVI.78.5.2601-2605.2004; Rupp J.C., Locatelli M., Grieser A., Ramos A., Campbell P.J., Yi H., et al. Host cell copper transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J. 2017;14(1):11. https://doi.org/10.1186/s12985-0160671-7; Wang R., Zhu Y., Zhao J., Ren C., Li P., Chen H., et al. Autophagy Promotes Replication of Influenza A Virus In Vitro. J. Virol. 2019;93(4):e01984–18. https://doi.org/10.1128/JVI.01984-18

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке гранта Российского научного фонда (проект № 19-15-00163).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 75, № 1 (2020); 31-36 ; Вестник Московского университета. Серия 16. Биология; Том 75, № 1 (2020); 31-36 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/836/504; Romaine S.P.R., Tomaszewski M., Condorelli G., Samani N.J. MicroRNAs in cardiovascular disease: an introduction for clinicians // Heart. 2015. Vol. 101. N 12. P. 921–928.; D’Souza A., Pearman C.M., Wang Y., et al. Targeting miR-423-5p Reverses exercise training-induced hcn4 channel remodeling and sinus bradycardia // Circ. Res. 2017. Vol. 121. N 9. P. 1058–1068.; Yan B., Wang H., Tan Y., Fu W. microRNAs in cardiovascular disease: small molecules but big roles // Curr. Top. Med. Chem. 2019. Vol. 19. N 21. P. 1918–1947.; Koroleva I.A., Nazarenko M.S., Kucher A.N. Role of microRNA in development of instability of atherosclerotic plaques // Biochem. 2017. Vol. 82. N 11. P. 1380–1390.; Кучер А.Н., Назаренко М.С. Роль микро-РНК при атерогенезе // Кардиол. 2017. Т. 57. № 9. С. 65–76.; Baulina N., Osmak G., Kiselev I., Matveeva N., Kukava N., Shakhnovich R., Kulakova O., Favorova O. NGS-identified circulating miR-375 as a potential regulating component of myocardial infarction associated network // J. Mol. Cell. Cardiol. 2018. Vol. 121. P. 173–179.; Cheng W.L., Kao Y.H., Chao T.F, Lin Y.K., Chen S.A., Chen Y.J. MicroRNA-133 suppresses ZFHX3- dependent atrial remodelling and arrhythmia // Acta Physiol. 2019. Vol. 227. N 3: e13322.; Girmatsion Z., Biliczki P., Bonauer A., WimmerGreinecker G., Scherer M., Moritz A., Bukowska A., Goette A., Nattel S., Hohnloser S.H., Ehrlich J.R. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation // Heart Rhythm. 2009. Vol. 6. N 12. P.1802–1809.; Terentyev D., Belevych A. E., Terentyeva R., Martin M.M., Malana G.E., Kuhn D.E. Abdellatif M., Feldman D.S., Elton T.S., Györke S. miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56 alpha and causing CaMKII-dependent hyperphosphorylation of RyR2 // Circ. Res. 2009. Vol. 104. N 4. P. 514–521.; Kumarswamy R., Lyon A.R., Volkmann I., Mills A.M., Bretthauer J, Pahuja A., Geers-Knörr C., Kraft T., Hajjar R.J., Macleod K.T., Harding S.E., Thum T. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway // Eur. Heart. J. 2012. Vol. 33. N 9. P. 1067–1075.; Condorelli G., Latronico M.V.G., Dorn G.W. 2nd. microRNAs in heart disease: putative novel therapeutic targets? // Eur. Heart. J. 2010. Vol. 31. N 6. P. 649–658.; Zou Y., Liu W., Zhang J., Xiang D. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1 // Mol. Med. Rep. 2016. Vol. 14. N 1. P. 1033–1039.; Michell D.L., Vickers K.C. HDL and microRNA therapeutics in cardiovascular disease // Pharmacol. Ther. 2016. Vol. 168. P. 43–52.; Zhang Y., Wang Z., Gemeinhart R.A. Progress in microRNA delivery // J. Control Release. 2013. Vol. 172. N 3. P. 962–974.; Yang B.F., Lin H.X., Xiao J.N., Lu Y., Luo X., Li B., Zhang Y., Xu C., Bai Y., Wang H., Chen G., Wang Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 // Nat. Med. 2007. Vol. 13. N 4. P. 486–491.; Diana Tools mirPath v.3 [Электронный ресурс]. 2019. Дата обновления: 2019. URL: http://snf-515788.vm.okeanos.grnet.gr/ (дата обращения: 25.10.2019).; KEGG: Kyoto Encyclopedia of Genes and Genomes [Электронный ресурс]. 2019. Дата обновления: 2019. URL: https://www.genome.jp/kegg/ (дата обращения: 25.10.2019).; TargetScan Release 7.2 [Электронный ресурс]. 2018. Дата обновления: 2018. URL: http://www.targetscan.org/vert_72/ (дата обращения: 25.10.2019).; Diana Tools TarBase v.8 [Электронный ресурс]. 2019. Дата обновления: 2019. URL: http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex (дата обращения: 25.10.2019).

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal
  19. 19
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 4 (2018); 425-432 ; Вавиловский журнал генетики и селекции; Том 22, № 4 (2018); 425-432 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1545/1081; Al Robaee A.A. Molecular genetics of Psoriasis (Principles, technology, gene location, genetic polymorphism and gene expression). Int. J. Health Sci. (Qassim). 2010;4(2):103-127.; Bainbridge J.W., Smith A.J., Barker S.S., Robbie S., Henderson R., Balaggan K., Viswanathan A., Holder G.E., Stockman A., Tyler N., Petersen-Jones S., Bhattacharya S.S., Thrasher A.J., Fitzke F.W., Carter B.J., Rubin G.S., Moore A.T., Ali R.R. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med. 2008;358(21):2231-2239. DOI 10.1056/NEJMoa0802268.; Batyrshina S.V., Sadykova F.G. Comorbid conditions in patients with psoriasis. Prakticheskaya Meditsina = Practical Medicine. 2014;8:32-35. (in Russian); Boire A., Covic L., Agarwal A., Jacques S., Sherifi S., Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005;120(3):303-313. DOI 10.1016/j.cell.2004.12.018.; Canavan T.N., Elmets C.A., Cantrell W.L., Evans J.M., Elewski B.E. Anti-IL-17 medications used in the treatment of plaque psoriasis and psoriatic arthritis: a comprehensive review. Am. J. Clin. Dermatol. 2016;17(1):33-47. DOI 10.1007/s40257-015-0162-4.; Cho K.A., Suh J.W., Lee K.H., Kang J.L., Woo S.Y. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int. Immunol. 2012;24(3):147-158. DOI 10.1093/intimm/dxr110.; Chomczynski P., Mackey K. Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide and proteoglycan-rich sources. BioTechniques. 1995;19(6):942-945.; Goldminz A.M., Elder J.T., Lebwohl M.G., Gladman D.D., Wu J.J., Mehta N.N., Finlay A.Y., Gottlieb A.B. Psoriasis. Nat. Rev. Dis. Primers. 2016;2:16082. DOI 10.1038/nrdp.2016.82.; Hacein-Bey-Abina S., Le Deist F., Carlier F., Bouneaud C., Hue C., De Villartay J.P., Thrasher A.J., Wulffraat N., Sorensen R., Dupuis-Girod S., Fischer A., Davies E.G., Kuis W., Leiva L., Cavazzana-Calvo M. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 2002;346(16): 1185-1193. DOI 10.1056/NEJMoa012616.; Jakobsen M., Stenderup K., Rosada C., Moldt B., Kamp S., Dam T.N., Jensen T.G., Mikkelsen J.G. Amelioration of psoriasis by anti-TNF-α RNAi in the xenograft transplantation model. Mol. Ther. 2009;17(10):1743-1753. DOI 10.1038/mt.2009.141.; Jin L., Wang G. Keratin 17: a critical player in the pathogenesis of psoriasis. Med. Res. Rev. 2014;34(2):438-454. DOI 10.1002/med.21291.; Khamaganova I.V., Almazova A.A., Lebedeva G.A., Ermachenko A.V. Psoriasis epidemiology issues. Klinicheskaya Dermatologiya i Ve nerologiya = Russian Journal of Dermatology and Venereo logy. 2015;1:12-16. DOI 10.17116/klinderma2015112-16. (in Russian); Korotaeva T.V. Prospects for using interleukin-17 inhibitors, a new class of drugs for targeted therapy of psoriatic arthritis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2016;54(3):346-351. DOI 10.14412/1995-4484-2016346-351. (in Russian); Ma W.Y., Jia K., Zhang Y. IL-17 promotes keratinocyte proliferation via the downregulation of C/EBPα. Exp. Ther. Med. 2016;11(2):631-636. DOI 10.3892/etm.2015.2939.; Manczinger M., Kemény L. Novel factors in the pathogenesis of psoriasis and potential drug candidates are found with systems biology approach. PLoS One. 2013;8(11):e80751. DOI 10.1371/journal.pone.0080751.; Matsushime H., Ewen M.E., Strom D.K., Kato J.Y., Hanks S.K., Roussel M.F., Sherr C.J. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell. 1992;71(2):323-334.; Mezentsev A., Nikolaev A., Bruskin S. Matrix metalloproteinases and their role in psoriasis. Gene. 2014;540(1):1-10. DOI 10.1016/j.gene.2014.01.068.; Michalek I.M., Loring B., John S.M. A systematic review of worldwide epidemiology of psoriasis. J. Eur. Acad. Dermatol. Venerol. 2017; 31(2):205-212. DOI 10.1111/jdv.13854.; Mills K.H. Induction, function and regulation of IL-17-producing T cells. Eur. J. Immunol. 2008;38(10):2636-2649. DOI 10.1002/eji.200838535.; Mishina O.S., Dvornikov A.S., Dontsova E.V. Psoriasis and psoriatic arthritis: Analysis of 2009–2011 incidence rates in the Russian Federation. Doctor.ru. 2013;4:52-55. (in Russian); Mogulevtseva J.A., Mezentsev A.V. Optimization of lentiviral transduction of immortalized epidermal keratinocytes. Modern Science: Theory and Practice. 2017;13:123-134. (in Russian); Nair R.P., Duffin K.C., Helms C., Ding J., Stuart P.E., Goldgar D., Gudjonsson J.E., Li Y., Tejasvi T., Feng B.J., Ruether A., Schreiber S., Weichenthal M., Gladman D., Rahman P., Schrodi S.J., Prahalad S., Guthery S.L., Fischer J., Liao W., Kwok P.Y., Menter A., Lathrop G.M., Wise C.A., Begovich A.B., Voorhees J.J., Elder J.T., Krueger G.G., Bowcock A.M., Abecasis G.R., for the Collaborative Association Study of Psoriasis. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 2009; 41(2):199-204. DOI 10.1038/ng.311.; NCBI Probe. 2015. Available at https://www.ncbi.nlm.nih.gov/probe/; Noh M., Yeo H., Ko J., Kim H.K., Lee C.H. MAP17 is associated with the T-helper cell cytokine-induced down-regulation of filaggrin transcription in human keratinocytes. Exp. Dermatol. 2010;19(4):355-362. DOI 10.1111/j.1600-0625.2009.00902.x.; Pagano M., Pepperkok R., Verde F., Ansorge W., Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J. 1992; 11(3):961-971.; Peric M., Koglin S., Dombrowski Y., Gross K., Bradac E., Büchau A., Steinmeyer A., Zügel U., Ruzicka T., Schauber J. Vitamin D analogs differentially control antimicrobial peptide/“alarmin” expression in psoriasis. PLoS One. 2009;4(7):e6340. DOI 10.1371/journal.pone.0006340.; Peric M., Koglin S., Kim S.M., Morizane S., Besch R., Prinz J.C., Ruzicka T., Gallo R.L., Schauber J. IL-17A enhances vitamin D3induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J. Immunol. 2008;181(12):8504-8512.; Rao K.S., Babu K.K., Gupta P.D. Keratins and skin disorders. Cell. Biol. Int. 1996;20(4):261-274.; Reischl J., Schwenke S., Beekman J.M., Mrowietz U., Stürzebecher S., Heubach J.F. Increased expression of Wnt5a in psoriatic plaques. J. Invest. Dermatol. 2007;127(1):163-169. DOI 10.1038/sj.jid.5700488.; Rukavishnikova V.M. Change of nails at psoriasis. Vestnik Dermatologii i Venerologii = Bulletin of Dermatology and Venereology. 2009;2:71-79. (in Russian); Schindelin J., Rueden C.T., Hiner M.C., Eliceiri K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015;82(7-8):518-529. DOI 10.1002/mrd.22489.; Scott K.A., Arnott C.H., Robinson S.C., Moore R.J., Thompson R.G., Marshall J.F., Balkwill F.R. TNF-α regulates epithelial expression of MMP-9 and integrin αvβ6 during tumour promotion. A role for TNF-α in keratinocyte migration? Oncogene. 2004;23(41):69546966. DOI 10.1038/sj.onc.1207915.; Seo K.Y., Kitamura K., Han S.J., Kelsall B. Th17 cells mediate inflammation in a novel model of spontaneous experimental autoimmune lacrimal keratoconjunctivitis with neural damage. J. Allergy Clin. Immunol. 2017; pii: S0091-6749(17)31504-X. DOI 10.1016/j.jaci. 2017.07.052.; Seo M.D., Kang T.J., Lee C.H., Lee A.Y., Noh M. HaCaT keratinocytes and primary epidermal keratinocytes have different transcriptional profiles of cornified envelope-associated genes to T helper cell cytokines. Biomol. Ther. (Seoul). 2012;20(2):171176. DOI 10.4062/biomolther.2012.20.2.171.; Shilova L.N., Pan’shina N.N., Chernov A.S., Trubenko Y.A., Khortieva S.S., Morozova T.A., Pan’shin N.G. Immunopathological significance of interleukin-17 in psoriatic arthritis. Sovremennye Problemy Nauki i Obrazovaniya = Current Problems of Science and Education. 2015;6:54. (in Russian); Sobolev V.V., Starodubtseva N.L., Soboleva A.G., Rakhimova O.Yu., Korsunskaya I.M., Piruzian E.S., Minnibaev M.T., Krivoschapov L., Bruskin S.A., Voron’ko O.E. Role of interleukins in psoriasis. Sovremennye Problemy Dermatovenerologii, Immunologii i Vrachebnoy Kosmetologii = Current Problems of Dermatovenerology, Immunology, and Medical Cosmetology. 2010;5(5):79-84. (in Russian); Soboleva A.G., Mezentsev A., Zolotorenko A., Bruskin S., Pirusian E. Three-dimensional skin models of psoriasis. Cells Tissues Organs. 2014a;199(5-6):301-310. DOI 10.1159/000369925.; Soboleva A.G., Zolotarenko A.D., Sobolev V.V., Bruskin S.A., Piruzian E.S., Mezentsev A.V. Genetically predetermined limitation in HaCaT cells that affects their ability to serve as an experimental model of psoriasis. Russ. J. Genetics (Moscow). 2014b;50(10):1081-1089. DOI 10.1134/S1022795414100123.; Starodub tseva N.L., So bo lev V.V., Soboleva A.G., Nikolaev A.A., Bruskin S.A. Genes expression of metalloproteinases (MMP-1, MMP-2, MMP-9, and MMP-12) associated with psoriasis. Russ. J. Genetics (Moscow). 2011;47(9):1117-1123. DOI 10.1134/S102279541109016X.; Tohyama M., Hanakawa Y., Shirakata Y., Dai X., Yang L., Hirakawa S., Tokumaru S., Okazaki H., Sayama K., Hashimoto K. IL-17 and IL-22 mediate IL-20 subfamily cytokine production in cultured keratinocytes via increased IL-22 receptor expression. Eur. J. Immunol. 2009;39(10):27792788. DOI 10.1002/eji.200939473.; Vegfors J., Ekman A.K., Stoll S.W., Bivik Eding C., Enerbäck C. Psoriasin (S100A7) promotes stress-induced angiogenesis. Br. J. Dermatol. 2016;175(6):1263-1273. DOI 10.1111/bjd.14718.; Wells J.M., Gaggar A., Blalock J.E. MMP generated matrikines. Matrix Biol. 2015;44-46:122-129. DOI 10.1016/j.matbio.2015.01.016.; Wu Y., Zhu L., Liu L., Zhang J., Peng B. Interleukin-17A stimulates migration of periodontal ligament fibroblasts via p38 MAPK/NF-κB-dependent MMP-1 expression. J. Cell. Physiol. 2014;229(3):292-299. DOI 10.1002/jcp.24444.; Yazici A.C., Tursen U., Apa D.D., Ikizoglu G., Api H., Baz K., Tasdelen B. The changes in expression of ICAM-3, Ki-67, PCNA, and CD31 in psoriatic lesions before and after methotrexate treatment. Arch. Dermatol. Res. 2005;297(6):249-255. DOI 10.1007/s00403-005-0602-8.; Zolotarenko A., Chekalin E., Mesentsev A., Kiseleva L., Gribanova E., Mehta R., Baranova A., Tatarinova T.V., Piruzian E.S., Bruskin S. Integrated computational approach to the analysis of RNA-seq data reveals new transcriptional regulators of psoriasis. Exp. Mol. Med. 2016;48(11):e268. DOI 10.1038/emm.2016.97.; https://vavilov.elpub.ru/jour/article/view/1545

  20. 20
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 2 (2018); 248-255 ; Вавиловский журнал генетики и селекции; Том 22, № 2 (2018); 248-255 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1451/1057; Brengues M., Teixeira D., Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science. 2005;310(5747):486-489. DOI 10.1126/science.1115791.; Caiment F., Gaj S., Claessen S., Kleinjans J. High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res. 2015;43:2525-2534. DOI 10.1093/nar/gkv115.; Chanyshev M.D., Ushakov D.S., Gulyaeva L.F. Expression of miR-21 and its Acat1, Armcx1, and Pten target genes in liver of female rats treated with DDT and benzo[a]pyrene. Mol. Biol. (Mosk). 2017; 51(4):664-670. DOI 10.7868/S0026898417040085.; Demosthenous C., Han J.J., Hu G., Stenson M., Gupta M. Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma. Oncotarget. 2015;6(42): 44703-44713. DOI 10.18632/oncotarget.6300.; Finnegan E.F., Pasquinelli A.E. MicroRNA biogenesis: regulating the regulators. Crit. Rev. Biochem. Mol. Biol. 2013;48:51-68. DOI 10.3109/10409238.2012.738643.; Gulyaeva L.F., Chanyshev M.D., Kolmykov S.K., Ushakov D.S., Nechkin S.S. Effect of xenobiotics on microRNA expression in rat liver. Biomed. Khim. 2016;62(2):154-159. DOI 10.18097/PBMC 20166202154.; Gulyaeva L.F., Kushlinskiy N.E. Regulatory mechanisms of microRNA expression. J. Transl. Med. 2016;14(1):143-153. DOI 10.1186/ s12967-016-0893-x.; Harada T., Takeda M., Kojima S., Tomiyama N. Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT). Toxicol. Res. 2016;32(1):21-33. DOI 10.5487/TR.2016.32.1.021.; Hata A., Kashima R. Dysregulation of microRNA biogenesis machinery in cancer. Crit. Rev. Biochem. Mol. Biol. 2015;1:1-14. DOI 10.3109/10409238.2015.1117054.; Huumonen K., Korkalainen M., Viluksela M., Lahtinen T., Naarala J., Juutilainen J. Role of microRNAs and DNA methyltransferases in transmitting induced genomic instability between cell generations. Front. Public Health. 2015;2(139):1-9. DOI 10.3389/fpubh. 2014.00139.; Marouani N., Hallegue D., Sakly M., Benkhalifa M., Ben Rhouma K., Tebourbi O. p,p′-DDT induces testicular oxidative stress-induced apoptosis in adult rats. Reprod. Biol. Endocrinol. 2017;15:40. DOI 10.1186/s12958-017-0259-0.; Marrone A.K., Tryndyak V., Beland F.A., Pogribny I.P. MicroRNA responses to the genotoxic carcinogens aflatoxin B1 and benzo[a] pyrene in human HepaRG cells. Toxicol. Sci. 2016;149(2):496-502. DOI 10.1093/toxsci/kfv253.; Shi J., Kahle A., Hershey J.W., Honchak B.M., Warneke J.A., Leong S.P., Nelson M.A. Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells. Oncogene. 2006;25(35):4923-4936.; Epub 2006 Mar 13. DOI 10.1038/ sj.onc.1209495. Song C., Xu Z., Jin Y., Zhu M., Wang K., Wang N. The network of microRNAs, transcription factors, target genes and host genes in human renal cell carcinoma. Oncol. Lett. 2015;9(1):498-506. DOI 10.3892/ol.2014.2683.; Stolpmann K., Brinkmann J., Salzmann S., Genkinger D., Fritsche E., Hutzler C., Wajant H., Luch A., Henkler F. Activation of the aryl hydrocarbon receptor sensitises human keratinocytes for CD95Land TRAIL-induced apoptosis. Cell Death Dis. 2012;3(9):e388. DOI 10.1038/cddis.2012.127.; Tan P.X., Du S.S., Ren C., Yao Q.W., Zheng R., Li R., Yuan Y.W. MicroRNA-207 enhances radiation-induced apoptosis by directly targeting Akt3 in cochlea hair cells. Cell Death Dis. 2014;5:e1433. DOI 10.1038/cddis.2014.407.; Tilghman S.L., Bratton M.R., Segar H.C., Martin E.C., Rhodes L.V., Li M., McLachlan J.A., Wiese T.E., Nephew K.P., Burow M.E. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One. 2012;7:e32754. DOI 10.1371/journal.pone.0032754.; Vaidotas S., Gintautas V., Danute B., Kestutis S. Gene and miRNA expression signature of Lewis lung carcinoma LLC1 cells in extracellular matrix enriched microenvironment. BMC Cancer. 2016;16:789. DOI 10.1186/s12885-016-2825-9.; Wei H., Zhang J., Tan K., Sun R., Yin L., Pu Y. Benzene-induced aberrant miRNA expression profile in hematopoietic progenitor cells in C57BL/6 mice. Int. J. Mol. Sci. 2015;16:27058-27071. DOI 10.3390/ijms161126001.; Xing Y., Nukaya M., Satyshur K.A., Jiang L., Stanevich V., Korkmaz E.N., Burdette L., Kennedy G.D., Cui Q., Bradfield C.A. Identification of the Ah-receptor structural determinants for ligand preferences. Toxicol. Sci. 2012;129(1):86-97. DOI 10.1093/toxsci/ kfs194.; Ye S., Yang L., Zhao X., Song W., Wang W., Zheng S. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem. Biophys. 2014;70:1849-1858. DOI 10.1007/s12013-014-0142-y; Yue S.B., Trujillo R.D., Tang Y., O’Gorman W.E., Chen C.Z. Loop nucleotides control primary and mature miRNA function in target recognition and repression. RNA Biol. 2011;8(6):1115-1123. DOI 10.4161/rna.8.6.17626.; https://vavilov.elpub.ru/jour/article/view/1451