Showing 1 - 20 results of 502 for search '"РЕПРОДУКЦИЯ"', query time: 0.88s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Contributors: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки

    Source: Obstetrics, Gynecology and Reproduction; Vol 19, No 3 (2025); 423-442 ; Акушерство, Гинекология и Репродукция; Vol 19, No 3 (2025); 423-442 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2359/1349; Shah P.K., Gher J.M. Human rights approaches to reducing infertility. Int J Gynaecol Obstet. 2023;162(1):368–74. https://doi.org/10.1002/ijgo.14878.; Корсак В.С., Смирнова А.А., Шурыгина О.В. Регистр ВРТ Российской ассоциации репродукции человека. Отчет за 2019 год. Проблемы репродукции. 2021;27(6):14–29. https://doi.org/10.17116/repro20212706114.; Villani M.T., Morini D., Spaggiari G. et al. Are sperm parameters able to predict the success of assisted reproductive technology? A retrospective analysis of over 22,000 assisted reproductive technology cycles. Andrology. 2022;10(2):310–21. https://doi.org/10.1111/andr.13123.; Louis C.M., Erwin A., Handayani N. et al. Review of computer vision application in in vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF. J Assist Reprod Genet. 2021;38(7):1627–39. https://doi.org/10.1007/s10815-021-02123-2.; Khosravi P., Kazemi E., Zhan Q. et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21. https://doi.org/10.1038/s41746-019-0096-y.; Ламоткин А.И., Корабельников Д.И., Ламоткин И.А. и др. Искусственный интеллект в здравоохранении и медицине: история ключевых событий, его значимость для врачей, уровень развития в разных странах. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2024;17(2):243–50. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.254.; Мелдо А.А., Уткин Л.В., Трофимова Т.Н. Искусственный интеллект в медицине: современное состояние и основные направления развития интеллектуальной диагностики. Лучевая диагностика и терапия. 2020;11(1):9–17. https://doi.org/10.22328/2079-5343-2020-11-1-9-17.; Адамян Л.В. Использование искусственного интеллекта в репродуктивной медицине. Проблемы репродукции. 2021;27(3):6–13. https://doi.org/10.17116/repro2021270316.; Hanassab S., Abbara A., Yeung A.C. et al. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med. 2024;7(1):55. https://doi.org/10.1038/s41746-024-01006-x.; Jiang V.S., Pavlovic Z.J., Hariton E. The role of artificial intelligence and machine learning in assisted reproductive technologies. Obstet Gynecol Clin North Am. 2023;50(4):747–62. https://doi.org/10.1016/j.ogc.2023.09.003.; Bormann C.L., Kanakasabapathy M.K., Thirumalaraju P. et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation. Elife. 2020;9:e55301. https://doi.org/10.7554/eLife.55301.; Curchoe C.L., Bormann C., Hammond E. et al. Assuring quality in assisted reproduction laboratories: assessing the performance of ART Compass – a digital art staff management platform. J Assist Reprod Genet. 2023;40(2):265–78. https://doi.org/10.1007/s10815-023-02713-2.; Jiang V.S., Bormann C.L. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil Steril. 2023;120(1):17–23. https://doi.org/10.1016/j.fertnstert.2023.05.149.; Wang R., Pan W., Jin L. et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158(4):R139–R154. https://doi.org/10.1530/REP-18-0523.; Ившин А.А., Багаудин Т.З., Гусев А.В. Искусственный интеллект на страже репродуктивного здоровья. Акушерство и гинекология. 2021;(5):17–24. https://doi.org/10.18565/aig.2021.5.17-24.; Coelho Neto M.A., Ludwin A., Borrell A. et al. Counting ovarian antral follicles by ultrasound: a practical guide. Ultrasound Obstet Gynecol. 2018;51(1):10–20. https://doi.org/10.1002/uog.18945.; Li H., Fang J., Liu S. et al. CR-Unet: A Composite Network for Ovary and Follicle Segmentation in Ultrasound Images. IEEE J Biomed Health Inform. 2020;24(4):974–83. https://doi.org/10.1109/JBHI.2019.2946092.; Mathur P., Kakwani K., Kudavelly S., Ramaraju G.A. Deep learning based quantification of ovary and follicles using 3D transvaginal ultrasound in assisted reproduction. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:2109–12. https://doi.org/10.1109/EMBC44109.2020.9176703.; Yang X., Li H., Wang Y. et al. Contrastive rendering with semi-supervised learning for ovary and follicle segmentation from 3D ultrasound. Med Image Anal. 2021;73:102134. https://doi.org/10.1016/j.media.2021.102134.; Liang X., Liang J., Zeng F. et al. Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound. Reprod Biomed Online. 2022;45(6):1197–206. https://doi.org/10.1016/j.rbmo.2022.07.012.; Noor N., Vignarajan C.P., Malhotra N., Vanamail P. Three-dimensional automated volume calculation (sonography-based automated volume count) versus two-dimensional manual ultrasonography for follicular tracking and oocyte retrieval in women undergoing in vitro fertilization-embryo transfer: a randomized controlled trial. J Hum Reprod Sci. 2020;13(4):296–302. https://doi.org/10.4103/jhrs.JHRS_91_20.; Андреева Е.А., Хонина Н.А., Пасман Н.М., Черных Е.Р. Цитокины в регуляции овариального фолликулогенеза (обзор литературы). Проблемы репродукции. 2017;23(1):8–14. https://doi.org/10.17116/repro20172318-14.; Manna C., Nanni L., Lumini A., Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod Biomed Online. 2013;26(1):42–9. https://doi.org/10.1016/j.rbmo.2012.09.015.; Targosz A., Przystałka P., Wiaderkiewicz R., Mrugacz G. Semantic segmentation of human oocyte images using deep neural networks. Biomed Eng Online. 2021;20(1):40. https://doi.org/10.1186/s12938-021-00864-w.; Fjeldstad J., Qi W., Mercuri N. et al. An artificial intelligence tool predicts blastocyst development from static images of fresh mature oocytes. Reprod Biomed Online. 2024;48(6):103842. https://doi.org/10.1016/j.rbmo.2024.103842.; Boylan C.F., Sambo K.M., Neal-Perry G., Brayboy L.M. Ex ovo omnia-why don't we know more about egg quality via imaging? Biol Reprod. 2024;110(6):1201–12. https://doi.org/10.1093/biolre/ioae080.; Alper M.M., Fauser B.C. Ovarian stimulation protocols for IVF: is more better than less? Reprod Biomed Online. 2017;34(4):345–53. https://doi.org/10.1016/j.rbmo.2017.01.010.; Glujovsky D., Pesce R., Miguens M. et al. How effective are the non-conventional ovarian stimulation protocols in ART? A systematic review and meta-analysis. J Assist Reprod Genet. 2020;37(12):2913–28. https://doi.org/10.1007/s10815-020-01966-5.; Mol B.W., Bossuyt P.M., Sunkara S.K. et al. Personalized ovarian stimulation for assisted reproductive technology: study design considerations to move from hype to added value for patients. Fertil Steril. 2018;109(6):968–79. https://doi.org/10.1016/j.fertnstert.2018.04.037.; Doroftei B., Ilie O.D., Anton N. et al. A narrative review discussing the efficiency of personalized dosing algorithm of follitropin delta for ovarian stimulation and the reproductive and clinical outcomes. Diagnostics. 2023;13(2):177. https://doi.org/10.3390/diagnostics13020177.; Haahr T., Esteves S.C., Humaidan P. Individualized controlled ovarian stimulation in expected poor-responders: an update. Reprod Biol Endocrinol. 2018;16(1):20. https://doi.org/10.1186/s12958-018-0342-1.; Hariton E., Pavlovic Z., Fanton M., Jiang V.S. Applications of artificial intelligence in ovarian stimulation: a tool for improving efficiency and outcomes. Fertil Steril. 2023;120(1):8–16. https://doi.org/10.1016/j.fertnstert.2023.05.148.; AlSaad R., Abd-Alrazaq A., Choucair F. et al. Harnessing artificial intelligence to predict ovarian stimulation outcomes in in vitro fertilization: scoping review. J Med Internet Res. 2024;26:e53396. https://doi.org/10.2196/53396.; Curchoe C.L., Bormann C.L. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 2019;36(4):591–600. https://doi.org/10.1007/s10815-019-01408-x.; Siristatidis C., Stavros S., Drakeley A. et al. Omics and artificial intelligence to improve in vitro fertilization (IVF) success: a proposed protocol. Diagnostics. 2021;11(5):743. https://doi.org/10.3390/diagnostics11050743.; Mann M., Kumar C., Zeng W.F., Strauss M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021;12(8):759–70. https://doi.org/10.1016/j.cels.2021.06.006.; Zieliński K., Pukszta S., Mickiewicz M. et al. Personalized prediction of the secondary oocytes number after ovarian stimulation: a machine learning model based on clinical and genetic data. PLoS Comput Biol. 2023;19(4):e1011020. https://doi.org/10.1371/journal.pcbi.1011020.; Letterie G., MacDonald A., Shi Z. An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions. Reprod Biomed Online. 2022;44(2):254–60. https://doi.org/10.1016/j.rbmo.2021.10.006.; Cesario A., D'Oria M., Bove F. et al. Personalized clinical phenotyping through systems medicine and artificial intelligence. J Pers Med. 2021;11(4):265. https://doi.org/10.3390/jpm11040265.; Ferrand T., Boulant J., He C. et al. Predicting the number of oocytes retrieved from controlled ovarian hyperstimulation with machine learning. Hum Reprod. 2023;38(10):1918–26. https://doi.org/10.1093/humrep/dead163.; Simopoulou M., Sfakianoudis K., Maziotis E. et al. Are computational applications the "crystal ball" in the IVF laboratory? The evolution from mathematics to artificial intelligence. J Assist Reprod Genet. 2018;35(9):1545–57. https://doi.org/10.1007/s10815-018-1266-6.; Basile N., Elkhatib I., Meseguer M. A strength, weaknesses, opportunities and threats analysis on time lapse. Curr Opin Obstet Gynecol. 2019;31(3):148–55. https://doi.org/10.1097/GCO.0000000000000534.; Zaninovic N., Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914–20. https://doi.org/10.1016/j.fertnstert.2020.09.157.; Capalbo A., Rienzi L., Cimadomo D. et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29(6):1173–81. https://doi.org/10.1093/humrep/deu033.; Gardner D.K., Meseguer M., Rubio C., Treff N.R. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21(6):727–47. https://doi.org/10.1093/humupd/dmu064.; Rubio I., Galán A., Larreategui Z. et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–1294.e5. https://doi.org/10.1016/j.fertnstert.2014.07.738.; Meng Q., Xu Y., Zheng A. et al. Noninvasive embryo evaluation and selection by time-lapse monitoring vs. conventional morphologic assessment in women undergoing in vitro fertilization/intracytoplasmic sperm injection: a single-center randomized controlled study. Fertil Steril. 2022;117(6):1203–12. https://doi.org/10.1016/j.fertnstert.2022.02.015.; Fruchter-Goldmeier Y., Kantor B., Ben-Meir A. et al. An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential. Sci Rep. 2023;13(1):14617. https://doi.org/10.1038/s41598-023-40923-x.; Siristatidis C., Pouliakis A., Chrelias C., Kassanos D. Artificial intelligence in IVF: a need. Syst Biol Reprod Med. 2011;57(4):179–85. https://doi.org/10.3109/19396368.2011.558607.; Bori L., Paya E., Alegre L. et al. Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential. Fertil Steril. 2020;114(6):1232–41. https://doi.org/10.1016/j.fertnstert.2020.08.023.; Fordham D.E., Rosentraub D., Polsky A.L. et al. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity? Hum Reprod. 2022;37(10):2275–90. https://doi.org/10.1093/humrep/deac171.; Milewski R., Kuczyńska A., Stankiewicz B., Kuczyński W. How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Adv Med Sci. 2017;62(1):202–6. https://doi.org/10.1016/j.advms.2017.02.001.; Liu X., Lou H., Zhang J. et al. Clinical outcome analysis of frozen-thawed embryo transfer on Day 7. Front Endocrinol. 2022;13:1082597. https://doi.org/10.3389/fendo.2022.1082597.; Canosa S., Licheri N., Bergandi L. et al. A novel machine-learning framework based on early embryo morphokinetics identifies a feature signature associated with blastocyst development. J Ovarian Res. 2024;17(1):63. https://doi.org/10.1186/s13048-024-01376-6.; Luong T.M., Le N.Q.K. Artificial intelligence in time-lapse system: advances, applications, and future perspectives in reproductive medicine. J Assist Reprod Genet. 2024;41(2):239–52. https://doi.org/10.1007/s10815-023-02973-y.; Petersen B.M., Boel M., Montag M., Gardner D.K. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Hum Reprod. 2016;31(10):2231–44. https://doi.org/10.1093/humrep/dew188.; Reignier A., Girard J.M., Lammers J. et al. Performance of Day 5 KIDScore™ morphokinetic prediction models of implantation and live birth after single blastocyst transfer. J Assist Reprod Genet. 2019;36(11):2279–85. https://doi.org/10.1007/s10815-019-01567-x.; Tartia A.P., Wu C.Q., Gale J. et al. Time-lapse KIDScoreD5 for prediction of embryo pregnancy potential in fresh and vitrified-warmed single-embryo transfers. Reprod Biomed Online. 2022;45(1):46–53. https://doi.org/10.1016/j.rbmo.2022.03.019.; Брусиловский И.А., Лившиц И.В. Морфологическая оценка эмбрионов человека. «Коллеги, давайте договоримся!». Проблемы репродукции. 2018;24(2):63–8. https://doi.org/10.17116/repro201824263-68.; Lee C.I., Huang C.C., Lee T.H. et al. Associations between the artificial intelligence scoring system and live birth outcomes in preimplantation genetic testing for aneuploidy cycles. Reprod Biol Endocrinol. 2024;22(1):12. https://doi.org/10.1186/s12958-024-01185-y.; Ueno S., Berntsen J., Ito M. et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study. Fertil Steril. 2021;116(4):1172–80. https://doi.org/10.1016/j.fertnstert.2021.06.001.; Ezoe K., Shimazaki K., Miki T. et al. Association between a deep learning-based scoring system with morphokinetics and morphological alterations in human embryos. Reprod Biomed Online. 2022;45(6):1124–32. https://doi.org/10.1016/j.rbmo.2022.08.098.; Johansen M.N., Parner E.T., Kragh M.F. et al. Comparing performance between clinics of an embryo evaluation algorithm based on time-lapse images and machine learning. J Assist Reprod Genet. 2023;40(9):2129–37. https://doi.org/10.1007/s10815-023-02871-3.; Жигалина Д.И., Скрябин Н.А., Канбекова О.Р. и др. Структура хромосомных аномалий в циклах ЭКО-ПГС. Медицинская генетика. 2019;18(3):47–54. https://doi.org/10.25557/2073-7998.2019.03.47-54.; Alfarawati S., Fragouli E., Colls P. et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95(2):520–4. https://doi.org/10.1016/j.fertnstert.2010.04.003.; Fragouli E. Next generation sequencing for preimplantation genetic testing for aneuploidy: friend or foe? Fertil Steril. 2018;109(4):606–7. https://doi.org/10.1016/j.fertnstert.2018.01.028.; Sato T., Sugiura-Ogasawara M., Ozawa F. et al. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum Reprod. 2019;34(12):2340–8. https://doi.org/10.1093/humrep/dez229.; Cozzolino M., Diaz-Gimeno P., Pellicer A., Garrido N. Evaluation of the endometrial receptivity assay and the preimplantation genetic test for aneuploidy in overcoming recurrent implantation failure. J Assist Reprod Genet. 2020;37(12):2989–97. https://doi.org/10.1007/s10815-020-01948-7.; Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Electronic address: ASRM@asrm.org; Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril. 2018;109(3):429–36. https://doi.org/10.1016/j.fertnstert.2018.01.002.; Fitz V.W., Kanakasabapathy M.K., Thirumalaraju P. et al. Should there be an "AI" in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm. J Assist Reprod Genet. 2021;38(10):2663–70. https://doi.org/10.1007/s10815-021-02318-7.; Buldo-Licciardi J., Large M.J., McCulloh D.H. et al. Utilization of standardized preimplantation genetic testing for aneuploidy (PGT-A) via artificial intelligence (AI) technology is correlated with improved pregnancy outcomes in single thawed euploid embryo transfer (STEET) cycles. J Assist Reprod Genet. 2023;40(2):289–99. https://doi.org/10.1007/s10815-022-02695-7.; Chavez-Badiola A., Flores-Saiffe-Farías A., Mendizabal-Ruiz G. et al. Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod Biomed Online. 2020;41(4):585–93. https://doi.org/10.1016/j.rbmo.2020.07.003.; Diakiw S.M., Hall J.M.M., VerMilyea M. et al. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022;45(6):1105–17. https://doi.org/10.1016/j.rbmo.2022.07.018.; Popovic M., Borot L., Lorenzon A.R. et al. Implicit bias in diagnosing mosaicism amongst preimplantation genetic testing providers: results from a multicenter study of 36395 blastocysts. Hum Reprod. 2024;39(1):258–74. https://doi.org/10.1093/humrep/dead213.; Muñoz E., Bronet F., Lledo B. et al. Representing the Special Interest Group in Reproductive Genetics of the Spanish Society of Fertility. To transfer or not to transfer: the dilemma of mosaic embryos – a narrative review. Reprod Biomed Online. 2024;48(3):103664. https://doi.org/10.1016/j.rbmo.2023.103664.; Greco E., Minasi M.G., Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373(21):2089–90. https://doi.org/10.1056/NEJMc1500421.; Greco E., Greco P.F., Listorti I. et al. The mosaic embryo: what it means for the doctor and the patient. Minerva Obstet Gynecol. 2024;76(1):89–101. https://doi.org/10.23736/S2724-606X.23.05281-8.; Yakovlev P., Vyatkina S., Polyakov A. et al. Neonatal and clinical outcomes after transfer of a mosaic embryo identified by preimplantation genetic testing for aneuploidies. Reprod Biomed Online. 2022;45(1):88–-100. https://doi.org/10.1016/j.rbmo.2022.01.010.; Basile N., Nogales Mdel C., Bronet F. et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699–704. https://doi.org/10.1016/j.fertnstert.2013.12.005.; Li X., Yao Y., Zhao D. et al. Clinical outcomes of single blastocyst transfer with machine learning guided noninvasive chromosome screening grading system in infertile patients. Reprod Biol Endocrinol. 2024;22(1):61. https://doi.org/10.1186/s12958-024-01231-9.; Ortiz J.A., Morales R., Lledó B. et al. Application of machine learning to predict aneuploidy and mosaicism in embryos from in vitro fertilization cycles. AJOG Glob Rep. 2022;2(4):100103. https://doi.org/10.1016/j.xagr.2022.100103.; Ma B.X., Zhao G.N., Yi Z.F. et al. Enhancing clinical utility: deep learning-based embryo scoring model for non-invasive aneuploidy prediction. Reprod Biol Endocrinol. 2024;22(1):58. https://doi.org/10.1186/s12958-024-01230-w.; Zou Y., Pan Y., Ge N. et al. Can the combination of time-lapse parameters and clinical features predict embryonic ploidy status or implantation? Reprod Biomed Online. 2022;45(4):643–51. https://doi.org/10.1016/j.rbmo.2022.06.007.; Yuan Z., Yuan M., Song X. et al. Development of an artificial intelligence based model for predicting the euploidy of blastocysts in PGT-A treatments. Sci Rep. 2023;13(1):2322. https://doi.org/10.1038/s41598-023-29319-z.; Popovic M., Dhaenens L., Boel A. et al. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update. 2020;26(3):313–34. https://doi.org/10.1093/humupd/dmz050.; Diakiw S.M., Hall J.M.M., VerMilyea M.D. et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum Reprod. 2022;37(8):1746–59. https://doi.org/10.1093/humrep/deac131.; Weimar C.H., Post Uiterweer E.D., Teklenburg G. et al. In-vitro model systems for the study of human embryo-endometrium interactions. Reprod Biomed Online. 2013;27(5):461–76. https://doi.org/10.1016/j.rbmo.2013.08.002.; Lacconi V., Massimiani M., Carriero I. et al. When the embryo meets the endometrium: identifying the features required for successful embryo implantation. Int J Mol Sci. 2024;25(5):2834. https://doi.org/10.3390/ijms25052834.; Ruiz-Alonso M., Valbuena D., Gomez C. et al. Endometrial Receptivity Analysis (ERA): data versus opinions. Hum Reprod Open. 2021;2021(2):hoab011. https://doi.org/10.1093/hropen/hoab011.; Li B., Duan H., Wang S. et al. Establishment of an artificial neural network model using immune-infiltration related factors for endometrial receptivity assessment. Vaccines. 2022;10(2):139. https://doi.org/10.3390/vaccines10020139.; Liang X., He J., He L. et al. An ultrasound-based deep learning radiomic model combined with clinical data to predict clinical pregnancy after frozen embryo transfer: a pilot cohort study. Reprod Biomed Online. 2023;47(2):103204. https://doi.org/10.1016/j.rbmo.2023.03.015.; Сысоева А.П., Макарова Н.П., Калинина Е.А. и др. Повышение эффективности вспомогательных репродуктивных технологий с помощью искусственного интеллекта и машинного обучения на эмбриологическом этапе. Акушерство и гинекология. 2020;(7):28–36. https://doi.org/10.18565/aig.2020.7.28-36.; Wald M., Sparks A., Sandlow J. et al. Computational models for prediction of IVF/ICSI outcomes with surgically retrieved spermatozoa. Reprod Biomed Online. 2005;11(3):325–31. https://doi.org/10.1016/s1472-6483(10)60840-1.; Benchaib M., Labrune E., Giscard d'Estaing S. et al. Shallow artificial networks with morphokinetic time-lapse parameters coupled to ART data allow to predict live birth. Reprod Med Biol. 2022;21(1):e12486. https://doi.org/10.1002/rmb2.12486.; Kato K., Ueno S., Berntsen J. et al. Comparing prediction of ongoing pregnancy and live birth outcomes in patients with advanced and younger maternal age patients using KIDScore™ day 5: a large-cohort retrospective study with single vitrified-warmed blastocyst transfer. Reprod Biol Endocrinol. 2021;19(1):98. https://doi.org/10.1186/s12958-021-00767-4.; VerMilyea M., Hall J.M.M., Diakiw S.M. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770–84. https://doi.org/10.1093/humrep/deaa013.; Савельева Г.М., Коноплянников А.Г., Гергерт Е.В. и др. Прегравидарная подготовка у больных с бесплодием и неэффективностью экстракорпорального оплодотворения в анамнезе. Российский вестник акушера-гинеколога. 2019;19(5):43–51. https://doi.org/10.17116/rosakush20191905143.; Доброхотова Ю.Э., Джохадзе Л.С. Комплексная прегравидарная подготовка – реальный путь улучшения перинатальных исходов. Проблемы репродукции. 2019;25(6):38–43. https://doi.org/10.17116/repro20192506138.; Доскина Е.В., Саркисова А.А. Прегравидарная подготовка и особенности пациенток с эндокринными патологиями. Справочник поликлинического врача. 2018;(3):60–4.; Щербакова Л.Н., Гаврикова П.А., Куприян А.А. и др. Значение медикаментозной прегравидарной подготовки в реализации репродуктивной функции при бесплодии, обусловленном наружным генитальным эндометриозом. Клиническая фармакология и терапия. 2018;27(4):18–22.; Kim H.K. The effects of artificial intelligence chatbots on women's health: a systematic review and meta-analysis. Healthcare (Basel). 2024;12(5):534. https://doi.org/10.3390/healthcare12050534.; Segundo E., Carrere-Molina J., Aragón M., Mallol-Parera R. Advancing geospatial preconception health research in primary care through medical informatics and artificial intelligence. Health Place. 2024;89:103337. https://doi.org/10.1016/j.healthplace.2024.103337.; Kaya Y., Bütün Z., Çelik Ö. et al. The early prediction of gestational diabetes mellitus by machine learning models. BMC Pregnancy Childbirth. 2024;24(1):574. https://doi.org/10.1186/s12884-024-06783-7.; Fraire-Zamora J.J., Ali Z.E., Makieva S. et al. #ESHREjc report: on the road to preconception and personalized counselling with machine learning models. Hum Reprod. 2022;37(8):1955–7. https://doi.org/10.1093/humrep/deac111.; Arora U., Sengupta D., Kumar M. et al. Perceiving placental ultrasound image texture evolution during pregnancy with normal and adverse outcome through machine learning prism. Placenta. 2023;140:109–16. https://doi.org/10.1016/j.placenta.2023.07.014.; Демкина Е.А., Иванова Н.А. Правовые и этические аспекты использования искусственного интеллекта в репродуктивной медицине. Вестник Саратовской государственной юридической академии. 2024;3(158):122–7. https://doi.org/10.24412/2227-7315-2024-3-122-127.; Si K., Huang B., Jin L. Application of artificial intelligence in gametes and embryos selection. Hum Fertil. 2023;26(4):757–77. https://doi.org/10.1080/14647273.2023.2256980.; Hogan N.R., Davidge E.Q., Corabian G. On the ethics and practicalities of artificial intelligence, risk assessment, and race. J Am Acad Psychiatry Law. 2021;49(3):326–34. https://doi.org/10.29158/JAAPL.200116-20.; Serdarogullari M., Liperis G., Sharma K. et al. Unpacking the artificial intelligence toolbox for embryo ploidy prediction. Hum Reprod. 2023;38(12):2538–42. https://doi.org/10.1093/humrep/dead223.; Allahbadia G.N., Allahbadia S.G., Gupta A. In contemporary reproductive medicine human beings are not yet dispensable. J Obstet Gynaecol India. 2023;73(4):295–300. https://doi.org/10.1007/s13224-023-01747-x.; Senders J.T., Zaki M.M., Karhade A.V. et al. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir. 2018;160(1):29–38. https://doi.org/10.1007/s00701-017-3385-8.; Horer S., Feichtinger M., Rosner M., Hengstschläger M. Pluripotent stem cell-derived in vitro gametogenesis and synthetic embryos – it is never too early for an ethical debate. Stem Cells Transl Med. 2023;12(9):569–75. https://doi.org/10.1093/stcltm/szad042.; Hengstschläger M. Artificial intelligence as a door opener for a new era of human reproduction. Hum Reprod Open. 2023;2023(4):hoad043. https://doi.org/10.1093/hropen/hoad043.; Harper J., Magli M.C., Lundin K. et al. When and how should new technology be introduced into the IVF laboratory? Hum Reprod. 2012;27(2):303–13. https://doi.org/10.1093/humrep/der414.; Medenica S., Zivanovic D., Batkoska L. et al. The future is coming: artificial intelligence in the treatment of infertility could improve assisted reproduction outcomes – the value of regulatory frameworks. Diagnostics. 2022;12(12):2979. https://doi.org/10.3390/diagnostics12122979.; Драпкина Ю.С., Калинина Е.А., Макарова Н.П. и др. Искусственный интеллект в репродуктивной медицине: этические и клинические аспекты. Акушерство и гинекология. 2022;(11):37–44. https://doi.org/10.18565/aig.2022.11.37-44.; https://www.gynecology.su/jour/article/view/2359

  6. 6
    Academic Journal

    Source: Law Enforcement Review; Том 8, № 4 (2024); 44-53 ; Правоприменение; Том 8, № 4 (2024); 44-53 ; 2658-4050 ; 2542-1514

    File Description: application/pdf

    Relation: https://enforcement.omsu.ru/jour/article/view/1001/1066; https://enforcement.omsu.ru/jour/article/view/1001/1067; Румянцева А. А. Практика рассмотрения зарубежными судами дел, связанных с посмертной репродукцией (Австралия, Великобритания) / А. А. Румянцева // Право и государство: теория и практика. – 2023. – № 3 (219). – С. 185–188.; Гайбатова К. Д. О проблеме установления происхождения детей, рожденных в рамках программ посмертной репродукции / К. Д. Гайбатова // Евразийский юридический журнал. – 2019. – № 11 (138). – С. 126– 127.; Свитнев К. Н. Правовые и этические аспекты посмертной репродукции / К. Н. Свитнев // Правовые вопросы в здравоохранении. – 2011. – № 6. – С. 30–43.; Максимова И. А. Особенности оказания медицинских услуг при реализации права на посмертную репродукцию человека / И. А. Максимова // Актуальные проблемы развития гражданского права и гражданского процесса : материалы Всерос. науч.-практ. конф., посвящ. 40-летию ун-та, Краснодар, 16 февр. 2017 г. – Краснодар, 2017. – С. 386–391.; Романовский Г. Б. Правовое регулирование хранения половых клеток и эмбрионов / Г. Б. Романовский // Медицинское право. – 2010. – № 2. – С. 12–17.; Kindregan Jr. C. P. Embryo Donation: Unresolved legal issues in the transfer of surplus cryopreserved embryos / C. P. Kindregan Jr., M. McBrien // Villanova Law Review. – 2004. – Vol. 49, iss. 1. – Р. 169–206.; Kindregan Jr.C. P. Posthumous Reproduction / C. P. Kindregan Jr., M. McBrien // Family Law Quarterly. – 2004. – Vol. 39, no. 3. – С. 579–597.; Knaplund K. S. Postmortem conception and a father's last will / K. S. Knaplund // Arizona Law Review. – 2004. – Vol. 46. – Р. 91–115. – DOI:10.2139/ssrn.1292953.; Киреев В. В. Проблемы и перспективы развития конституционно-правовой рискологии / В. В. Киреев // Вестник Южно-Уральского государственного университета. Серия: Право. – 2013. – Т. 13, № 3. – С. 71–76.; Киреев В. В. Роль науки конституционного права в выявлении и оценке конституционных рисков / В. В. Киреев // Вестник Челябинского государственного университета. Серия: Право. – 2013. – № 27. – С. 28–32.; Киреев В. В. О теории риска в российской науке конституционного права / В. В. Киреев // Проблемы права. – 2012. – № 7 (38). – С. 11–16.; Тихомиров Ю. А. Риск и право / Ю. А. Тихомиров, С. М. Шахрай. – М. : Изд-во Моск. ун-та, 2012. – 64 c.; Масловская Т. С. Риски в конституционном праве / Т. С. Масловская // Журнал российского права. – 2016. – № 12 (240). – С. 17–26. – DOI:10.12737/22716.; Новикова А. Е. Проблемы институционализации правозащитных рисков в современной конституционно-правовой науке России / А. Е. Новикова // Государственная власть и местное самоуправление. – 2011. – № 10. – С. 21–25.; Киреев В. В. Формирование научных представлений о конституционных рисках в современной России: проблемы и перспективы / В. В. Киреев // Конституционное и муниципальное право. – 2017. – № 10. – С. 12–14.; Безруков А. В. Выявление, минимизация и устранение конституционных рисков как средство обеспечения правопорядка / А. В. Безруков // Конституционное и муниципальное право. – 2018. – № 11. – С. 18–22.; Любовенко Е. С. Конституционные риски социальных коллизий / Е. С. Любовенко // Юридическая техника. – 2019. – № 13. – С. 515–518.; Конституционные права в России: судебная практика и сравнительные материалы : учеб. пособие / под общ. ред. А. В. Должикова и А. А. Троицкой. – М. : Центр конституц. исслед., 2024. – 582 с.; Шелютто М. Л. Дети, зачатые после смерти родителя: установление происхождения и наследственные права / М. Л. Шелютто // Журнал зарубежного законодательства и сравнительного правоведения. – 2016. – № 4 (59). – С. 91–98. – DOI:10.12737/21253.; Ярош А. В. Гражданско-правовая конструкция договора на криоконсервацию и хранение эмбриона / А. В. Ярош // Журнал российского права. – 2021. – № 12. – С. 108–119. – DOI:10.12737/jrl.2021.152.; Боннер А. Т. Некоторые аспекты правовых проблем искусственного оплодотворения в свете постановлений ЕСПЧ: взгляд из Страсбурга, не всегда совпадающий с взглядом из Санкт-Петербурга и Москвы / А. Т. Боннер // Вестник гражданского процесса. – 2019. – Т. 9, № 3. – С. 201–230. – DOI:10.24031/2226-0781-2019-9-3-201-230.; Чернусь Н. Ю. Гражданско-правовой режим биологического материала человека / Н. Ю. Чернусь, А. В. Цихоцкий // Российский юридический журнал. – 2019. – № 1 (124). – С. 81–87.; Белова Д. А. Правовой режим репродуктивного биологического материала / Д. А. Белова // Lex russica. – 2021. – Т. 74, № 7. – С. 111–121. – DOI:10.17803/1729-5920.2021.176.7.111-121.; Посадкова М. В. Будущее уже здесь: о конституционной природе репродуктивного права на рождение ребенка с использованием вспомогательных технологий / М. В. Посадкова // Сравнительное конституционное обозрение. – 2022. – № 6 (151). – С. 72–94.; Бибик О. Н. Время жизни как ключевой фактор, детерминирующий поведение человека / О. Н. Бибик // Вестник Омского университета. Серия «Право». – 2022. – Т. 19, № 3. – С. 35–47. – DOI:10.24147/1990-5173.2022.19(3).35-47.; https://enforcement.omsu.ru/jour/article/view/1001

  7. 7
    Academic Journal

    Contributors: the study was supported by the Russian Science Foundation (project No. 23-26-00105) https://rscf.ru/project/23-26-00105/, исследование выполнено при поддержке Российского научного фонда (№ проекта 23-26-00105) https://rscf.ru/project/23-26-00105/

    Source: Agricultural Science Euro-North-East; Том 26, № 1 (2025); 98-106 ; Аграрная наука Евро-Северо-Востока; Том 26, № 1 (2025); 98-106 ; 2500-1396 ; 2072-9081

    File Description: application/pdf

    Relation: https://www.agronauka-sv.ru/jour/article/view/1889/860; Kerkeni A., Daami-Remadi M., Khedher M. B. In vivo evaluation of compost extracts for the control of the potato Fusarium wilt caused by Fusarium oxysporum f. sp. tuberosi. The African Journal of Plant Science and Biotechnology. 2013;7(1):36–41. URL: https://www.researchgate.net/publication/311970290_In_vivo_Evaluation_of_compost_extracts_for_the_control_of_the_potato_Fusarium_wilt_caused_by_Fusarium_oxysporum_f_sp_tuberosi; Tiwari R. K., Kumar R., Sharma S., Sagar V., Aggarwal R., Naga K. C., et al. Potato dry rot disease: current status, pathogenomics and management. 3 Biotech. 2020;10(11):503. DOI: https://doi.org/10.1007/s13205-020-02496-8; Azil N., Stefańczyk E., Sobkowiak S., Chihat S., Boureghda H., Śliwka J. Identification and pathogenicity of Fusarium spp. associated with tuber dry rot and wilt of potato in Algeria. European Journal of Plant Pathology. 2021;159:495–509. DOI: https://doi.org/10.1007/s10658-020-02177-5; Белосохов А. Ф., Ярмеева М. М., Долгов А. М., Миславский С. М., Албантов Г. П., Курчаев М. Л., и др. Грибы рода Fusarium на клубнях картофеля. Современная микология в России. 2022;9:250–252. Режим доступа: https://istina.msu.ru/publications/article/504031416/; Гагкаева Т. Ю., Гаврилова О. П., Левитин М. М., Новожилов К. В. Фузариоз зерновых культур. Защита и карантин растений. 2011;(S5):69–120.; Gerlach W., Nirenberg H. The genus Fusarium - a pictorial atlas. Mitteilungen aus der Biologischen Bundesanstalt Für Land- und Forstwirtschaft, Berlin – Dahlem. 1982;209:1–405. URL: https://eurekamag.com/research/001/138/001138278.php; Nirenberg H. I. Morphological differentiation of Fusarium sambucinum Fuckel sensu stricto, F. torulosum (Berk. & Curt.) Nirenberg comb. nov. and F. venenatum Nirenberg sp. nov. Mycopathologia. 1995;129:131–141. DOI: https://doi.org/10.1007/BF01103337; Geiser D. M., Al-Hatmi A. M. S., Aoki T., Arie T., Balmas V., Barnes I., et al. Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathologia. 2021;111(7):1064–1079. DOI: https://doi.org/10.1094/PHYTO-08-20-0330-LE; Peters J. C., Lees A. K., Cullen D. W., Sullivan L., Stroud G. P., Cunnington A. C. Characterization of Fusarium spp. responsible for causing dry rot of potato in Great Britain. Plant Pathology. 2008;57(2):262–271. DOI: https://doi.org/10.1111/j.1365-3059.2007.01777.x; Bojanowski A., Avis T. J., Pelletier S., Tweddell R. J. Management of potato dry rot. Postharvest Biology and Technology. 2013;84:99–109. DOI: https://doi.org/10.1016/j.postharvbio.2013.04.008; Stefańczyk E., Sobkowiak S., Brylińska M., Śliwka J. Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland. European Journal of Plant Pathology. 2016;145:871–884. DOI: https://doi.org/10.1007/s10658-016-0875-0; Du M., Ren X., Sun Q., Wang Y., Zhang R. Characterization of Fusarium spp. causing potato dry rot in China and susceptibility evaluation of Chinese potato germplasm to the pathogen. Potato Research. 2012;55:175–184. DOI: https://doi.org/10.1007/s11540-012-9217-6; Gachango E., Hanson L. E., Rojas A., Hao J. J., Kirk W. W. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Disease. 2012;96(12):1767–1774. DOI: https://doi.org/10.1094/PDIS-11-11-0932-RE; Secor G. A., Salas B. Fusarium dry rot and Fusarium wilt. In: Stevenson W. R., Loria R., Franc G., Weingartner D. P. (Eds.). Compendium of potato diseases. St. Paul: APS Press, 2001. pp. 23–25.; Daami-Remadi M., Jabnoum-Khiareddine H., Ayed F., El Mahdjoub M. Effect of temperature on aggressivity of Tunisian Fusarium species causing potato (Solanum tuberosum L.) tuber dry rot. biocontrol. Journal of Agronomy. 2006;5(2):350–355. DOI: https://doi.org/10.3923/ja.2006.350.355; Estrada Jr. R., Gudmestad N. C., Rivera V. V., Secor G. A. Fusarium graminearum as a dry rot pathogen of potato in the USA: Prevalence, comparison of host isolate aggressiveness and factors affecting aetiology. Plant Pathology. 2010; 59(6):1114–1120. DOI: https://doi.org/10.1111/j.1365-3059.2010.02343.x; Gavrilova O., Orina A., Trubin I., Gagkaeva T. Identification and pathogenicity of Fusarium fungi associated with dry rot of potato tubers. Microorganisms. 2024;12(3):598. DOI: https://doi.org/10.3390/microorganisms12030598; Lombard L., Sandoval-Denis M., Lamprecht S. C., Crous P. W. Epitypification of Fusarium oxysporum – clearing the taxonomic chaos. Persoonia. 2019;43:1–47. DOI: https://doi.org/10.3767/persoonia.2019.43.01; Гаврилова О. П., Ганнибал Ф. Б., Гагкаева Т. Ю. Зараженность грибами Fusarium и Alternaria зерна овса на Северо-западе России. Сельскохозяйственная биология. 2016;51(1):111–118. DOI: https://doi.org/10.15389/agrobiology.2016.1.111rus EDN: VPWCMH; Хадиева Г. Ф., Лутфуллин М. Т., Акосах Й. А., Малова А. В., Мочалова Н. К., Вологин С. Г., и др. Анализ микромицетов рода Fusarium, изолированных из инфицированных клубней картофеля, выращенных в Республике Татарстан. Достижения науки и техники АПК. 2018;32(3):34–39. DOI: https://doi.org/10.24411/0235-2451-2018-10307 EDN: YWENZR; Прудникова С. В., Чураков А. А., Овсянкина С. В., Хижняк С. В. Выделение и идентификация автохтонных возбудителей болезней картофеля, распространенных в регионах Сибири. Биотехнология новых материалов – окружающая среда – качество жизни: мат-лы IV Международ. научн. конф. Красноярск: Сибирский федеральный университет, 2021. С. 174–177. Режим доступа: https://elibrary.ru/item.asp?id=46578152 EDN: DLSUMC; Гагкаева Т. Ю., Орина А. С., Трубин И. И., Гаврилова О. П., Хютти А. В. Fusarium sambucinum – возбудитель сухой гнили клубней картофеля. Вестник защиты растений. 2023;106(3):137–145. DOI: https://doi.org/10.31993/2308-6459-2023-106-3-16041 EDN: AXVVWQ; Орина А. С., Гаврилова О. П., Трубин И. И., Гагкаева Т. Ю. Действие фунгицидов на возбудителей фузариозной сухой гнили картофеля. Агрохимия. 2024;3:37–42. DOI: https://doi.org/10.31857/S0002188124030057 EDN: DNVIKE.

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 720-734 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 720-734 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2136/1234; Башмакова Н.В., Третьякова Т.Б., Демченко Н.С. Цитогенетические нарушения у эмбриона при неразвивающейся беременности. Российский вестник акушера-гинеколога. 2013;13(4):18–21.; Новикова Н.Ю., Цибизова В.И., Первунина Т.М., Малушко А.В. Нутрициология и образ жизни при беременности. Российский журнал персонализированной медицины. 2023;3(2):82–92. https://doi.org/10.18705/2782-3806-2023-3-2-82-92.; Святова Г.С., Березина Г.М., Муртазалиева А.В. Генетические аспекты идиопатической формы привычного невынашивания беременности. Медицинская генетика. 2020;19(11):83–4. https://doi.org/10.25557/2073-7998.2020.11.83-84.; Адамян Л.В., Геворгян А.П. Аутофагия как новое звено в механизме развития нарушений репродуктивной системы (обзор литературы). Проблемы репродукции. 2019;25(5):6–14.; Zhao J., Yao K., Yu H. et al. Metabolic remodelling during early mouse embryo development. Nat Metab. 2021;3(10):1372–84. https://doi.org/10.1038/s42255-021-00464-x.; Motiei M., Vaculikova K., Cela A. et al. Non-invasive human embryo metabolic assessment as a developmental criterion. J Clin Med. 2020;9(12):4094. https://doi.org/10.3390/jcm9124094.; Ayer A., Fazakerley D.J., Suarna C. et al. Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biol. 2021;46:102127. https://doi.org/10.1016/j.redox.2021.102127.; You X., Ryu M.J., Cho E. et al. Embryonic expression of nrasG 12 D leads to embryonic lethality and cardiac defects. Front Cell Dev Biol. 2021;9:633661. https://doi.org/10.3389/fcell.2021.633661.; Wu Y., Yang D., Chen G.Y. Targeted disruption of Rab1a causes early embryonic lethality. Int J Mol Med. 2022;49(4):46. https://doi.org/10.3892/ijmm.2022.5101.; Liang R., Chen X., Zhang Y. et al. Clinical features and gene variation analysis of COQ8B nephropathy: Report of seven cases. Front Pediatr. 2023;10:1030191. https://doi.org/10.3389/fped.2022.1030191.; Somnay Y.R., Wang A., Griffiths K.K., Levy R.J. Altered brown adipose tissue mitochondrial function in newborn fragile X syndrome mice. Mitochondrion. 2022;65:1–10. https://doi.org/10.1016/j.mito.2022.04.003.; Guerra R.M., Pagliarini D.J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci. 2023;48(5):463–76. https://doi.org/10.1016/j.tibs.2022.12.006.; Gutierrez-Mariscal F.M., Arenas-de Larriva A.P., Limia-Perez L. et al. Coenzyme Q10 supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci. 2020;21(21):7870. https://doi.org/10.3390/ijms21217870.; Navas P., Sanz A. Editorial: "Mitochondrial coenzyme Q homeostasis: Signalling, respiratory chain stability and diseases". Free Radic Biol Med. 2021;169:12–3. https://doi.org/10.1016/j.freeradbiomed.2021.04.005.; Alcázar-Fabra M., Rodríguez-Sánchez F., Trevisson E., Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med. 2021;167:141–80. https://doi.org/10.1016/j.freeradbiomed.2021.02.046.; Zhao M., Tian Z., Zhao D. et al. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: a national cross-sectional study. Food Funct. 2023;14(21):9815–24. https://doi.org/10.1039/d3fo00978e.; Громова О.А., Торшин И.Ю. Молекулярная фармакология коэнзима Q10 в контексте лечения гиперлипидемических состояний. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2023;16(2):345–57. https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.186.; Lapuente-Brun E., Moreno-Loshuertos R., Acín-Pérez R. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567–70. https://doi.org/10.1126/science.1230381.; Griffiths K.K., Wang A., Levy R.J. Assessment of open probability of the mitochondrial permeability transition pore in the setting of coenzyme Q excess. J Vis Exp. 2022;(184). https://doi.org/10.3791/63646.; Oh J.N., Lee M., Choe G.C. et al. The number of primitive endoderm cells in the inner cell mass is regulated by platelet-derived growth factor signaling in porcine preimplantation embryos. Anim Biosci. 2023;36(8):1180–9. https://doi.org/10.5713/ab.22.0481.; Gauster M., Moser G., Wernitznig S. et al. Early human trophoblast development: from morphology to function. Cell Mol Life Sci. 2022;79(6):345. https://doi.org/10.1007/s00018-022-04377-0.; Wardle F.C. Mesoderm differentiation in vertebrate development and regenerative medicine. Semin Cell Dev Biol. 2022;127:1–2. https://doi.org/10.1016/j.semcdb.2022.02.014.; Adhikari D., Lee I.W., Yuen W.S., Carroll J. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod. 2022;106(2):366–77. https://doi.org/10.1093/biolre/ioac024.; Непша О.С., Кулакова Е.В., Екимов А.Н. и др. Использование митохондриальной ДНК эмбрионов в качества предиктора эффективности программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021;11:125–34. https://doi.org/10.18565/aig.2021.11.125-134.; Kang M.H., Kim Y.J., Lee J.H. Mitochondria in reproduction. Clin Exp Reprod Med. 2023;50(1):1–11. https://doi.org/10.5653/cerm.2022.05659.; Czernik M., Winiarczyk D., Sampino S. et al. Mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos. Sci Rep. 2022;12(1):16152. https://doi.org/10.1038/s41598-022-20374-6.; Marchante M., Ramirez-Martin N., Buigues A. et al. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY). 2023;15(20):10856–74. https://doi.org/10.18632/aging.205086.; Адамян Л.В., Сибирская Е.В., Щерина А.В. Патогенетические аспекты преждевременной недостаточности яичников. Проблемы репродукции. 2021;27(1):6–12.; van der Reest J., Nardini Cecchino G., Haigis M.C., Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378. https://doi.org/10.1016/j.arr.2021.101378.; Jiang Z., Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci. 2022;29(3):711–22. https://doi.org/10.1007/s43032-021-00523-4.; Hudson G., Takeda Y., Herbert M. Reversion after replacement of mitochondrial DNA. Nature. 2019;574(7778):8–11. https://doi.org/10.1038/s41586-019-1623-3.; Блашкив Т.В., Шепель А.А. Вознесенская Т.Ю. Экспрессия генов клетками кумулюсного окружения ооцита в период овуляции и оплодотворения (обзор литературы). Проблемы репродукции. 2014;(1):55–8.; Hu Y., Zhang R., Zhang S. et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res. 2023;16(1):225. https://doi.org/10.1186/s13048-023-01291-2.; Babayev E., Duncan F.E. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod. 2022;106(2):351–65. https://doi.org/10.1093/biolre/ioab241.; Krawczyk K., Marynowicz W., Pich K. et al. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev. 2023;35(3):294–305. https://doi.org/10.1071/RD21326.; Yu L., Liu M., Xu S. et al. Follicular fluid steroid and gonadotropic hormone levels and mitochondrial function from exosomes predict embryonic development. Front Endocrinol (Lausanne). 2022;13:1025523. https://doi.org/10.3389/fendo.2022.1025523.; Gasmi A., Bjørklund G., Mujawdiya P.K. et al. Coenzyme Q10 in aging and disease. Crit Rev Food Sci Nutr. 2024;64(12):3907–19. https://doi.org/10.1080/10408398.2022.2137724.; Yang C.X., Liu S., Miao J.K. et al. CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology. 2021;159:77–86. https://doi.org/10.1016/j.theriogenology.2020.10.009.; Brown A.M., McCarthy H.E. The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. Hum Fertil (Camb). 2023;26(6):1544–52. https://doi.org/10.1080/14647273.2023.2194554.; Yang J., Feng T., Li S. et al. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages. Reprod Biol Endocrinol. 2020;18(1):74. https://doi.org/10.1186/s12958-020-00631-x.; Giannubilo S.R., Orlando P., Silvestri S. et al. CoQ10 Supplementation in patients undergoing IVF-ET: The relationship with follicular fluid content and oocyte maturity. Antioxidants (Basel). 2018;7(10):141. https://doi.org/10.3390/antiox7100141.; Lee C.H., Kang M.K., Sohn D.H. et al. Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture. Zygote. 2022;30(2):249–57. https://doi.org/10.1017/S0967199421000617.; Yang L., Wang H., Song S. et al. Systematic understanding of anti-aging effect of coenzyme Q10 on oocyte through a network pharmacology approach. Front Endocrinol (Lausanne). 2022;13:813772. https://doi.org/10.3389/fendo.2022.813772.; Heydarnejad A., Ostadhosseini S., Varnosfaderani S.R. et al. Supplementation of maturation medium with CoQ10 enhances developmental competence of ovine oocytes through improvement of mitochondrial function. Mol Reprod Dev. 2019;86(7):812–24. https://doi.org/10.1002/mrd.23159.; Ruiz-Conca M., Gardela J., Mogas T. et al. Apoptosis and glucocorticoid-related genes mRNA expression is modulated by coenzyme Q10 supplementation during in vitro maturation and vitrification of bovine oocytes and cumulus cells. Theriogenology. 2022;192:62–72. https://doi.org/10.1016/j.theriogenology.2022.08.030.; Gendelman M., Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol Reprod. 2012;87(5):118. https://doi.org/10.1095/biolreprod.112.101881.; Miao Y., Cui Z., Gao Q. et al. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 2020;32(5):107987. https://doi.org/10.1016/j.celrep.2020.107987.; Nikalayevich E., Terret M.E. Meiosis: Actin and microtubule networks drive chromosome clustering in oocytes. Curr Biol. 2023;33(7):272–4. https://doi.org/10.1016/j.cub.2023.02.061.; Miao Y., Zhou C., Cui Z. et al. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J. 2018;32(3):1328–37. https://doi.org/10.1096/fj.201700908R.; Zhang M., Shi Yang X., Zhang Y. et al. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med. 2019;143:84–94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002.; Shaw E., Talwadekar M., Rashida Z. et al. Anabolic SIRT4 exerts retrograde control over TORC1 signaling by glutamine sparing in the mitochondria. Mol Cell Biol. 2020;40(2):e00212–19. https://doi.org/10.1128/MCB.00212-19.; He L., Liu Q., Cheng J. et al. SIRT4 in ageing. Biogerontology. 2023;24(3):347–62. https://doi.org/10.1007/s10522-023-10022-5.; Xing X., Zhang J., Zhang J. et al. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol. 2022;15(1):190–203. https://doi.org/10.2174/1874467214666210420112819.; Ben-Meir A., Burstein E., Borrego-Alvarez A. et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887–95. https://doi.org/10.1111/acel.12368.; Del Bianco D., Gentile R., Sallicandro L. et al. Electro-metabolic coupling of cumulus-oocyte complex. Int J Mol Sci. 2024;25(10):5349. https://doi.org/10.3390/ijms25105349.; Ben-Meir A., Kim K., McQuaid R. et al. Co-enzyme Q10 supplementation rescues cumulus cells dysfunction in a maternal aging model. Antioxidants (Basel). 2019;8(3):58. https://doi.org/10.3390/antiox8030058.; Bellusci M., García-Silva M.T., Martínez de Aragón A., Martín M.A. Distal phalangeal erythema in an infant with biallelic PDSS1 mutations: expanding the phenotype of primary Coenzyme Q10 deficiency. JIMD Rep. 2021;62(1):3–5. https://doi.org/10.1002/jmd2.12216.; Li M., Yue Z., Lin H. et al. COQ2 mutation associated isolated nephropathy in two siblings from a Chinese pedigree. Ren Fail. 2021;43(1):97–101. https://doi.org/10.1080/0886022X.2020.1864402.; Laugwitz L., Seibt A., Herebian D. et al. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet. 2022;59(9):878–87. https://doi.org/10.1136/jmedgenet-2021-107729.; Wang N., Zheng Y., Zhang L. et al. A family segregating lethal primary coenzyme Q10 deficiency due to two novel COQ6 variants. Front Genet. 2022;12:811833. https://doi.org/10.3389/fgene.2021.811833.; Olgac A., Öztoprak Ü., Kasapkara C.S. et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33(1):165–70. https://doi.org/10.1515/jpem-2019-0245.; Howden S.E., Vanslambrouck J.M., Wilson S.B. et al. Reporter-based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Rep. 2019;20(4):e47483. https://doi.org/10.15252/embr.201847483.; Drovandi S., Lipska-Ziętkiewicz B.S., Ozaltin F. et al.; PodoNet Consortium; mitoNET Consortium; CCGKDD Consortium; Schaefer F. Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency associated glomerulopathy. Kidney Int. 2022;102(3):592–603. https://doi.org/10.1016/j.kint.2022.02.040.; Zhai S.B., Zhang L., Sun B.C. et al. Early-onset COQ8B (ADCK4) glomerulopathy in a child with isolated proteinuria: a case report and literature review. BMC Nephrol. 2020;21(1):406. https://doi.org/10.1186/s12882-020-02038-7.; Stańczyk M., Bałasz-Chmielewska I., Lipska-Ziętkiewicz B., Tkaczyk M. CoQ10-related sustained remission of proteinuria in a child with COQ6 glomerulopathy – a case report. Pediatr Nephrol. 2018;33(12):2383–7. https://doi.org/10.1007/s00467-018-4083-3.; Suciu S.K., Caspary T. Cilia, neural development and disease. Semin Cell Dev Biol. 2021;110:34–42. https://doi.org/10.1016/j.semcdb.2020.07.014.; Zoghbi J.F., Licznerski P., Yang M. et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020;34(6):7404–26. https://doi.org/10.1096/fj.202000283RR.; Muigg V., Maier M.I., Kuenzli E., Neumayr A. Delayed cerebellar ataxia, a rare post-malaria neurological complication: Case report and review of the literature. Travel Med Infect Dis. 2021;44:102177. https://doi.org/10.1016/j.tmaid.2021.102177.; Monfrini E., Pesini A., Biella F. et al. Whole-exome sequencing study of fibroblasts derived from patients with cerebellar ataxia referred to investigate CoQ10 deficiency. Neurol Genet. 2023;9(2):e200058. https://doi.org/10.1212/NXG.0000000000200058.; Rius R., Bennett N.K., Bhattacharya K. et al. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Hum Mutat. 2022;43(12):1970–8. https://doi.org/10.1002/humu.24453.; Justine Perrin R., Rousset-Rouvière C., Garaix F. et al. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. JIMD Rep. 2020;54(1):37–44. https://doi.org/10.1002/jmd2.12068.; Turnis M.E., Kaminska E., Smith K.H. et al. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood. 2021;137(14):1945–58. https://doi.org/10.1182/blood.2020006916.; Martinez P.A., Li R., Ramanathan H.N. et al. Smad2/3-pathway ligand trap luspatercept enhances erythroid differentiation in murine β-thalassaemia by increasing GATA-1 availability. J Cell Mol Med. 2020;24(11):6162–77. https://doi.org/10.1111/jcmm.15243.; Martell D.J., Merens H.E., Caulier A. et al. RNA polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. Dev Cell. 2023;58(20):2112–2127.e4. https://doi.org/10.1016/j.devcel.2023.07.018.; Rossmann M.P., Hoi K., Chan V. et al. Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science. 2021;372(6543):716–21. https://doi.org/10.1126/science.aaz2740.; Drakhlis L., Biswanath S., Farr C.M. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021;39(6):737–46. https://doi.org/10.1038/s41587-021-00815-9.; Yan A., Liu Z., Song L. et al. Idebenone Alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson's disease mice. Front Cell Neurosci. 2019;12:529. https://doi.org/10.3389/fncel.2018.00529.; Robichaux D.J., Harata M., Murphy E., Karch J. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol. 2023;174:47–55. https://doi.org/10.1016/j.yjmcc.2022.11.003.; Barajas M., Wang A., Griffiths K.K. et al. The newborn Fmr1 knockout mouse: a novel model of excess ubiquinone and closed mitochondrial permeability transition pore in the developing heart. Pediatr Res. 2021;89(3):456–63. https://doi.org/10.1038/s41390-020-1064-6.; Wang Y., Hekimi S. The CoQ biosynthetic di-iron carboxylate hydroxylase COQ7 is inhibited by in vivo metalation with manganese but remains functional by metalation with cobalt. MicroPubl Biol. 2022;2022:10.17912/micropub.biology.000635. https://doi.org/10.17912/micropub.biology.000635.; Smith A.C., Ito Y., Ahmed A. et al.; Care4Rare Canada Consortium. A family segregating lethal neonatal coenzyme Q10 deficiency caused by mutations in COQ9. J Inherit Metab Dis. 2018;41(4):719–29. https://doi.org/10.1007/s10545-017-0122-7.; Danhauser K., Herebian D., Haack T.B. et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet. 2016;24(3):450–4. https://doi.org/10.1038/ejhg.2015.133.; Teran E., Hernández I., Tana L. et al. Mitochondria and coenzyme Q10 in the pathogenesis of preeclampsia. Front Physiol. 2018;9:1561. https://doi.org/10.3389/fphys.2018.01561.; Budani M.C., Tiboni G.M. Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants (Basel). 2020;9(7):612. https://doi.org/10.3390/antiox9070612.; https://www.gynecology.su/jour/article/view/2136

  19. 19
    Academic Journal

    Contributors: The work was financially supported by Alcea LLC, Работа выполнена при финансовой поддержке ООО «Алцея»

    Source: Obstetrics, Gynecology and Reproduction; Vol 17, No 6 (2023); 769-782 ; Акушерство, Гинекология и Репродукция; Vol 17, No 6 (2023); 769-782 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1873/1171; Marshall N.E., Abrams B., Barbour L.A. et al. The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet Gynecol. 2022;226(5):607–32. https://doi.org/10.1016/j.ajog.2021.12.035.; Lee Y.Q., Loh J., Ang R.S.E., Chong M.F. Tracking of maternal diet from pregnancy to postpregnancy: a systematic review of observational studies. Curr Dev Nutr. 2020;4(8):nzaa118. https://doi.org/10.1093/cdn/nzaa118.; Савченко Т.Н., Дергачева И.А., Агаева М.И. Микронутриенты и беременность. РМЖ. 2016;(15):1005–8.; Прегравидарная подготовка. Клинический протокол Междисциплинарной ассоциации специалистов репродуктивной медицины (МАРС). Версия 3.0. М.: Редакция журнала StatusPraesens, 2023. 104 с. Режим доступа: https://praesens.ru/broshyury/klinicheskii-protokol-mars/?ysclid=lq3xu3qvjc374136376. [Дата обращения: 10.10.2023].; Клинические рекомендации – Нормальная беременность – 20202021-2022 (11.06.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 57 с. Режим доступа: https://louhicrb.ru/wp-content/uploads/2023/02/klinicheskie-rekomendaczii-2022g.pdf. [Дата обращения: 10.10.2023].; Mousa A., Naqash A., Lim S. Macronutrient and micronutrient intake during pregnancy: an overview of recent evidence. Nutrients. 2019;11(2):443. https://doi.org/10.3390/nu11020443.; Savard C., Lebrun A., O'Connor S. et al. Energy expenditure during pregnancy: a systematic review. Nutr Rev. 2021;79(4):394–409. https://doi.org/10.1093/nutrit/nuaa093.; Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight gain during Pregnancy: reexamining the guidelines. Eds. K.M. Rasmussen, A.L. Yaktine. Washington (DC): National Academies Press (US), 2009. 324 p.; Most J., Amant M.S., Hsia D.S. et al. Evidence-based recommendations for energy intake in pregnant women with obesity. J Clin Invest. 2019;129(11):4682–90. https://doi.org/10.1172/JCI130341.; Filardi T., Panimolle F., Crescioli C. et al. Gestational diabetes mellitus: the impact of carbohydrate quality in diet. Nutrients. 2019;11(7):1549. https://doi.org/10.3390/nu11071549.; Giouleka S., Tsakiridis I, Koutsouki G. et al. Obesity in pregnancy: a comprehensive review of influential guidelines. Obstet Gynecol Surv. 2023;78(1):50–68. https://doi.org/10.1097/OGX.0000000000001091.; Ota E., Hori H., Mori R. et al. Antenatal dietary education and supplementation to increase energy and protein intake. Cochrane Database Syst Rev. 2015;(6):CD000032. https://doi.org/10.1002/14651858.CD000032.pub3.; Visser J., McLachlan M.H., Maayan N., Garner P. Community-based supplementary feeding for food insecure, vulnerable and malnourished populations – an overview of systematic reviews. Cochrane Database Syst Rev. 2018;11(11):CD010578. https://doi.org/10.1002/14651858.CD010578.pub2.; Davis A.M. Pandemic of pregnant obese women: Is it time to re-evaluate antenatal weight loss? Healthcare (Basel). 2015;3(3):733–49. https://doi.org/10.3390/healthcare3030733.; Furber C.M., McGowan L., Bower P. et al. Antenatal interventions for reducing weight in obese women for improving pregnancy outcome. Cochrane Database Syst Rev. 2013;(1):CD009334. https://doi.org/10.1002/14651858.CD009334.pub2.; EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for energy. EFSA J. 2013;11(1):3005– 16. https://doi.org/10.2903/j.efsa.2013.3005.; Lonnie M., Hooker E., Brunstrom J.M. et al. Protein for life: review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients. 2018;10(3):360. https://doi.org/10.3390/nu10030360.; Food and Agricultural Organization (FAO) World Health Organization (WHO) Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation. Food and Agricultural Organization (FAO); Rome, Italy, 1991. FAO Food and Nutrition Paper 51. Режим доступа: https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf. [Дата обращения: 10.10.2023].; Gorissen S.H.M., Witard O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc Nutr Soc. 2018;77(1):20–31. https://doi.org/10.1017/S002966511700194X.; Mansilla W.D., Marinangeli C.P.F., Cargo-Froom C. et al. Comparison of methodologies used to define the protein quality of human foods and support regulatory claims. Appl Physiol Nutr Metab. 2020;45(9):917–26. https://doi.org/10.1139/apnm-2019-0757.; Winship A.L., Gazzard S.E., Cullen-McEwen L.A. et al. Maternal low-protein diet programmes low ovarian reserve in offspring. Reproduction. 2018;156(4):299–311. https://doi.org/10.1530/REP-180247.; Fabozzi G., Iussig B., Cimadomo D. et al. The impact of unbalanced maternal nutritional intakes on oocyte mitochondrial activity: implications for reproductive function. Antioxidants (Basel). 2021;10(1):91. https://doi.org/10.3390/antiox10010091.; Elango R., Ball R.O. Protein and amino acid requirements during pregnancy. Adv Nutr. 2016;7(4):839S–844S. https://doi.org/10.3945/an.115.011817.; Blumfield M.L., Hure A.J., Macdonald-Wicks L. et al. Systematic review and meta-analysis of energy and macronutrient intakes during pregnancy in developed countries. Nutr Rev. 2012;70(6):322–36. https://doi.org/10.1111/j.1753-4887.2012.00481.x.; Pimpin L., Kranz S., Liu E. et al. Effects of animal protein supplementation of mothers, preterm infants, and term infants on growth outcomes in childhood: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2019;110(2):410–29. https://doi.org/10.1093/ajcn/nqy348.; Raghavan R., Dreibelbis C., Kingshipp B.L. et al. Dietary patterns before and during pregnancy and maternal outcomes: A systematic review. Am J Clin Nutr. 2019;109(Suppl_7):705s–728s. https://doi.org/10.1093/ajcn/nqy216.; Yeh K.L., Kautz A., Lohse B., Groth S.W. Associations between dietary patterns and inflammatory markers during pregnancy: a systematic review. Nutrients. 2021;13(3):834. https://doi.org/10.3390/nu13030834.; Stahler C. How often do americans eat vegetarian meals? And how many adults in the U.S. are vegan? Vegetarian J. 2011;(4). Режим доступа: http://www.vrg.org/journal/vj2011issue4/vj2011issue4poll.php. [Дата обращения: 10.10.2023].; Sebastiani G., Herranz Barbero A., Borrás-Novell C. et al. The effects of vegetarian and vegan diet during pregnancy on the health of mothers and offspring. Nutrients. 2019;11(3):557. https://doi.org/10.3390/nu11030557.; Miles E.A., Childs C.E., Calder P.C. Long-chain polyunsaturated fatty acids (LCPUFAs) and the developing immune system: a narrative review. Nutrients. 2021;13(1):247. https://doi.org/10.3390/nu13010247.; Al M.D., van Houwelingen A.C., Kester A.D. et al. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr. 1995;74(1):55–68. https://doi.org/10.1079/BJN19950106.; Shulkin M., Pimpin L., Bellinger D. et al. n-3 fatty acid supplementation in mothers, preterm infants, and term infants and childhood psychomotor and visual development: a systematic review and meta-analysis. J Nutr. 2018;148(3):409–18. https://doi.org/10.1093/jn/nxx031.; Middleton P., Gomersall J.C., Gould J.F. et al. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018;11(11):CD003402. https://doi.org/10.1002/14651858.CD003402.pub3.; Christifano D.N., Crawford S.A., Lee G. et al. Docosahexaenoic acid (DHA) intake estimated from a 7-question survey identifies pregnancies most likely to benefit from high-dose DHA supplementation. Clin Nutr ESPEN. 2023;53:93–9. https://doi.org/10.1016/j.clnesp.2022.12.004.; Çobanoğullari H., Ergoren M.C., Dundar M. et al. Periconceptional Mediterranean diet during pregnancy on children's health. J Prev Med Hyg. 2022;63(2 Suppl 3):E65–E73. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2748.; Wilson R.D., O'Connor D.L. Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects. Prev Med Rep. 2021;24:101617. https://doi.org/10.1016/j.pmedr.2021.101617.; Murphy M.E., Westmark C.J. Folic acid fortification and neural tube defect risk: analysis of the food fortification initiative dataset. Nutrients. 2020;12(1):247. https://doi.org/10.3390/nu12010247.; Crider K.S., Qi Y.P., Devine O. et al. Modeling the impact of folic acid fortification and supplementation on red blood cell folate concentrations and predicted neural tube defect risk in the United States: have we reached optimal prevention? Am J Clin Nutr. 2018;107(6):1027–34. https://doi.org/10.1093/ajcn/nqy065.; De Vito M., Alameddine S., Capannolo G. et al. Systematic review and critical evaluation of quality of clinical practice guidelines on nutrition in pregnancy. Healthcare (Basel). 2022;10(12):2490. https://doi.org/10.3390/healthcare10122490.; Rahat B., Hamid A., Bagga R., Kaur J. Folic acid levels during pregnancy regulate trophoblast invasive behavior and the possible development of preeclampsia. Front Nutr. 2022;9:847136. https://doi.org/10.3389/fnut.2022.847136.; Liu C., Liu C., Wang Q., Zhang Z. Supplementation of folic acid in pregnancy and the risk of preeclampsia and gestational hypertension: a meta-analysis. Arch Gynecol Obstet. 2018;298(4):697–704. https://doi.org/10.1007/s00404-018-4823-4.; Li B., Zhang X., Peng X. et al. Folic acid and risk of preterm birth: a metaanalysis. Front Neurosci. 2019;13:1284. https://doi.org/10.3389/fnins.2019.01284.; Ballestín S.S., Campos M.I.G., Ballestín J.B., Bartolomé M.J.L. Is supplementation with micronutrients still necessary during pregnancy? A review. Nutrients. 2021;13(9):3134. https://doi.org/10.3390/nu13093134.; Elmore C., Ellis J. Screening, treatment, and monitoring of iron deficiency anemia in pregnancy and postpartum. J Midwifery Womens Health. 2022;67(3):321–31. https://doi.org/10.1111/jmwh.13370.; Бахарева И.В. Профилактика и лечение анемии беременных: результаты использования витаминно-минеральных комплексов (по данным Российской многоцентровой неинтервенционной программы «ПРОГНОСТИК»). Российский вестник акушера-гинеколога. 2017;17(3):66–73.; Benson C.S., Shah A., Stanworth S.J. et al. The effect of iron deficiency and anaemia on women's health. Anaesthesia. 2021;76 Suppl 4:84–95. https://doi.org/10.1111/anae.15405.; Duarte A.F.M., Carneiro A.C.S.V., Peixoto A.T.B.M.M. et al. Oral iron supplementation in pregnancy: current recommendations and evidencebased medicine. Rev Bras Ginecol Obstet. 2021;43(10):782–8. https://doi.org/10.1055/s-0041-1736144.; Peña-Rosas J.P., De-Regil L.M., Garcia-Casal M.N., Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;2015(7):CD004736. https://doi.org/10.1002/14651858.CD004736.pub5.; Баев О.Р. Профилактика и лечение железодефицитных состояний во время беременности: применение комбинации железа и фолиевой кислоты. Фарматека. 2011;(13):47–52.; Бахарева И.В. Профилактика и лечение железодефицитных состояний у беременных. РМЖ. Мать и дитя. 2019;2(3):219–24. https://doi.org/10.32364/2618-8430-2019-2-3-219-224.; Zavala E., Rhodes M., Christian P. Pregnancy interventions to improve birth outcomes: what are the effects on maternal outcomes? A scoping review. Int J Public Health. 2022;67:1604620. https://doi.org/10.3389/ijph.2022.1604620.; Peña-Rosas J.P., De-Regil L.M., Gomez Malave H. et al. Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;2015(10):CD009997. https://doi.org/10.1002/14651858.CD009997.pub2.; WHO Guideline: Intermittent iron and folic acid supplementation in non-anaemic pregnant women. Geneva: World Health Organization, 2012. 31 p. Режим доступа: https://iris.who.int/bitstream/handle/10665/75335/9789241502016_eng.pdf?sequence=1. [Дата обращения: 10.10.2023].; Громова О.А., Торшин И.Ю., Тетруашвили Н.К., Павлович С.В. Систематический анализ молекулярного синергизма фолиевой кислоты и фумарата железа при железодефицитной анемии. Акушерство и гинекология. 2022;(12):178–86. https://doi.org/10.18565/aig.2022.301.; Chittimoju S.B., Pearce E.N. Iodine deficiency and supplementation in pregnancy. Clin Obstet Gynecol. 2019;62(2):330–8. https://doi.org/10.1097/GRF.0000000000000428.; Bath C. The effect of iodine deficiency during pregnancy on child development. Proc Nutr Soc. 2019;78(2):150–60. https://doi.org/10.1017/S0029665118002835.; Toloza F.J.K., Motahari H., Maraka S. Consequences of severe iodine deficiency in pregnancy: evidence in humans. Front Endocrinol (Lausanne). 2020;11:409. https://doi.org/10.3389/fendo.2020.00409.; Nazeri P., Shariat M., Azizi F. Effects of iodine supplementation during pregnancy on pregnant women and their offspring: a systematic review and meta-analysis of trials over the past 3 decades. Eur J Endocrinol. 2021;184(1):91–106. https://doi.org/10.1530/EJE-20-0927.; Harding K.B., Peña-Rosas J.P., Webster A.C. et al. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev. 2017;3(3):CD011761. https://doi.org/10.1002/14651858.CD011761.pub2.; Candido A.C., Vieira A.A., de Souza Ferreira E. et al. Prevalence of excessive iodine intake in pregnancy and its health consequences: systematic review and meta-analysis. Biol Trace Elem Res. 2022;201(6):2784–94. https://doi.org/10.1007/s12011-022-03401-5.; Cormick G., Belizán J.M. Calcium intake and health. Nutrients. 2019;11(7):1606. https://doi.org/10.3390/nu11071606.; Korhonen P., Tihtonen K., Isojärvi J. et al. Calcium supplementation during pregnancy and long-term offspring outcome: a systematic literature review and meta-analysis. Ann N Y Acad Sci. 2022;1510(1):36– 51. https://doi.org/10.1111/nyas.14729.; Hofmeyr G.J., Lawrie T.A., Atallah Á.N., Torloni M.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev. 2018;10(10):CD001059. https://doi.org/10.1002/14651858.CD0010595.; Hofmeyr G.J., Manyame S., Medley N., Williams M.J. Calcium supplementation commencing before or early in pregnancy, for preventing hypertensive disorders of pregnancy. Cochrane Database Syst Rev. 2019;9(9):CD011192. https://doi.org/10.1002/14651858.CD011192.pub3.; Curtis E.M., Moon R.J., Harvey N.C., Cooper C. Maternal vitamin D supplementation during pregnancy. Br Med Bull. 2018;126(1):57–77. https://doi.org/10.1093/bmb/ldy010.; Pérez-López F.R., Pilz S., Chedraui P. Vitamin D supplementation during pregnancy: an overview. Curr Opin Obstet Gynecol. 2020;32(5):316–21. https://doi.org/10.1097/GCO.0000000000000641.; Kiely M.E., Wagner C.L., Roth D.E. Vitamin D in pregnancy: Where we are and where we should go. J Steroid Biochem Mol Biol. 2020;201:105669. https://doi.org/10.1016/j.jsbmb.2020.105669.; Palacios C., Kostiuk L.K., Peña-Rosas J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2019;7(7):CD008873. https://doi.org/10.1002/14651858.CD008873.pub4.; Vivanti A.J., Monier I., Salakos E. et al. Vitamin D and pregnancy outcomes: overall results of the FEPED study. J Gynecol Obstet Hum Reprod. 2020;49(8):101883. https://doi.org/10.1016/j.jogoh.2020.101883.; Gallo S., McDermid J.M., Al-Nimr R.I. et al. Vitamin D supplementation during pregnancy: an evidence analysis center systematic review and meta-analysis. J Acad Nutr Diet. 2020;120(5):898–924.e4. https://doi.org/10.1016/j.jand.2019.07.002.; https://www.gynecology.su/jour/article/view/1873

  20. 20
    Academic Journal

    Source: Malignant tumours; Том 14, № 3s1 (2024); 42-48 ; Злокачественные опухоли; Том 14, № 3s1 (2024); 42-48 ; 2587-6813 ; 2224-5057

    File Description: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1346/953; Lambertini M., Peccatori F.A., Demeestere I. et.al. Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 2020;31(12):1664-1678. https://doi.org/10.1016/j.annonc.2020.09.006; Anderson R., Amant F., Braat D. et.al. ESHRE guideline: female fertility preservation. Hum Reprod Open 2020;2020(4):hoaa052. https://doi.org/10.1093/hropen/hoaa052; Oktay K., Harvey B.E., Partridge A.H., et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol 2018;36(19):1994-2001. https://doi.org/10.1200/JCO.2018.78.1914; Michalczyk K., Cymbaluk-Ploska A. Fertility preservation and long-term monitoring of gonadotoxicity in girls, adolescents and young adults undergoing cancer treatment. Cancers (Basel) 2021;13(2):202. https://doi.org/10.3390/cancers13020202; Higdon R.E., Marchetti F., Mailhes J.B., Phillips G.L. The effects of cisplatin on murine metaphase II oocytes. Gynecol Oncol 1992;47(3):348-352. https://doi.org/10.1016/0090-8258(92)90138-9; Del-Pozo-Lerida S., Salvador C., Martinez-Soler F., et al. Preservation of fertility in patients with cancer (Review). Oncol Rep 2019;41(5):2607-2614. https://doi.org/10.3892/or.2019.7063; Roness H., Kalich-Philosoph L., Meirow D. Prevention of chemotherapyinduced ovarian damage: Possible roles for hormonal and nonhormonal attenuating agents. Hum Reprod Update 2014;20(5):759-774. https://doi.org/10.1093/humupd/dmu019; Lee S.J., Schover L.R., Partridge A.H., et al. American society of clinical oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 2006;24(18):2917-2931. https://doi.org/10.1200/JCO.2006.06.5888; Wang Y., Li Y., Liang J., et al. Chemotherapy-induced amenorrhea and its prognostic significance in premenopausal women with breast cancer: An updated meta-analysis. Front Oncol 2022;12. https://doi.org/10.3389/fonc.2022.859974; Ganz P.A., Land S.R., Geyer Jr C.E., et al. Menstrual history and qualityoflife outcomes in women with nodepositive breast cancer treated with adjuvant therapy on the NSABP B30 trial. J Clin Oncol 2011;29(9):1110—1116. https://doi.org/10.1200/JCO.2010.29.7689; Lambertini M., Ceppi M., Anderson R., et al. Impact of anti-HER2 therapy alone and with weekly paclitaxel on the ovarian reserve of young women with HER2-positive breast cancer. JNCCN 2023;21(1):33-41. https://doi.org/10.6004/jnccn.2022.7065; Winship A.L., Alesi L.R., Sant S., et al. Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice. Nat Cancer 2022;3(8):1-13. https://doi.org/10.1038/s43018-022-00413-x; Bines J., Oleske D.M., Cobleigh M.A. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J Clin Oncol 1996;14(5):1718-1729. https://doi.org/10.1200/JCO.1996.14.5.1718; Wallace W.H.B., Anderson R.A., Irvine D.S. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol 2005;6(4):209-218. https://doi.org/10.1016/S1470-2045(05)70092-9; Walshe J.M., Denduluri N., Swain S.M. Amenorrhea in premenopausal women after adjuvant chemotherapy for breast cancer. J Clin Oncol 2006;24(36):5769-5779. https://doi.org/10.1200/JCO.2006.07.2793; Goodwin P.J., Ennis M., Pritchard K.I., et al. Risk of menopause during the first year after breast cancer diagnosis. J Clin Oncol 1999;17(8):2365-2370. https://doi.org/10.1200/JCO.1999.178.2365; Petrek J.A., Naughton M.J., Case L.D., et al. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: aprospective study. J Clin Oncol 2006;24(7):1045-1051. https://doi.org/10.1200/JCO.2005.03.3969; Lee S., Kil W.J., Chun M., et al. Chemotherapy-related amenorrhea in premenopausal women with breast cancer. Menopause 2009;16(1):98-103. https://doi.org/10.1097/gme.0b013e3181844877; Ribi K., Luo W., Bernhard J., et al. Adjuvant tamoxifen plus ovarian function suppression versus tamoxifen alone in premenopausal women with early breast cancer: patient-reported outcomes in the suppression of ovarian function trial. J Clin Oncol 2016;34(14):1601-1610. https://doi.org/10.1200/JCO.2015.64.8675; Wallace W.H.B., Thomson A.B., Saran F., Kelsey T.W. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys 2005;62(3):738-744. https://doi.org/10.1016/j.ijrobp.2004.11.038; Larsen E.C., Schmiegelow K., Rechnitzer C., et al. Radiotherapy at a young age reduces uterine volume of childhood cancer survivors. Acta Obstet Gynecol Scand 2004;83(1):96-102. https://doi.org/10.1111/j.1600-0412.2004.00332.x; Wallace W.H.B., Shalet S.M., Hendry J.H. et.al. Ovarian failure following abdominal irradiation in childhood: The radiosensitivity of the human oocyte. Br J Radiol 1989;62(743):995-998. https://doi.org/10.1259/0007-1285-62-743-995; Titus S., Li F., Stobezki R., et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med 2013;5(172):172ra21. https://doi.org/10.1126/scitranslmed.3004925; Govindaraj V., Keralapura Basavaraju R., Rao A.J. Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online 2015;30(3):303-310. https://doi.org/10.1016/j.rbmo.2014.11.010; Stolk L., Perry J.R.B., Chasman D.I., et al. Meta-analyses identify 13 loci associated with age at menopause and high-light DNA repair and immune pathways. Nat Genet 2012;44(3):260-268. https://doi.org/10.1038/ng.1051; Day F.R., Ruth K.S., Thompson D.J., et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet 2015;47(11):1294-1303. https://doi.org/10.1038/ng.3412; Loren A.W., Mangu P.B., Beck L.N. et.al. Fertility Preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2013;31(19):2500-10. https://doi.org/10.1200/JCO.2013.49.2678; Peccatori F.A., Azim Jr H.A., Orecchia R. et.al. Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013;24 Suppl 6:vi160-70. https://doi.org/10.1093/annonc/mdt199; Gook D.A., Edgar D.H. Human oocyte cryopreservation. Hum Reprod Update 2007;13(6):591-605. https://doi.org/10.1093/humupd/dmm028; Tian Y., Liang Y., Yang X. Successful delivery after in vitro fertilization-embryo transfer in a woman with metachro-nous primary cancer of ovary and endometrium: A case report. BMC Pregnancy Childbirth 2023;23(1):677.; Porcu E., Cipriani L., Dirodi M., et al. Successful pregnancies, births, and children development following oocyte cryostorage in female cancer patients during 25 years of fertility preservation. Cancers (Basel) 2022;14(6):1429. https://doi.org/10.3390/cancers14061429; Arecco L., Blondeaux E., Bruzzone M., et al. Safety of fertility preservation techniques before and after anticancer treatments in young women with breast cancer: a systematic review and meta-analysis. Hum Reprod. 2022 May 3;37(5):954-968. https://doi.org/10.1093/humrep/deac035; Goldrat O., Demeestere I., Azim H. A Jr. Response to ‘Is it safe to perform a controlled ovarian stimulation for assisted reproduction in young breast cancer survivors?'. Eur J Cancer 2016;54:165-166. https://doi.org/10.1016/j.ejca.2015.10.002; Arecco L., Blondeaux E., Bruzzone M. et.al. Safety of fertility preservation techniques before and after anticancer treatments in young women with breast cancer: a systematic review and meta-analysis. Hum Reprod 2022;37(5):954-968. https://doi.org/10.1093/humrep/deac035; Oktay K., Demirtas E., Son W.-Y. et.al. In vitro maturation of germinal vesicle oocytes recovered after premature lu-teinizing hormone surge: description of a novel approach to fertility preservation. Fertil Steril 2008;89(1):228.e19-22. https://doi.org/10.1016/j.fertnstert.2007.02.028; Condorelli M., Bruzzone M., Ceppi M., et al. Safety of assisted reproductive techniques in young women harboring germline pathogenic variants in BRCA1/2 with a pregnancy after prior history of breast cancer. ESMO Open 2021;6(6):100300. https://doi.org/10.1016/j.esmoop.2021.100300; Wallace W.H.B., Smith A.G., Kelsey T.W. et.al Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation. Lancet Oncol 2014;15(10):1129-36.; Meirow D., Ra'anani H., Biderman H. Ovarian tissue cryopreservation and transplantation: a realistic, effective technology for fertility preservation. Methods Mol Biol 2014;1154:455-73. https://doi.org/10.1007/978-1-4939-0659-8_21; Oktay K. Evidence for limiting ovarian tissue harvesting for the purpose of transplantation to women younger than 40 years of age. J Clin Endocrinol Metab 2002;87(4):1907-8. https://doi.org/10.1210/jcem.87.4.8367; Dolmans M.M., von Wolff M., Poirot C., et al. Transplantation of cryopreserved ovarian tissue in a series of 285 women: A review of five leading European centers. Fertil Steril 2021;115(5):1102-15. https://doi.org/10.1016/j.fertnstert.2021.03.008; Glode L.M., Robinson J., Gould S.F. Protection from cyclophosphamide-induced testicular damage with an analogue of gonadotropin-releasing hormone. Lancet 1981;1(8230):1132-1134. https://doi.org/10.1016/s0140-6736(81)92301-1; Lambertini M., Moore H.C.F., Leonard R.C.F., et al. Gonadotropin-releasing hormone agonists during chemotherapy for preservation of ovarian function and fertility in premenopausal patients with early breast cancer: A systematic review and meta-analysis of individual patient-level data. J Clin Oncol 2018;36(19):1981-1990. https://doi.org/10.1200/JCO.2018.78.0858.; https://www.malignanttumors.org/jour/article/view/1346