-
1Academic Journal
-
2Academic Journal
Authors: A. O. Sedova, V. B. Сhernykh, А. О. Седова, В. Б. Черных
Contributors: The study was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation for N.P. Bochkov Research Centre for Medical Genetics, Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации для ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова»
Source: Andrology and Genital Surgery; Том 24, № 2 (2023); 19-30 ; Андрология и генитальная хирургия; Том 24, № 2 (2023); 19-30 ; 2412-8902 ; 2070-9781
Subject Terms: фертильность, human reproduction, spermatogenesis, spermatozoa, DNA, fertility, репротоксиканты, репродукция человека, сперматогенез, сперматозоиды, ДНК
File Description: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/657/517; Курило Л.Ф., Хилькевич Л.В. Современные подходы к изучению гонадо- и гаметотоксического эффекта экзогенных факторов. Медицинская генетика, экспресс-информация 1989;9:1–16.; RTECS(R) National Institute for Occupational Safety and Health. Canadian Centre for Occupational Health Safety, 2005.; Heudorf U., Mersch-Sundermann V., Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health 2007;210(5):623–34. DOI:10.1016/j.ijheh.2007.07.011; Koo J.W., Parham F., Kohn M.C. et al. The association between biomarker-based exposure estimates for phthalates and demographic factors in a human reference population. Environ Health Perspect 2002;110(4):405–10. DOI:10.1289/ehp.02110405; Fasano E., Bono-Blay F., Cirillo T. et al. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control 2012;27(1):132–8. DOI:10.1016/j.foodcont.2012.03.005; Reproductive and developmental toxicology. Ed. by R.C. Gupta. 2nd edn. Academic Press, Elsevier Inc., 2017. 1446 p.; Johns L.E., Cooper G.S., Galizia A., Meeker J.D. Exposure assessment issues in epidemiology studies of phthalates. Environ Int 2015;85:27–39. DOI:10.1016/j.envint.2015.08.005; Talsness C.E., Andrade A.J., Kuriyama S.N. et al. Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc Lond B Biol Sci 2009;364(1526): 2079–96. DOI:10.1098/rstb.2008.0281; Шефтель В.О., Дышиневич Н.Е., Сова Р.Е. Токсикология полимерных материалов. Киев: Здоров’я, 1988. 210 с.; Chen X., Xu S., Tan T. et al. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int J Environ Res Publ Health 2014;11(3):3156–68.; Knez J. Endocrine-disrupting chemicals and male reproductive health. Reprod Biomed Online 2013;26(5):440–8. DOI:10.1016/j.rbmo.2013.02.005; Calafat A.M., Ye X., Silva M.J et al. Human exposure assessment to environmental chemicals using biomonitoring. Int J Androl 2006;29(1):166–71; discussion 181–5. DOI:10.1111/j.1365-2605.2005.00570.x; Rusyn I., Peters J.M, Cunningham ML, Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol 2006;36(5):459–79. DOI:10.1080/10408440600779065; Heindel J.J., Powell C.J. Phthalate ester effects on rat Sertoli cell function in vitro: effects of phthalate side chain and age of animal. Toxicol Appl Pharmacol 1992;115(1):116–23. DOI:10.1016/0041-008x(92)90374-2; Koch H.M., Bolt H.M., Preuss R. et al. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol 2005;79(7):367–76. DOI:10.1007/s00204-004-0642-4; Silva M.J., Barr D.B., Reidy J.A. et al. Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch Toxicol 2003;77(10):561–7. DOI:10.1007/s00204-003-0486-3; Frederiksen H., Skakkebaek N.E., Andersson A.M. Metabolism of phthalates in humans. Mol Nutr Food Res 2007;51(7):899–911. DOI:10.1002/mnfr.200600243; Шефтель В.О., Зинченко Т.М., Катаева С.Е. Санитарная токсикология фталатов, загрязнителей воды. Гигиена и санитария 1981;8:66–7.; Abdel daiem M.M., Rivera-Utrilla J., Ocampo-Pérez R. et al. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies – a review. J Environ Manage 2012;109:164–78. DOI:10.1016/j.jenvman.2012.05.014; Lawrence W.H. Phthalate esters: the question of safety. Clin Toxicol 1978;13(1):89–139. DOI:10.3109/15563657808988230; Энциклопедия по безопасности и гигиене труда. Пер. с англ., в 4 т. Международная организация труда. Под ред. А.П. Починок. 4-е изд. М.: М-во труда и соц. развития, 2001.; Wang Y.X., Liu C., Chen Y.J. et al. Predictors and correlations of phthalate metabolite concentrations in urine and seminal plasma among reproductive-aged men. Environ Res 2018;161:336–44. DOI:10.1016/j.envres.2017.11.027; Duty S.M., Ackerman R.M., Calafat A.M., Hauser R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ Health Perspect 2005;113(11):1530–5. DOI:10.1289/ehp.8083; Hauser R., Skakkebaek N.E., Hass U. et al. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 2015;100(4):1267–77. DOI:10.1210/jc.2014-4325; Fisher J.S., Macpherson S., Marchetti N., Sharpe R.M. Human ‛testicular dysgenesis syndrome’: a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod 2003;18(7):1383–1394. DOI:10.1093/humrep/deg273; Desdoits-Lethimonier C., Albert O., Le Bizec B. et al. Human testis steroidogenesis is inhibited by phthalates. Hum Reprod 2012;27(5):1451–9. DOI:10.1093/humrep/des069; Skinner M.K., Anway M.D. Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors. Ann N Y Acad Sci 2005;1061;18–32. DOI:10.1196/annals.1336.004; Kay V.R., Bloom M.S., Foster W.G. Reproductive and developmental effects of phthalate diesters in males. Crit Rev Toxicol 2014;44(6):467–98. DOI:10.3109/10408444.2013.875983; Gray L.E. Jr., Ostby J., Furr J. et al. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 2000;58(2):350–65. DOI:10.1093/toxsci/58.2.350; Chiba K., Kondo Y., Yamaguchi K. et al. Inhibition of claudin-11 and occludin expression in rat Sertoli cells by mono-(2-ethylhexyl) phthalate through p44/42 mitogen-activated protein kinase pathway. J Androl 2012;33(3):368–74. DOI:10.2164/jandrol.111.013664; Harris C.A., Henttu P., Parker M.G., Sumpter J.P. The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 1997;105(8):802–11. DOI:10.1289/ehp.97105802; Foster P.M. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl 2006;29(1):140–7; discussion 181–5. DOI:10.1111/j.1365-2605.2005.00563.x; Dalgaard M., Nellemann C., Lam H.R. et al. The acute effects of mono(2-ethylhexyl)phthalate (MEHP) on testes of prepubertal Wistar rats. Toxicol Lett 2001;122(1):69–79. DOI:10.1016/s0378-4274(01)00348-4; Zhang X.F., Zhang T., Wang L. et al. Effects of diethylhexyl phthalate (DEHP) given neonatally on spermatogenesis of mice. Mol Biol Rep 2013;40(11):6509–17. DOI:10.1007/s11033-013-2769-y; Akingbemi B.T., Youker R.T., Sottas C.M. et al. Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol Reprod 2001;65(4):1252–9. DOI:10.1095/biolreprod65.4.1252; Wang Y.X., Zeng Q., Sun Y. et al. Semen phthalate metabolites, semen quality parameters and serum reproductive hormones: a cross-sectional study in China. Environ Pollut 2016;211:173–82. DOI:10.1016/j.envpol.2015.12.052; Li X., Fang E.F., Scheibye-Knudsen M. et al. Di-(2-ethylhexyl) phthalate inhibits DNA replication leading to hyperPARylation, SIRT1 attenuation, and mitochondrial dysfunction in the testis. Sci Rep 2014;4:6434. DOI:10.1038/srep06434; Hauser R., Meeker J.D., Singh N.P. et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 2007;22(3):688–95. DOI:10.1093/humrep/del428; Liu L., Bao H., Liu F. et al. Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ Int 2012;42:78–83. DOI:10.1016/j.envint.2011.04.005; Jurewicz J., Radwan M., Sobala W. et al. Human urinary phthalate metabolites level and main semen parameters, sperm chromatin structure, sperm aneuploidy and reproductive hormones. Reprod Toxicol 2013;42:232–41. DOI:10.1016/j.reprotox.2013.10.001; Jönsson B.A., Richthoff J., Rylander L. et al. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology 2005;16(4):487–93. DOI:10.1097/01.ede.0000164555.19041.01; Joensen U.N., Frederiksen H., Blomberg Jensen M. et al. Phthalate excretion pattern and testicular function: a study of 881 healthy Danish men. Environ Health Perspect 2012;120(10):1397–403. DOI:10.1289/ehp.1205113; Pant N., Shukla M., Kumar Patel D. et al. Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol 2008;231(1):112–6. DOI:10.1016/j.taap.2008.04.001; Wang Y.X., Zeng Q., Sun Y. et al. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: A cross-sectional study in China. Environ Res 2016;150:557–65. DOI:10.1016/j.envres.2015.11.023; Duty S.M., Singh N.P., Silva M.J. et al. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 2003;111(9):1164–9. DOI:10.1289/ehp.5756; Carbone S., Szwarcfarb B., Ponzo O. et al. Impact of gestational and lactational phthalate exposure on hypothalamic content of amino acid neurotransmitters and FSH secretion in peripubertal male rats. Neurotoxicology 2010;31(6):747–51. DOI:10.1016/j.neuro.2010.06.006; State of the science of endocrine disrupting chemicals, 2012. Ed. by A. Bergman, J.J. Heindel, S. Jobling et al. UNEP& WHO, Geneva, Switzerland, 2013. 289 p. Available at: https://apps.who.int/iris/handle/10665/78101; Gore A.C., Chappell V.A., Fenton S.E. et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev 2015;36(6):E1–E150. DOI:10.1210/er.2015-1010; Levin E.R. Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 2005;19(8):1951–9. DOI:10.1210/me.2004-0390; Watson S., Alyea R.A., Jeng Y.J., Kochukov M.Y. Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues. Mol Cell Endocrinol 2007;274(1–2):1–7. DOI:10.1016/j.mce.2007.05.011; Silva E., Kabil A., Kortenkamp A. Cross-talk between non-genomic and genomic signaling pathways – distinct effect profiles of environmental estrogens. Toxicol Appl Pharmacol 2010;245(2):160–70. DOI:10.1016/j.taap.2010.02.015; Nadal A., Díaz M., Valverde M.A. The estrogen trinity: membrane, cytosolic, and nuclear effects. News Physiol Sci 2001;16:251–5. DOI:10.1152/physiologyonline.2001.16.6.251; Takayanagi S., Tokunaga T., Liu X. et al. Endocrine disruptor bisphenol A strongly binds to human estrogen-related gamma receptor (ERRgamma) with high constitutive activity. Toxicol Lett 2006;167(2):95–105. DOI:10.1016/j.toxlet.2006.08.012; Ho T.S.M., Tang W.Y., Belmonte de Frausto J., Prins G.S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 2006;66(11):5624–32. DOI:10.1158/0008-5472.CAN-06-0516; Whitehead S., Rice S. Endocrine-disrupting chemicals as modulators of sex steroid synthesis. Best Pract Res Clin Endocrinol Metab 2006;20(1):45–61. DOI:10.1016/j.beem.2005.09.003; Lovekamp-Swan T., Jetten A.M., Davis B.J. Dual activation of PPARalpha and PPARgamma by mono-(2-ethylhexyl) phthalate in rat ovarian granulosa cells. Mol Cell Endocrinol 2003;201(1–2): 133–41. DOI:10.1016/s0303-7207(02)00423-9; Gunnarsson D., Leffler P., Ekwurtzel E. et al. Mono-(2-ethylhexyl) phthalate stimulates basal steroidogenesis by a cAMP-independent mechanism in mouse gonadal cells of both sexes. Reproduction 2008;135(5):693–703. DOI:10.1530/REP-07-0460; Zhao Y., Ao H., Chen L. et al. Mono-(2-ethylhexyl) phthalate affects the steroidogenesis in rat Leydig cells through provoking ROS perturbation. Toxicol In Vitro 2012;26(6):950–5. DOI:10.1016/j.tiv.2012.04.003; Barlow N.J., Phillips S.L., Wallace D.G. et al. Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol Sci 2003;73(2):431–41. DOI:10.1093/toxsci/kfg087; Li L.H., Jester W.F. Jr., Laslett A.L., Orth J.M. A single dose of Di- (2-ethylhexyl) phthalate in neonatal rats alters gonocytes, reduces sertoli cell proliferation, and decreases cyclin D2 expression. Toxicol Appl Pharmacol 2000;166(3):222–9. DOI:10.1006/taap.2000.8972; Tay T.W., Andriana B.B., Ishii M. et al. Disappearance of vimentin in Sertoli cells: a mono(2-ethylhexyl) phthalate effect. Int J Toxicol 2007;26(4):289–95. DOI:10.1080/00207450701470757; Bloom M.S., Whitcomb B.W., Chen Z. et al. Associations between urinary phthalate concentrations and semen quality parameters in a general population. Hum Reprod 2015;30(11):2645–57. DOI:10.1093/humrep/dev219; Durairajanayagam D., Agarwal A., Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod Biomed Online 2015;30(1):14–27. DOI:10.1016/j.rbmo.2014.09.018; Lopez-Casas P.P., Mizrak S.C., López-Fernández L.A. et al. The effects of different endocrine disruptors defining compoundspecific alterations of gene expression profiles in the developing testis. Reprod Toxicol 2012;33(1):106–15. DOI:10.1016/j.reprotox.2011.12.012; Manikkam M., Tracey R., Guerrero-Bosagna C., Skinner M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 2013;8(1):e55387. DOI:10.1371/journal.pone.0055387; Huang X.F., Li Y., Gu Y.H. et al. The effects of Di-(2-ethylhexyl)- phthalate exposure on fertilization and embryonic development in vitro and testicular genomic mutation in vivo. PLoS One 2012;7(11):e50465. DOI:10.1371/journal.pone.0050465; Vogt P.H., Bender U., Deibel B. et al. Human AZFb deletions cause distinct testicular pathologies depending on their extensions in Yq11 and the Y haplogroup: new cases and review of literature. Cell Biosci 2021;11(1):60. DOI:10.1186/s13578-021-00551-2; Vogt P.H., Rauschendorf M.A., Zimmer J. et al. AZFa Y gene, DDX3Y, evolved novel testis transcript variants in primates with proximal 3’UTR polyadenylation for germ cell specific translation. Sci Rep 2022;12(1):8954. DOI:10.1038/s41598-022-12474-0; Zhang C., Lai J.H., Hu B. et al. A chromatin modifier regulates Sertoli cell response to mono-(2-ethylhexyl) phthalate (MEHP) via tissue inhibitor of metalloproteinase 2 (TIMP2) signaling. Biochim Biophys Acta 2014;1839(11):1170–82. DOI:10.1016/j.bbagrm.2014.08.006; Gray L.E. Jr., Wilson V.S., Stoker T. et al. Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals. Int J Androl 2006;29(1):96–104; discussion 105–8. DOI:10.1111/j.1365-2605.2005.00636.x; Rider C.V., Furr J., Wilson V.S., Gray L.E. Jr. A mixture of seven antiandrogens induces reproductive malformations in rats. Int J Androl 2008;31(2):249–62. DOI:10.1111/j.1365-2605.2007.00859.x; Sharpe R.M. “Additional” effects of phthalate mixtures on fetal testosterone production. Toxicol Sci 2008;105(1):1–4. DOI:10.1093/toxsci/kfn123; Howdeshell K.L., Furr J., Lambright C.R. et al. Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: altered fetal steroid hormones and genes. Toxicol Sci 2007;99(1):190–202. DOI:10.1093/toxsci/kfm069; https://agx.abvpress.ru/jour/article/view/657
-
3Academic Journal
Artificial intelligence in reproductive medicine ; Искусственный интеллект в репродуктивной медицине
Authors: O. B. Zhukov, V. B. Chernykh, О. Б. Жуков, В. Б. Черных
Contributors: The study was performed within work of the state task of the Ministry of education and science of Russia., Работа выполнена в рамках государственного задания Министерства образования и науки России.
Source: Andrology and Genital Surgery; Том 23, № 4 (2022); 15-25 ; Андрология и генитальная хирургия; Том 23, № 4 (2022); 15-25 ; 2412-8902 ; 2070-9781
Subject Terms: половые клетки, neural networks, human reproduction, infertility, fertility, assisted reproductive technologies, germ cells, нейронные сети, репродукция человека, бесплодие, фертильность, вспомогательные репродуктивные технологии
File Description: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/612/484; Omolaoye T.S., Omolaoye V.A., Kandasamy R.K. et al. Omics and male infertility: highlighting the application of transcriptomic data. Life (Basel) 2022;12(2):280. DOI:10.3390/life12020280; Busnatu Ș., Niculescu A.G., Bolocan A. et al. Clinical applications of artificial intelligence – an updated overview. J Clin Med 2022;11(8):2265. DOI:10.3390/jcm11082265; Гаврилова Т.А., Кудрявцев Д.В., Муромцев Д.И. Инженерия знаний. Модели и методы. СПб.: Лань, 2016. 324 с.; Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. СПб.: Питер, 2018. 481 с.; Bori L., Dominguez F., Fernandez E.I. et al. An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: a preliminary study. Reprod Biomed Online 2021;42(2):340–50. DOI:10.1016/j.rbmo.2020.09.031; Yland J.J., Wang T., Zad Z. et al. Predictive models of pregnancy based on data from a preconception cohort study. Hum Reprod 2022;37(3):565–76. DOI:10.1093/humrep/deab280; Морхат П.М. Правосубъектность искусственного интеллекта в сфере права интеллектуальной собственности: гражданско-правовые проблемы. Дис. … д-ра юрид. наук. М., 2018. 420 с. Доступно по: http://dis.rgiis.ru/files/dis/d40100102/Morhat/morhat_p_m_dissertaciya.pdf.; Khosravi P., Kazemi E., Imielinski M. et al. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine 2018;27:317–28. DOI:10.1016/j.ebiom.2017.12.026; Yu V.L., Fagan L.M., Wraith S.M. et al. Antimicrobial selection by a computer. A blinded evaluation by infectious diseases experts. JAMA 1979;242(12):1279–82.; Curchoe C.L., Bormann C.L. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet 2019;36(4):591–600. DOI:10.1007/s10815-019-01408-x; Curchoe C.L., Flores-Saiffe Farias A., Mendizabal-Ruiz G., Chavez-Badiola A. Evaluating predictive models in reproductive medicine. Fertil Steril 2020;114(5):921–6. DOI:10.1016/j.fertnstert.2020.09.159; Curchoe C.L., Malmsten J., Bormann C. et al. Predictive modeling in reproductive medicine: where will the future of artificial intelligence research take us? Fertil Steril 2020;114(5):934–40. DOI:10.1016/j.fertnstert.2020.10.040; Hajirasouliha I., Elemento O. Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertil Steril 2020;114(5):908–13. DOI:10.1016/j.fertnstert.2020.09.156; Fernandez E.I., Ferreira A.S., Cecílio M.H.M. et al. Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J Assist Reprod Genet 2020;37(10):2359–76. DOI:10.1007/s10815-020-01881-9; Zhang Y., Shen L., Yin X., Chen W. Live-birth prediction of natural-cycle in vitro fertilization using 57,558 linked cycle records: a machine learning perspective. Front Endocrinol (Lausanne) 2022;13:838087. DOI:10.3389/fendo.2022.838087; ESHRE Early Pregnancy Guideline Development Group. Recurrent Pregnancy Loss. November 2017, Version 2. Available at: https://www.eshre.eu/-/media/sitecore-files/Guidelines/Recurrent-pregnancy-loss/ESHRE-RPL-Guideline_27112017_FINAL_v2.pdf?la=en&hash=34DB7D51CF98BFC3DA48FAAA7E7DAED670BA6A83; Benner M., Feyaerts D., Lopez-Rincon A. et al. A combination of immune cell types identified through ensemble machine learning strategy detects altered profile in recurrent pregnancy loss: a pilot study. F S Sci 2022;3(2):166–73. DOI:10.1016/j.xfss.2022.02.002; Hoffman M.K., Ma N., Roberts A. A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy. Am J Obstet Gynecol MFM 2021;3(1):100250. DOI:10.1016/j.ajogmf.2020.100250; Jhee J.H., Lee S., Park Y. et al. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 2019;14(8):e0221202. DOI:10.1371/journal.pone.0221202; Bruno V., D’Orazio M., Ticconi C. et al. Machine Learning (ML) based-method applied in recurrent pregnancy loss (RPL) patients diagnostic work-up: a potential innovation in common clinical practice. Sci Rep 2020;10(1):7970. DOI:10.1038/s41598-020-64512-4; WHO laboratory manual for the examination and processing of human semen. 6th edn. Geneva, 2021. Available at: https://apps.who.int/iris/rest/bitstreams/1358672/retrieve; Kanakasabapathy M.K., Sadasivam M., Singh A. et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med 2017;9(382):eaai7863. DOI:10.1126/scitranslmed.aai7863; Agarwal A., Panner Selvam M.K., Sharma R. et al. Home sperm testing device versus laboratory sperm quality analyzer: comparison of motile sperm concentration. Fertil Steril 2018;110(7):1277–84. DOI:10.1016/j.fertnstert.2018.08.049; Dimitriadis I., Bormann C.L., Kanakasabapathy M.K. et al. Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score. PLoS One 2019;14(3):e0212562. DOI:10.1371/journal.pone.0212562; Mirsky S.K., Barnea I., Levi M. et al. Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytometry A 2017;91(9):893–900. DOI:10.1002/cyto.a.23189; Patel D.P., Gross K.X., Hotaling J.M. Can artificial intelligence drive optimal sperm selection for in vitro fertilization? Fertil Steril 2021;115(4):883. DOI:10.1016/j.fertnstert.2021.02.004; You J.B., McCallum C., Wang Y. et al. Machine learning for sperm selection. Nat Rev Urol 2021;18(7):387–403. DOI:10.1038/s41585-021-00465-1; Dimitriadis I., Zaninovic N., Badiola A.C., Bormann C.L. Artificial intelligence in the embryology laboratory: a review. Reprod Biomed Online 2022;44(3):435–48. DOI:10.1016/j.rbmo.2021.11.003; Zaninovic N., Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril 2020;114(5):914–20. DOI:10.1016/j.fertnstert.2020.09.157; Riegler M.A., Stensen M.H., Witczak O. et al. Artificial intelligence in the fertility clinic: status, pitfalls and possibilities. Hum Reprod 2021;36(9):2429–42. DOI:10.1093/humrep/deab168; Kragh M.F., Karstoft H. Embryo selection with artificial intelligence: how to evaluate and compare methods? J Assist Reprod Genet 2021;38(7):1675–89. DOI:10.1007/s10815-021-02254-6; Loewke K., Cho J.H., Brumar C.D. et al. Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos. Fertil Steril 2022;117(3):528–35. DOI:10.1016/j.fertnstert.2021.11.022; Armstrong S., Bhide P., Jordan V. et al. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev 2018;5(5):CD011320. DOI:10.1002/14651858.CD011320.pub3; https://agx.abvpress.ru/jour/article/view/612
-
4Academic Journal
Authors: T. A. Yamandi, N. Yu. Safina, V. B. Chernykh, L. V. Akulenko, Т. А. Яманди, Н. Ю. Сафина, В. Б. Черных, Л. В. Акуленко
Source: Medical Genetics; Том 19, № 3 (2020); 96-97 ; Медицинская генетика; Том 19, № 3 (2020); 96-97 ; 2073-7998
Subject Terms: human reproduction, ВРТ, делеции AZF, мужское бесплодие, репродукция человека, testicular biopsy, AZF deletions, male infertility
File Description: application/pdf
-
5Academic Journal
Authors: T. A. Yamandi, L. V. Akulenko, N. Yu. Safina, I. I. Vityazeva, S. V. Bogolubov, Ya. I. Melnik, E. V. Kasatonova, A. V. Polyakov, M. V. Andreeva, V. B. Chernykh, Т. А. Яманди, Л. В. Акуленко, Н. Ю. Сафина, И. И. Витязева, С. В. Боголюбов, Я. И. Мельник, Е. В. Касатонова, А. В. Поляков, М. В. Андреева, В. Б. Черных
Source: Andrology and Genital Surgery; Том 19, № 3 (2018); 60-69 ; Андрология и генитальная хирургия; Том 19, № 3 (2018); 60-69 ; 2412-8902 ; 2070-9781 ; 10.17650/2070-9781-2018-19-3
Subject Terms: ЭКО/ICSI, Y chromosome, AZF locus, deletions, male infertility, human reproduction, chromosomal anomalies, in vitro fertilization, IVF/ICSI, Y-хромосома, локус AZF, делеции, мужское бесплодие, репродукция человека, хромосомные аномалии, экстракорпоральное оплодотворение
File Description: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/310/281; Skakkebaek N.E., Rajpert-De Meyts E., Buck Louis G.M. et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev 2016;96(1):55–97. DOI:10.1152/physrev.00017.2015. PMID: 26582516.; Matsumiya K., Namiki M., Takahara S. et al. Clinical study of azoospermia. Int J Androl 1994;17(3):140–2. PMID: 7960188.; Raman J.D., Schlegel P.N. Testicular sperm extraction with intracytoplasmic sperm injection is successful for the treatment of nonobstructive azoospermia associated with cryptorchidism. J Urol 2003;170(4 Pt 1):1287–90. DOI:10.1097/01.ju.0000080707.75753.ec. PMID: 14501743.; Черных В.Б. AZF-делеции – частая генетическая причина бесплодия у мужчин: современное состояние исследований. Проблемы репродукции 2009;15(1):10–5.; Черных В.Б, Курило Л.Ф., Шилей- ко Л.В. и др. Анализ микроделеций в локусе AZF у мужчин с бесплодием: совместный опыт исследований. Медицинская генетика 2003;2(8):367– 79.; Hamada A.J., Esteves S.C., Agarwal A. A comprehensive review of genetics and genetic testing in azoospermia. Clinics (Sao Paolo) 2013;68 Suppl 1:39–60. PMID: 23503954.; Navarro-Costa P., Plancha C.E., Goncalves J. Genetic dissection of the AZF regions of the human Y chromosome: thriller or filler for male (in)fertility? J Biomed Biotechnol 2010;2010:936569. DOI:10.1155/2010/936569. PMID: 20671934.; Suganthi R., Vijesh V.V., Vandana N., Fathima Ali Benazir J. Y choromosomal microdeletion screening in the workup of male infertility and its current status in India. Int J Fertil Steril 2014;7(4): 253–66. PMID: 24520494.; Poongothai J., Gopenath T.S., Manonayaki S. Genetics of human male infertility. Singapore Med J 2009;50(4):336–47. PMID: 19421675.; Vogt P.H., Edelmann A., Kirsh S. et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet 1996;5(7):933–43. PMID: 8817327.; Черных В.Б., Чухрова А.Л., Бескоровайная Т.С. и др. Типы делеций Y-хромосомы и их частота у мужчин с бесплодием. Генетика 2006;42(8):1130–6.; Krausz C., McElreavey K. Y chromosome and male infertility. Front Biosci 1999;4:E1–8. PMID: 9889182.; Yu X.W., Wei Z.T., Jiang Y.T., Zhang S.L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int J Clin Exp Med 2015;8(9):14634–46. PMID: 26628946.; Гоголевский П.А., Гоголевская И.К., Крамеров Д.А. и др. AZF-микроделеции и мужское бесплодие. Андрология и генитальная хирургия 2001;(4):73–8.; Черных В.Б, Руднева С.А., Сороки- на Т.М. и др. Характеристика состояния сперматогенеза у мужчин с бесплодием, имеющих различные типы делеций AZFc-региона. Андрология и генитальная хирургия 2014;15(2):48– 57. DOI:10.17650/2070-97812014-2-48-57.; Hopps C.V., Mielnik A., Goldstein M. et al. Detection of sperm in men with Y chromosome microdeletions of the AZFa, AZFb and AZFc regions. Hum Reprod 2003;18(8):1660–5. PMID: 12871878.; Ferlin A. Speltra E., Garolla A. et al. Y chromosome haplogroups and susceptibility to testicular cancer. Mol Hum Reprod 2007;13(9):615–9. DOI:10.1093/molehr/gam052. PMID: 17682003.; Oates R.D. Silber S., Brown L.G., Page D.C. Clinical characterization of 42 oligospermic or azoospermic men with microdeletion of the AZFc region of the Y chromosome, and of 18 children conceived via ICSI. Hum Reprod 2002;17(11):2813–24. PMID: 12407032.; Hauser R., Yogev L., Paz G. et al. Comparison of efficacy of two techniques for testicular sperm retrieval in nonobstructive azoospermia: multifocal testicular sperm extraction versus multifocal testicular sperm aspiration. J Androl 2006;27(1):28–33. DOI:10.2164/jandrol.05055. PMID: 16400074.; Schlegel P.N. Testicular sperm extraction: microdissection improves sperm yield with minimal tissue excision. Hum Reprod 1999;14(1):131–5. PMID: 10374109.; Аль-Шукри С.Х., Боровец С.Ю., Торопов В.А. и др. Частота обнаружения сперматозоидов и вероятность осложнений после различных видов биопсии яичка (TESA, TESE и micro-TESE у больных с необструктивной азооспермией. Ученые записки СПбГМУ им. И.П. Павлова 2016;23(1):10–4.; Schwarzer J.U., Steinfatt H., Schleyer M. et al. Microdissection TESE is superior to conventional TESE in patients with nonobstructive azoospermia caused by Y chromosome microdeletions. Andrologia 2016;48(4):402–5. DOI:10.1111/and.12460. PMID: 26304126.; WHO laboratory manual for the examination and processing of human semen. 5th ed. WHO Press, 2010.; Foresta C., Moro E., Ferlin A. Prognostic value of Y deletion analysis. The role of current methods. Hum Reprod 2001;16(8):1543–7. PMID: 11473940.; Tsujimura A. Microdissection testicular sperm extraction: prediction, outcome, and complications. Int J Urol 2007;14(10):883–9. DOI:10.1111/j.1442-2042.2007.01828.x. PMID: 17880285.; Kim M.J., Choi H.W., Park S.Y. et al. Molecular and cytogenetic studies of 101 infertile men with microdeletions of Y chromosome in 1,306 infertile Korean men. J Assist Reprod Genet 2012;29(6):539–46. DOI:10.1007/s10815-012-9748-4. PMID: 22456825.; Fu L., Ding X.P., Shen M.J. et al. [Screening and clinical phenotype analysis of microdeletions of azoospermia factor region on Y chromosome in 1011 infertile men (In Chinese)]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2012;29(2):184–7. DOI:10.3760/cma.j.issn.1003-9406.2012.02.015. PMID: 22487830.; Liow S.L., Yong E.L., Ng S.C. Prognostic value of Y deletion analysis: how reliable is the outcome of Y deletion analysis in providing a sound prognosis? Hum Reprod 2001;16(1):9–12. PMID: 11139528.; Krausz C., Quintana-Murci L., McElreavey K. Prognostic value of Y deletion analysis: what is the clinical prognostic value of Y chromosome microdeletion analysis? Hum Reprod 2000;15(7):1431–4. PMID: 10875846.; Cetinkaya M., Onem K., Zorba O.U. et al. Evaluation of microdissection testicular sperm extraction results in patients with non-obstructive azoospermia: independent predictive factors and best cutoff values for sperm retrieval. Urol J 2015;12(6):2436– 43. PMID: 26706742.; Brandell R.A., Mielnik A., Liotta D. et al. AZFb deletions predict the absence of spermatozoa with testicular sperm extraction: preliminary report of a prognostic genetic test. Hum Reprod 1998;13(10):2812–5. PMID: 9804236.; Sabbaghian M., Mohseni Meybodi A., Rafaee A. et al. Sperm retrieval rate and reproductive outcome of infertile men with azoospermia factor C deletion. Andrologia 2018;50(7):1–6. DOI:10.1111/and.13052. PMID: 29920741.; https://agx.abvpress.ru/jour/article/view/310
-
6Report
Subject Terms: МЕДИЦИНСКИЕ УСЛУГИ, ПОСМЕРТНАЯ РЕПРОДУКЦИЯ ЧЕЛОВЕКА, ДЕМОГРАФИЧЕСКАЯ ПОЛИТИКА, 16. Peace & justice, ПРАВОВАЯ ЗАЩИТА, ПРЕСТУПЛЕНИЕ, 3. Good health, ЭМБРИОН, БЕСПЛОДИЕ, ВСПОМОГАТЕЛЬНЫЕ РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ (ВРТ), РАССЛЕДОВАНИЕ, МЕДИЦИНСКАЯ ПОМОЩЬ, РЕПРОДУКТИВНЫЕ ПРАВА, ДОНОРСТВО, ПАЦИЕНТ
-
7Report
-
8Academic Journal
Subject Terms: репродукція людини, нові репродуктивні технології, репродукция человека, новые репродуктивные технологии, human reproduction, new reproductive technologies
File Description: application/pdf
-
9Academic Journal
Authors: Жуков О.Б., Черных В.Б.
Source: Андрология и генитальная хирургия
Subject Terms: artificial intelligence, neural networks, human reproduction, infertility, fertility, assisted reproductive technologies, germ cells, искусственный интеллект, нейронные сети, репродукция человека, бесплодие, фертильность, вспомогательные репродуктивные технологии, половые клетки
Availability: https://repository.rudn.ru/records/article/record/98497/
-
10Electronic Resource