-
1Academic Journal
Συγγραφείς: V. A. Lebina, O. Kh. Shikhalakhova, A. A. Kokhan, I. Yu. Rashidov, K. A. Tazhev, A. V. Filippova, E. P. Myshinskaya, Yu. V. Symolkina, Yu. I. Ibuev, A. A. Mataeva, A. N. Sirotenko, T. T. Gabaraeva, A. I. Askerova, В. А. Лебина, О. Х. Шихалахова, А. А. Кохан, И. Ю. Рашидов, К. А. Тажев, А. В. Филиппова, Е. П. Мышинская, Ю. В. Сымолкина, Ю. И. Ибуев, А. А. Матаева, А. Н. Сиротенко, Т. Т. Габараева, А. И. Аскерова
Συνεισφορές: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 3 (2025); 423-442 ; Акушерство, Гинекология и Репродукция; Vol 19, No 3 (2025); 423-442 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: репродуктивная медицина, AI, assisted reproductive technologies, ART, infertility, in vitro fertilization, IVF, ethics, reproduction, reproductive medicine, ИИ, вспомогательные репродуктивные технологии, ВРТ, бесплодие, экстракорпоральное оплодотворение, ЭКО, этика, репродукция
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2359/1349; Shah P.K., Gher J.M. Human rights approaches to reducing infertility. Int J Gynaecol Obstet. 2023;162(1):368–74. https://doi.org/10.1002/ijgo.14878.; Корсак В.С., Смирнова А.А., Шурыгина О.В. Регистр ВРТ Российской ассоциации репродукции человека. Отчет за 2019 год. Проблемы репродукции. 2021;27(6):14–29. https://doi.org/10.17116/repro20212706114.; Villani M.T., Morini D., Spaggiari G. et al. Are sperm parameters able to predict the success of assisted reproductive technology? A retrospective analysis of over 22,000 assisted reproductive technology cycles. Andrology. 2022;10(2):310–21. https://doi.org/10.1111/andr.13123.; Louis C.M., Erwin A., Handayani N. et al. Review of computer vision application in in vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF. J Assist Reprod Genet. 2021;38(7):1627–39. https://doi.org/10.1007/s10815-021-02123-2.; Khosravi P., Kazemi E., Zhan Q. et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21. https://doi.org/10.1038/s41746-019-0096-y.; Ламоткин А.И., Корабельников Д.И., Ламоткин И.А. и др. Искусственный интеллект в здравоохранении и медицине: история ключевых событий, его значимость для врачей, уровень развития в разных странах. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2024;17(2):243–50. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.254.; Мелдо А.А., Уткин Л.В., Трофимова Т.Н. Искусственный интеллект в медицине: современное состояние и основные направления развития интеллектуальной диагностики. Лучевая диагностика и терапия. 2020;11(1):9–17. https://doi.org/10.22328/2079-5343-2020-11-1-9-17.; Адамян Л.В. Использование искусственного интеллекта в репродуктивной медицине. Проблемы репродукции. 2021;27(3):6–13. https://doi.org/10.17116/repro2021270316.; Hanassab S., Abbara A., Yeung A.C. et al. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med. 2024;7(1):55. https://doi.org/10.1038/s41746-024-01006-x.; Jiang V.S., Pavlovic Z.J., Hariton E. The role of artificial intelligence and machine learning in assisted reproductive technologies. Obstet Gynecol Clin North Am. 2023;50(4):747–62. https://doi.org/10.1016/j.ogc.2023.09.003.; Bormann C.L., Kanakasabapathy M.K., Thirumalaraju P. et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation. Elife. 2020;9:e55301. https://doi.org/10.7554/eLife.55301.; Curchoe C.L., Bormann C., Hammond E. et al. Assuring quality in assisted reproduction laboratories: assessing the performance of ART Compass – a digital art staff management platform. J Assist Reprod Genet. 2023;40(2):265–78. https://doi.org/10.1007/s10815-023-02713-2.; Jiang V.S., Bormann C.L. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil Steril. 2023;120(1):17–23. https://doi.org/10.1016/j.fertnstert.2023.05.149.; Wang R., Pan W., Jin L. et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158(4):R139–R154. https://doi.org/10.1530/REP-18-0523.; Ившин А.А., Багаудин Т.З., Гусев А.В. Искусственный интеллект на страже репродуктивного здоровья. Акушерство и гинекология. 2021;(5):17–24. https://doi.org/10.18565/aig.2021.5.17-24.; Coelho Neto M.A., Ludwin A., Borrell A. et al. Counting ovarian antral follicles by ultrasound: a practical guide. Ultrasound Obstet Gynecol. 2018;51(1):10–20. https://doi.org/10.1002/uog.18945.; Li H., Fang J., Liu S. et al. CR-Unet: A Composite Network for Ovary and Follicle Segmentation in Ultrasound Images. IEEE J Biomed Health Inform. 2020;24(4):974–83. https://doi.org/10.1109/JBHI.2019.2946092.; Mathur P., Kakwani K., Kudavelly S., Ramaraju G.A. Deep learning based quantification of ovary and follicles using 3D transvaginal ultrasound in assisted reproduction. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:2109–12. https://doi.org/10.1109/EMBC44109.2020.9176703.; Yang X., Li H., Wang Y. et al. Contrastive rendering with semi-supervised learning for ovary and follicle segmentation from 3D ultrasound. Med Image Anal. 2021;73:102134. https://doi.org/10.1016/j.media.2021.102134.; Liang X., Liang J., Zeng F. et al. Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound. Reprod Biomed Online. 2022;45(6):1197–206. https://doi.org/10.1016/j.rbmo.2022.07.012.; Noor N., Vignarajan C.P., Malhotra N., Vanamail P. Three-dimensional automated volume calculation (sonography-based automated volume count) versus two-dimensional manual ultrasonography for follicular tracking and oocyte retrieval in women undergoing in vitro fertilization-embryo transfer: a randomized controlled trial. J Hum Reprod Sci. 2020;13(4):296–302. https://doi.org/10.4103/jhrs.JHRS_91_20.; Андреева Е.А., Хонина Н.А., Пасман Н.М., Черных Е.Р. Цитокины в регуляции овариального фолликулогенеза (обзор литературы). Проблемы репродукции. 2017;23(1):8–14. https://doi.org/10.17116/repro20172318-14.; Manna C., Nanni L., Lumini A., Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod Biomed Online. 2013;26(1):42–9. https://doi.org/10.1016/j.rbmo.2012.09.015.; Targosz A., Przystałka P., Wiaderkiewicz R., Mrugacz G. Semantic segmentation of human oocyte images using deep neural networks. Biomed Eng Online. 2021;20(1):40. https://doi.org/10.1186/s12938-021-00864-w.; Fjeldstad J., Qi W., Mercuri N. et al. An artificial intelligence tool predicts blastocyst development from static images of fresh mature oocytes. Reprod Biomed Online. 2024;48(6):103842. https://doi.org/10.1016/j.rbmo.2024.103842.; Boylan C.F., Sambo K.M., Neal-Perry G., Brayboy L.M. Ex ovo omnia-why don't we know more about egg quality via imaging? Biol Reprod. 2024;110(6):1201–12. https://doi.org/10.1093/biolre/ioae080.; Alper M.M., Fauser B.C. Ovarian stimulation protocols for IVF: is more better than less? Reprod Biomed Online. 2017;34(4):345–53. https://doi.org/10.1016/j.rbmo.2017.01.010.; Glujovsky D., Pesce R., Miguens M. et al. How effective are the non-conventional ovarian stimulation protocols in ART? A systematic review and meta-analysis. J Assist Reprod Genet. 2020;37(12):2913–28. https://doi.org/10.1007/s10815-020-01966-5.; Mol B.W., Bossuyt P.M., Sunkara S.K. et al. Personalized ovarian stimulation for assisted reproductive technology: study design considerations to move from hype to added value for patients. Fertil Steril. 2018;109(6):968–79. https://doi.org/10.1016/j.fertnstert.2018.04.037.; Doroftei B., Ilie O.D., Anton N. et al. A narrative review discussing the efficiency of personalized dosing algorithm of follitropin delta for ovarian stimulation and the reproductive and clinical outcomes. Diagnostics. 2023;13(2):177. https://doi.org/10.3390/diagnostics13020177.; Haahr T., Esteves S.C., Humaidan P. Individualized controlled ovarian stimulation in expected poor-responders: an update. Reprod Biol Endocrinol. 2018;16(1):20. https://doi.org/10.1186/s12958-018-0342-1.; Hariton E., Pavlovic Z., Fanton M., Jiang V.S. Applications of artificial intelligence in ovarian stimulation: a tool for improving efficiency and outcomes. Fertil Steril. 2023;120(1):8–16. https://doi.org/10.1016/j.fertnstert.2023.05.148.; AlSaad R., Abd-Alrazaq A., Choucair F. et al. Harnessing artificial intelligence to predict ovarian stimulation outcomes in in vitro fertilization: scoping review. J Med Internet Res. 2024;26:e53396. https://doi.org/10.2196/53396.; Curchoe C.L., Bormann C.L. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 2019;36(4):591–600. https://doi.org/10.1007/s10815-019-01408-x.; Siristatidis C., Stavros S., Drakeley A. et al. Omics and artificial intelligence to improve in vitro fertilization (IVF) success: a proposed protocol. Diagnostics. 2021;11(5):743. https://doi.org/10.3390/diagnostics11050743.; Mann M., Kumar C., Zeng W.F., Strauss M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021;12(8):759–70. https://doi.org/10.1016/j.cels.2021.06.006.; Zieliński K., Pukszta S., Mickiewicz M. et al. Personalized prediction of the secondary oocytes number after ovarian stimulation: a machine learning model based on clinical and genetic data. PLoS Comput Biol. 2023;19(4):e1011020. https://doi.org/10.1371/journal.pcbi.1011020.; Letterie G., MacDonald A., Shi Z. An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions. Reprod Biomed Online. 2022;44(2):254–60. https://doi.org/10.1016/j.rbmo.2021.10.006.; Cesario A., D'Oria M., Bove F. et al. Personalized clinical phenotyping through systems medicine and artificial intelligence. J Pers Med. 2021;11(4):265. https://doi.org/10.3390/jpm11040265.; Ferrand T., Boulant J., He C. et al. Predicting the number of oocytes retrieved from controlled ovarian hyperstimulation with machine learning. Hum Reprod. 2023;38(10):1918–26. https://doi.org/10.1093/humrep/dead163.; Simopoulou M., Sfakianoudis K., Maziotis E. et al. Are computational applications the "crystal ball" in the IVF laboratory? The evolution from mathematics to artificial intelligence. J Assist Reprod Genet. 2018;35(9):1545–57. https://doi.org/10.1007/s10815-018-1266-6.; Basile N., Elkhatib I., Meseguer M. A strength, weaknesses, opportunities and threats analysis on time lapse. Curr Opin Obstet Gynecol. 2019;31(3):148–55. https://doi.org/10.1097/GCO.0000000000000534.; Zaninovic N., Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914–20. https://doi.org/10.1016/j.fertnstert.2020.09.157.; Capalbo A., Rienzi L., Cimadomo D. et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29(6):1173–81. https://doi.org/10.1093/humrep/deu033.; Gardner D.K., Meseguer M., Rubio C., Treff N.R. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21(6):727–47. https://doi.org/10.1093/humupd/dmu064.; Rubio I., Galán A., Larreategui Z. et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–1294.e5. https://doi.org/10.1016/j.fertnstert.2014.07.738.; Meng Q., Xu Y., Zheng A. et al. Noninvasive embryo evaluation and selection by time-lapse monitoring vs. conventional morphologic assessment in women undergoing in vitro fertilization/intracytoplasmic sperm injection: a single-center randomized controlled study. Fertil Steril. 2022;117(6):1203–12. https://doi.org/10.1016/j.fertnstert.2022.02.015.; Fruchter-Goldmeier Y., Kantor B., Ben-Meir A. et al. An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential. Sci Rep. 2023;13(1):14617. https://doi.org/10.1038/s41598-023-40923-x.; Siristatidis C., Pouliakis A., Chrelias C., Kassanos D. Artificial intelligence in IVF: a need. Syst Biol Reprod Med. 2011;57(4):179–85. https://doi.org/10.3109/19396368.2011.558607.; Bori L., Paya E., Alegre L. et al. Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential. Fertil Steril. 2020;114(6):1232–41. https://doi.org/10.1016/j.fertnstert.2020.08.023.; Fordham D.E., Rosentraub D., Polsky A.L. et al. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity? Hum Reprod. 2022;37(10):2275–90. https://doi.org/10.1093/humrep/deac171.; Milewski R., Kuczyńska A., Stankiewicz B., Kuczyński W. How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Adv Med Sci. 2017;62(1):202–6. https://doi.org/10.1016/j.advms.2017.02.001.; Liu X., Lou H., Zhang J. et al. Clinical outcome analysis of frozen-thawed embryo transfer on Day 7. Front Endocrinol. 2022;13:1082597. https://doi.org/10.3389/fendo.2022.1082597.; Canosa S., Licheri N., Bergandi L. et al. A novel machine-learning framework based on early embryo morphokinetics identifies a feature signature associated with blastocyst development. J Ovarian Res. 2024;17(1):63. https://doi.org/10.1186/s13048-024-01376-6.; Luong T.M., Le N.Q.K. Artificial intelligence in time-lapse system: advances, applications, and future perspectives in reproductive medicine. J Assist Reprod Genet. 2024;41(2):239–52. https://doi.org/10.1007/s10815-023-02973-y.; Petersen B.M., Boel M., Montag M., Gardner D.K. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Hum Reprod. 2016;31(10):2231–44. https://doi.org/10.1093/humrep/dew188.; Reignier A., Girard J.M., Lammers J. et al. Performance of Day 5 KIDScore™ morphokinetic prediction models of implantation and live birth after single blastocyst transfer. J Assist Reprod Genet. 2019;36(11):2279–85. https://doi.org/10.1007/s10815-019-01567-x.; Tartia A.P., Wu C.Q., Gale J. et al. Time-lapse KIDScoreD5 for prediction of embryo pregnancy potential in fresh and vitrified-warmed single-embryo transfers. Reprod Biomed Online. 2022;45(1):46–53. https://doi.org/10.1016/j.rbmo.2022.03.019.; Брусиловский И.А., Лившиц И.В. Морфологическая оценка эмбрионов человека. «Коллеги, давайте договоримся!». Проблемы репродукции. 2018;24(2):63–8. https://doi.org/10.17116/repro201824263-68.; Lee C.I., Huang C.C., Lee T.H. et al. Associations between the artificial intelligence scoring system and live birth outcomes in preimplantation genetic testing for aneuploidy cycles. Reprod Biol Endocrinol. 2024;22(1):12. https://doi.org/10.1186/s12958-024-01185-y.; Ueno S., Berntsen J., Ito M. et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study. Fertil Steril. 2021;116(4):1172–80. https://doi.org/10.1016/j.fertnstert.2021.06.001.; Ezoe K., Shimazaki K., Miki T. et al. Association between a deep learning-based scoring system with morphokinetics and morphological alterations in human embryos. Reprod Biomed Online. 2022;45(6):1124–32. https://doi.org/10.1016/j.rbmo.2022.08.098.; Johansen M.N., Parner E.T., Kragh M.F. et al. Comparing performance between clinics of an embryo evaluation algorithm based on time-lapse images and machine learning. J Assist Reprod Genet. 2023;40(9):2129–37. https://doi.org/10.1007/s10815-023-02871-3.; Жигалина Д.И., Скрябин Н.А., Канбекова О.Р. и др. Структура хромосомных аномалий в циклах ЭКО-ПГС. Медицинская генетика. 2019;18(3):47–54. https://doi.org/10.25557/2073-7998.2019.03.47-54.; Alfarawati S., Fragouli E., Colls P. et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95(2):520–4. https://doi.org/10.1016/j.fertnstert.2010.04.003.; Fragouli E. Next generation sequencing for preimplantation genetic testing for aneuploidy: friend or foe? Fertil Steril. 2018;109(4):606–7. https://doi.org/10.1016/j.fertnstert.2018.01.028.; Sato T., Sugiura-Ogasawara M., Ozawa F. et al. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum Reprod. 2019;34(12):2340–8. https://doi.org/10.1093/humrep/dez229.; Cozzolino M., Diaz-Gimeno P., Pellicer A., Garrido N. Evaluation of the endometrial receptivity assay and the preimplantation genetic test for aneuploidy in overcoming recurrent implantation failure. J Assist Reprod Genet. 2020;37(12):2989–97. https://doi.org/10.1007/s10815-020-01948-7.; Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Electronic address: ASRM@asrm.org; Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril. 2018;109(3):429–36. https://doi.org/10.1016/j.fertnstert.2018.01.002.; Fitz V.W., Kanakasabapathy M.K., Thirumalaraju P. et al. Should there be an "AI" in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm. J Assist Reprod Genet. 2021;38(10):2663–70. https://doi.org/10.1007/s10815-021-02318-7.; Buldo-Licciardi J., Large M.J., McCulloh D.H. et al. Utilization of standardized preimplantation genetic testing for aneuploidy (PGT-A) via artificial intelligence (AI) technology is correlated with improved pregnancy outcomes in single thawed euploid embryo transfer (STEET) cycles. J Assist Reprod Genet. 2023;40(2):289–99. https://doi.org/10.1007/s10815-022-02695-7.; Chavez-Badiola A., Flores-Saiffe-Farías A., Mendizabal-Ruiz G. et al. Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod Biomed Online. 2020;41(4):585–93. https://doi.org/10.1016/j.rbmo.2020.07.003.; Diakiw S.M., Hall J.M.M., VerMilyea M. et al. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022;45(6):1105–17. https://doi.org/10.1016/j.rbmo.2022.07.018.; Popovic M., Borot L., Lorenzon A.R. et al. Implicit bias in diagnosing mosaicism amongst preimplantation genetic testing providers: results from a multicenter study of 36395 blastocysts. Hum Reprod. 2024;39(1):258–74. https://doi.org/10.1093/humrep/dead213.; Muñoz E., Bronet F., Lledo B. et al. Representing the Special Interest Group in Reproductive Genetics of the Spanish Society of Fertility. To transfer or not to transfer: the dilemma of mosaic embryos – a narrative review. Reprod Biomed Online. 2024;48(3):103664. https://doi.org/10.1016/j.rbmo.2023.103664.; Greco E., Minasi M.G., Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373(21):2089–90. https://doi.org/10.1056/NEJMc1500421.; Greco E., Greco P.F., Listorti I. et al. The mosaic embryo: what it means for the doctor and the patient. Minerva Obstet Gynecol. 2024;76(1):89–101. https://doi.org/10.23736/S2724-606X.23.05281-8.; Yakovlev P., Vyatkina S., Polyakov A. et al. Neonatal and clinical outcomes after transfer of a mosaic embryo identified by preimplantation genetic testing for aneuploidies. Reprod Biomed Online. 2022;45(1):88–-100. https://doi.org/10.1016/j.rbmo.2022.01.010.; Basile N., Nogales Mdel C., Bronet F. et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699–704. https://doi.org/10.1016/j.fertnstert.2013.12.005.; Li X., Yao Y., Zhao D. et al. Clinical outcomes of single blastocyst transfer with machine learning guided noninvasive chromosome screening grading system in infertile patients. Reprod Biol Endocrinol. 2024;22(1):61. https://doi.org/10.1186/s12958-024-01231-9.; Ortiz J.A., Morales R., Lledó B. et al. Application of machine learning to predict aneuploidy and mosaicism in embryos from in vitro fertilization cycles. AJOG Glob Rep. 2022;2(4):100103. https://doi.org/10.1016/j.xagr.2022.100103.; Ma B.X., Zhao G.N., Yi Z.F. et al. Enhancing clinical utility: deep learning-based embryo scoring model for non-invasive aneuploidy prediction. Reprod Biol Endocrinol. 2024;22(1):58. https://doi.org/10.1186/s12958-024-01230-w.; Zou Y., Pan Y., Ge N. et al. Can the combination of time-lapse parameters and clinical features predict embryonic ploidy status or implantation? Reprod Biomed Online. 2022;45(4):643–51. https://doi.org/10.1016/j.rbmo.2022.06.007.; Yuan Z., Yuan M., Song X. et al. Development of an artificial intelligence based model for predicting the euploidy of blastocysts in PGT-A treatments. Sci Rep. 2023;13(1):2322. https://doi.org/10.1038/s41598-023-29319-z.; Popovic M., Dhaenens L., Boel A. et al. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update. 2020;26(3):313–34. https://doi.org/10.1093/humupd/dmz050.; Diakiw S.M., Hall J.M.M., VerMilyea M.D. et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum Reprod. 2022;37(8):1746–59. https://doi.org/10.1093/humrep/deac131.; Weimar C.H., Post Uiterweer E.D., Teklenburg G. et al. In-vitro model systems for the study of human embryo-endometrium interactions. Reprod Biomed Online. 2013;27(5):461–76. https://doi.org/10.1016/j.rbmo.2013.08.002.; Lacconi V., Massimiani M., Carriero I. et al. When the embryo meets the endometrium: identifying the features required for successful embryo implantation. Int J Mol Sci. 2024;25(5):2834. https://doi.org/10.3390/ijms25052834.; Ruiz-Alonso M., Valbuena D., Gomez C. et al. Endometrial Receptivity Analysis (ERA): data versus opinions. Hum Reprod Open. 2021;2021(2):hoab011. https://doi.org/10.1093/hropen/hoab011.; Li B., Duan H., Wang S. et al. Establishment of an artificial neural network model using immune-infiltration related factors for endometrial receptivity assessment. Vaccines. 2022;10(2):139. https://doi.org/10.3390/vaccines10020139.; Liang X., He J., He L. et al. An ultrasound-based deep learning radiomic model combined with clinical data to predict clinical pregnancy after frozen embryo transfer: a pilot cohort study. Reprod Biomed Online. 2023;47(2):103204. https://doi.org/10.1016/j.rbmo.2023.03.015.; Сысоева А.П., Макарова Н.П., Калинина Е.А. и др. Повышение эффективности вспомогательных репродуктивных технологий с помощью искусственного интеллекта и машинного обучения на эмбриологическом этапе. Акушерство и гинекология. 2020;(7):28–36. https://doi.org/10.18565/aig.2020.7.28-36.; Wald M., Sparks A., Sandlow J. et al. Computational models for prediction of IVF/ICSI outcomes with surgically retrieved spermatozoa. Reprod Biomed Online. 2005;11(3):325–31. https://doi.org/10.1016/s1472-6483(10)60840-1.; Benchaib M., Labrune E., Giscard d'Estaing S. et al. Shallow artificial networks with morphokinetic time-lapse parameters coupled to ART data allow to predict live birth. Reprod Med Biol. 2022;21(1):e12486. https://doi.org/10.1002/rmb2.12486.; Kato K., Ueno S., Berntsen J. et al. Comparing prediction of ongoing pregnancy and live birth outcomes in patients with advanced and younger maternal age patients using KIDScore™ day 5: a large-cohort retrospective study with single vitrified-warmed blastocyst transfer. Reprod Biol Endocrinol. 2021;19(1):98. https://doi.org/10.1186/s12958-021-00767-4.; VerMilyea M., Hall J.M.M., Diakiw S.M. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770–84. https://doi.org/10.1093/humrep/deaa013.; Савельева Г.М., Коноплянников А.Г., Гергерт Е.В. и др. Прегравидарная подготовка у больных с бесплодием и неэффективностью экстракорпорального оплодотворения в анамнезе. Российский вестник акушера-гинеколога. 2019;19(5):43–51. https://doi.org/10.17116/rosakush20191905143.; Доброхотова Ю.Э., Джохадзе Л.С. Комплексная прегравидарная подготовка – реальный путь улучшения перинатальных исходов. Проблемы репродукции. 2019;25(6):38–43. https://doi.org/10.17116/repro20192506138.; Доскина Е.В., Саркисова А.А. Прегравидарная подготовка и особенности пациенток с эндокринными патологиями. Справочник поликлинического врача. 2018;(3):60–4.; Щербакова Л.Н., Гаврикова П.А., Куприян А.А. и др. Значение медикаментозной прегравидарной подготовки в реализации репродуктивной функции при бесплодии, обусловленном наружным генитальным эндометриозом. Клиническая фармакология и терапия. 2018;27(4):18–22.; Kim H.K. The effects of artificial intelligence chatbots on women's health: a systematic review and meta-analysis. Healthcare (Basel). 2024;12(5):534. https://doi.org/10.3390/healthcare12050534.; Segundo E., Carrere-Molina J., Aragón M., Mallol-Parera R. Advancing geospatial preconception health research in primary care through medical informatics and artificial intelligence. Health Place. 2024;89:103337. https://doi.org/10.1016/j.healthplace.2024.103337.; Kaya Y., Bütün Z., Çelik Ö. et al. The early prediction of gestational diabetes mellitus by machine learning models. BMC Pregnancy Childbirth. 2024;24(1):574. https://doi.org/10.1186/s12884-024-06783-7.; Fraire-Zamora J.J., Ali Z.E., Makieva S. et al. #ESHREjc report: on the road to preconception and personalized counselling with machine learning models. Hum Reprod. 2022;37(8):1955–7. https://doi.org/10.1093/humrep/deac111.; Arora U., Sengupta D., Kumar M. et al. Perceiving placental ultrasound image texture evolution during pregnancy with normal and adverse outcome through machine learning prism. Placenta. 2023;140:109–16. https://doi.org/10.1016/j.placenta.2023.07.014.; Демкина Е.А., Иванова Н.А. Правовые и этические аспекты использования искусственного интеллекта в репродуктивной медицине. Вестник Саратовской государственной юридической академии. 2024;3(158):122–7. https://doi.org/10.24412/2227-7315-2024-3-122-127.; Si K., Huang B., Jin L. Application of artificial intelligence in gametes and embryos selection. Hum Fertil. 2023;26(4):757–77. https://doi.org/10.1080/14647273.2023.2256980.; Hogan N.R., Davidge E.Q., Corabian G. On the ethics and practicalities of artificial intelligence, risk assessment, and race. J Am Acad Psychiatry Law. 2021;49(3):326–34. https://doi.org/10.29158/JAAPL.200116-20.; Serdarogullari M., Liperis G., Sharma K. et al. Unpacking the artificial intelligence toolbox for embryo ploidy prediction. Hum Reprod. 2023;38(12):2538–42. https://doi.org/10.1093/humrep/dead223.; Allahbadia G.N., Allahbadia S.G., Gupta A. In contemporary reproductive medicine human beings are not yet dispensable. J Obstet Gynaecol India. 2023;73(4):295–300. https://doi.org/10.1007/s13224-023-01747-x.; Senders J.T., Zaki M.M., Karhade A.V. et al. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir. 2018;160(1):29–38. https://doi.org/10.1007/s00701-017-3385-8.; Horer S., Feichtinger M., Rosner M., Hengstschläger M. Pluripotent stem cell-derived in vitro gametogenesis and synthetic embryos – it is never too early for an ethical debate. Stem Cells Transl Med. 2023;12(9):569–75. https://doi.org/10.1093/stcltm/szad042.; Hengstschläger M. Artificial intelligence as a door opener for a new era of human reproduction. Hum Reprod Open. 2023;2023(4):hoad043. https://doi.org/10.1093/hropen/hoad043.; Harper J., Magli M.C., Lundin K. et al. When and how should new technology be introduced into the IVF laboratory? Hum Reprod. 2012;27(2):303–13. https://doi.org/10.1093/humrep/der414.; Medenica S., Zivanovic D., Batkoska L. et al. The future is coming: artificial intelligence in the treatment of infertility could improve assisted reproduction outcomes – the value of regulatory frameworks. Diagnostics. 2022;12(12):2979. https://doi.org/10.3390/diagnostics12122979.; Драпкина Ю.С., Калинина Е.А., Макарова Н.П. и др. Искусственный интеллект в репродуктивной медицине: этические и клинические аспекты. Акушерство и гинекология. 2022;(11):37–44. https://doi.org/10.18565/aig.2022.11.37-44.; https://www.gynecology.su/jour/article/view/2359
-
2
-
3Academic Journal
Πηγή: Вестник Томского государственного университета. 2023. № 491. С. 82-91
Θεματικοί όροι: репродуктивная медицина, донорство, вспомогательные репродуктивные технологии, экономическая социология
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001009423
-
4Academic Journal
Συγγραφείς: A. M. Polstianoy, K. K. Gubarev, O. Yu. Polstianaya, I. V. Rendashkin, А. М. Полстяной, К. К. Губарев, Ю. О. Полстяная, И. В. Рендашкин
Συνεισφορές: Исследование выполнено в рамках государственного задания за счет средств Федерального медико-биологического агентства.
Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 15, № 1 (2023); 79-88 ; Трансплантология; Том 15, № 1 (2023); 79-88 ; 2542-0909 ; 2074-0506 ; undefined
Θεματικοί όροι: вспомогательные репродуктивные технологии, reproductive medicine, assisted reproductive technologies, репродуктивная медицина
Περιγραφή αρχείου: application/pdf
Relation: https://www.jtransplantologiya.ru/jour/article/view/747/756; https://www.jtransplantologiya.ru/jour/article/view/747/771; Brännström M, Johannesson L, Bokström H, Kvarnström N, Mölne J,Dahm-Kähler P, et al. Livebirth after uterus transplantation. Lancet. 2015;385(9968):607–616. PMID: 25301505 https://doi.org/10.1016/S0140-6736(14)61728-1; Chan YY, Jayaprakasan K, Tan A, Thornton JG, Coomarasamy A, RaineFenning NJ. Reproductive outcomes in women with congenital uterine anomalies: a systematic review. Ultrasound Obstet Gynecol. 2011;38(4):371–382. PMID: 21830244 https://doi.org/10.1002/uog.10056; Sieunarine K, Zakaria FB, Boyle DC, Corlesset DJ, Noakes DE, Lindsay I, et al. Possibilities for fertility restoration: a new surgical technique. Int Surg. 2005;90(5):249–256. PMID: 16625941 https://doi.org/10.1016/j.fertn-stert.2005.07.1229; Brinsden PR. Gestational surrogacy. Hum Reprod Update. 2003;9(5):483–491. PMID: 14640380 https://doi.org/10.1093/humupd/dmg033; Brännström M, Diaz-Garcia C, Hanafy A, Olausson M, Tzakis A. Uterus transplantation: animal research and human possibilities. Fertil Steril. 2012;97(6):1269–1276. PMID: 22542990 https://doi.org/10.1016/j.fertn-stert.2012.04.001; McCulloch P, Altman DG, Campbell WB, Flum DR, Glasziou P, Marshall JC, et al. No surgical innovation without evaluation: the IDEAL recommendations. Lancet. 2009;374(9695):1105–1112. PMID: 19782876 https://doi.org/10.1016/S0140-6736(09)61116-8; El-Akouri RR, Kurlberg G, Dindelegan G, Mölne J, Wallin A, Brännström M. Heterotopic uterine transplantation by vascular anastomosis in the mouse. J Endocrinol. 2002;174(2):157–166. PMID: 12176655 https://doi.org/10.1677/joe.0.1740157; Racho El-Akouri R, Kurlberg G, Brännström M. Successful uterine transplantation in the mouse: pregnancy and postnatal development of offspring. Hum Reprod. 2003;18(10):2018–2023. PMID: 14507815 https://doi.org/10.1093/humrep/deg396; Wranning CA, Akhi SN, Kurlberg G, Brännström M. Uterus transplantation in the rat: model development, surgical learning and morphological evaluation of healing. Acta Obstet Gynecol Scand. 2008;87(11):1239–1247. PMID: 18951268 https://doi.org/10.1080/00016340802484966; Saso S, Petts G, Chatterjee J, Thum MY, David AL, Corless D, et al. Uterine allotransplantation in a rabbit model using aorto-caval anastomosis: a long-term viability study. Eur J Obstet Gynecol Reprod Biol. 2014;182:185–193. PMID: 25306223 https://doi.org/10.1016/j.ejogrb.2014.09.029; Avison DL, DeFaria W, Tryphonopoulos P, Tekin A, Attia GR, Takahashi H, et al. Heterotopic uterus transplantation in a swine model. Transplantation. 2009;88(4):465–469. PMID: 19696628 https://doi.org/10.1097/TP.0b013e3181b07666; Wranning CA, Marcickiewicz J, Enskog A, Dahm-Kähler P, Hanafy A, Brännström M. Fertility after autologous ovine uterine-tubal-ovarian transplantation by vascular anastomosis to the external iliac vessels. Hum Reprod. 2010;25(8):1973–1979. PMID: 20519245 https://doi.org/10.1093/humrep/deq130; Ramirez ER, Ramirez DK, Pillari VT, Vasquez H, Ramirez HA. Modified uterine transplant procedure in the sheep model. J Minim Invasive Gynecol. 2008;15(3):311–314. PMID: 18439503 https://doi.org/10.1016/j.jmig.2008.01.014; Wei L, Xue T, Yang H, Zhao GY, Zhang G, Lu ZH, et al. Modified uterine allotransplantation and immunosuppression procedure in the sheep model. PLoS One. 2013;8(11):e81300. PMID: 24278415 https://doi.org/10.1371/journal.pone.0081300; Gauthier T, Bertin F, Fourcade L, Maubon A, Marcoux FS, Piver P, et al. Uterine allotransplantation in ewes using an aortocava patch. Hum Reprod. 2011;26(11):3028–3036. PMID: 21896546 https://doi.org/10.1093/humrep/der288; Gonzalez-Pinto IM, Tryphonopoulos P, Avison DL, Nishida S, Tekin A, Santiago S, et al. Uterus transplantation model in sheep with heterotopic whole graft and aorta and cava anastomoses. Transplant Proc. 2013;45(5):1802–1804. PMID: 23769047 https://doi.org/10.1016/j.transproceed.2012.08.024; Enskog A, Johannesson L, Chai DC, Dahm-Kähler P, Marcickiewicz J, Nyachieo A, et al. Uterus transplantation in the baboon: methodology and long-term function after auto-transplantation. Hum Reprod. 2010;25(8):1980–1987. PMID: 20519250 https://doi.org/10.1093/humrep/deq109; Johannesson L, Enskog A, DahmKähler P, Hanafy A, Chai DC, Mwenda JM, et al. Uterus transplantation in a non-human primate: long-term followup after autologous transplantation. Hum Reprod. 2012;27(6):1640–1648. PMID: 22454459 https://doi.org/10.1093/humrep/des093; Johannesson L, Enskog A, Mölne J, Diaz-Garcia C, Hanafy A, DahmKähler P, et al. Preclinical report on allogeneic uterus transplantation in non-human primates. Hum Reprod. 2013;28(1):189–198. PMID: 23108346 https://doi.org/10.1093/humrep/des381; Tryphonopoulos P, Tzakis AG, Tekin A, Johannesson L, Rivas K, Morales PR, et al. Allogeneic uterus transplantation in baboons: surgical technique and challenges to long-term graft survival. Transplantation. 2014;98(5):e51–e56. PMID: 25171537 https://doi.org/10.1097/TP.0000000000000322; Kisu I, Mihara M, Banno K, Hara H, Yamamoto T, Araki J, et al. A new surgical technique of uterine autotransplantation in cynomolgus monkey: preliminary report about two cases. Arch Gynecol Obstet. 2012;285(1):129–137. PMID: 21475964 https://doi.org/10.1007/s00404-011-1901-2; Mihara M, Kisu I, Hara H, Iida T, Yamamoto T, Araki J, et al. Uterus autotransplantation in cynomolgus macaques: intraoperative evaluation of uterine blood flow using indocyanine green. Hum Reprod. 2011;26(11):3019–3027. PMID: 21896548 https://doi.org/10.1093/humrep/der276; Kisu I, Mihara M, Banno K, Hara H, Masugi Y, Araki J, et al. Uterus allotransplantation in cynomolgus macaque: A preliminary experience with non-human primate models. J Obstet Gynaecol Res. 2014;40(4):907–918. PMID: 24612366 https://doi.org/10.1111/jog.12302; El-Akouri R, Wranning CA, Mölne J, Kurlberg G, Brännström M, et al. Pregnancy in transplanted mouse uterus after long-term cold ischaemic preservation. Hum Reprod. 2003;18(10):2024–2030. PMID: 14507816 https://doi.org/10.1093/humrep/deg395; Tricard J, Ponsonnard S, Tholance Y, Mesturoux L, Lachatre D, Couquet C, et al. Uterus tolerance to extended cold ischemic storage after auto-transplantation in ewes. Eur J Obstet Gynecol Reprod Biol. 2017;214:162–167. PMID: 28535402 https://doi.org/10.1016/j.ejogrb.2017.05.013; Díaz-García C, Akhi SN, MartínezVarea A, Brännström M. The effect of warm ischemia at uterus transplantation in a rat model. Acta Obstet Gynecol Scand. 2013;92(2):152–159. PMID: 23061896 https://doi.org/10.1111/aogs.12027; Adachi M, Kisu I, Nagai T, Emoto K, Banno K, Umene K, et al. Evaluation of allowable time and histopathological changes in warm ischemia of the uterus in cynomolgus monkey as a model for uterus transplantation. Acta Obstet Gynecol Scand. 2016;95(9):991–998. PMID: 27329637 https://doi.org/10.1111/aogs.12943; Akhi SN, Diaz-Garcia C, ElAkouri RR, Wranning CA, Mölne J, Brännström M, et al. Uterine rejection after allogeneic uterus transplantation in the rat is effectively suppressed by tacrolimus. Fertil Steril. 2013;99(3):862–870. PMID: 23218920 https://doi.org/10.1016/j.fertnstert.2012.11.002; Groth K, Akhi SN, Mölne J, Wranning CA, Brännström M. Effects of immunosuppression by cyclosporine A on allogenic uterine transplant in the rat. Eur J Obstet Gynecol Reprod Biol. 2012;163(1):97-103. PMID: 22502817 https://doi.org/10.1016/j.ejogrb.2012.03.026; El-Akouri RR, Mölne J, Groth K, Kurlberg G, Brännström M. Rejection patterns in allogeneic uterus transplantation in the mouse. Hum Reprod. 2006;21(2):436–442. PMID: 16253976 https://doi.org/10.1093/humrep/dei349; Groth K, Akouri R, Wranning CA, Molne J, Brannstrom M. Rejection of allogenic uterus transplant in the mouse: time-dependent and site-specific infiltration of leukocyte subtypes. Hum Reprod. 2009;24(11):2746–2754. PMID: 19617209 https://doi.org/10.1093/humrep/dep248; Wranning CA, Akhi SN, Diaz-Garcia C, Brannstrom M. Pregnancy after syngeneic uterus transplantation and spontaneous mating in the rat. Hum Reprod. 2011;26(3):553–558. PMID: 21159686 https://doi.org/10.1093/humrep/deq358; Mihara M, Kisu I, Hara H, Iida T, Araki J, Shim T, et al. Uterine autotransplantation in cynomolgus macaques: the first case of pregnancy and delivery. Hum Reprod. 2012;27(8):2332–2340. PMID: 22647448 https://doi.org/10.1093/humrep/des169; Díaz-García C, Akhi SN, Wallin A, Pellicer A, Brännström M. First report on fertility after allogeneic uterus transplantation. Acta Obstet Gynecol Scand. 2010;89(11):1491–1494. PMID: 20879912 https://doi.org/10.3109/00016349.2010.520688; Saso S, Petts G, David AL, Thum MY, Chatterjee J, Vicente JS, et al. Achieving an early pregnancy following allogeneic uterine transplantation in a rabbit model. Eur J Obstet Gynecol Reprod Biol. 2015;185:164–169. PMID: 25590500 https://doi.org/10.1016/j.ejogrb.2014.12.017; Ramirez ER, Ramirez Nessetti DK, Nessetti MB, Khatamee M, Wolfson MR, et al. Pregnancy and outcome of uterine allotransplantation and assisted reproduction in sheep. J Minim Invasive Gynecol. 2011;18(2):238–245. PMID: 21354071 https://doi.org/10.1016/j.jmig.2010.11.006; Díaz-García C, Johannesson L, Shao R, Bilig H, Brännström M. Pregnancy after allogeneic uterus transplantation in the rat: perinatal outcome and growth trajectory. Fertil Steril. 2014;102(6):1545–1552.e1. PMID: 25439799 https://doi.org/10.1016/j.fertnstert.2014.09.010; Wranning C, Mölne J, El-Akouri R, Kurlberg G, Brännström M. Shortterm ischaemic storage of human uterine myometrium-basic studies towards uterine transplantation. Hum Reprod. 2005;20(10):2736–2744. PMID: 15980004 https://doi.org/10.1093/humrep/dei125; Del Priore G, Stega J, Sieunarine K, Ungar L, Smith J. Human uterus retrieval from a multi-organ donor. Obstet Gynecol. 2007;109(1):101–104. PMID: 17197594 https://doi.org/10.1097/01.aog.0000248535.58004.2f; Gauthier T, Piver P, Pichon N, Bibes R, Guillaudeau A, Piccardo A, et al. Uterus retrieval process from brain dead donors. Fertil Steril. 2014;102(2):476–482. PMID: 24837613 https://doi.org/10.1016/j.fertnstert.2014.04.016; Johannesson L, Diaz-Garcia C, Leonhardt H, Dahm-Kähler P, Marcickiewicz J, Olausson M, et al. Vascular pedicle lengths after hysterectomy: toward future human uterus transplantation. Obstet Gynecol. 2012;119(6):1219–1225. PMID: 22617587 https://doi.org/10.1097/AOG.0b013e318255006f; https://www.jtransplantologiya.ru/jour/article/view/747
-
5Academic Journal
Πηγή: Clinical anatomy and operative surgery; Vol. 4 No. 2 (2005); 35-37
Клиническая анатомия и оперативная хирургия; Том 4 № 2 (2005); 35-37
Клінічна анатомія та оперативна хірургія; Том 4 № 2 (2005); 35-37Θεματικοί όροι: лапароскопія, репродуктивна медицина, лапароскопия, репродуктивная медицина, laparoscopy, reproductive medicine, 3. Good health
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://kaos.bsmu.edu.ua/article/view/259482
-
6Academic Journal
Συγγραφείς: Катков, И. И., Болюх, В. Ф., Сухих, Г. Т.
Θεματικοί όροι: медицина, клиническая медицина, биологические методы лечения, клеточные технологии, криоконсервация, криобанки, кинетическая витрификация, эффект Лейденфроста, репродуктивная медицина, регенеративная медицина
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/21663
-
7Academic Journal
Συγγραφείς: СТАЖКОВ А.А.
Θεματικοί όροι: КЛИНИЧЕСКАЯ ПСИХОЛОГИЯ,РЕПРОДУКТИВНАЯ МЕДИЦИНА
Περιγραφή αρχείου: text/html
-
8Dissertation/ Thesis
Συνεισφορές: Меренков, А. В.
Θεματικοί όροι: МОТИВАЦИЯ ДОНОРОВ В РЕПРОДУКЦИИ, ВСПОМОГАТЕЛЬНЫЕ РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ, 5.4.4, СОЦИАЛЬНАЯ СТРУКТУРА, СОЦИАЛЬНЫЕ ИНСТИТУТЫ И ПРОЦЕССЫ, ДОНОРЫ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА, РЕПРОДУКТИВНОЕ ДОНОРСТВО, АВТОРЕФЕРАТЫ, РЕПРОДУКТИВНАЯ МЕДИЦИНА
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/118994
-
9Dissertation/ Thesis
Συνεισφορές: Меренков, А. В.
Θεματικοί όροι: МОТИВАЦИЯ ДОНОРОВ В РЕПРОДУКЦИИ, ВСПОМОГАТЕЛЬНЫЕ РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ, ДИССЕРТАЦИИ, 5.4.4, СОЦИАЛЬНАЯ СТРУКТУРА, СОЦИАЛЬНЫЕ ИНСТИТУТЫ И ПРОЦЕССЫ, ДОНОРЫ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА, РЕПРОДУКТИВНОЕ ДОНОРСТВО, РЕПРОДУКТИВНАЯ МЕДИЦИНА
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/118995
-
10Academic Journal
Συγγραφείς: Nikiforov, O. A., Avramenko, N. V., Mikhailov, V. V.
Πηγή: Aktualʹnì Pitannâ Farmacevtičnoï ì Medičnoï Nauki ta Praktiki, Iss 2, Pp 230-235 (2017)
Актуальні питання фармацевтичної та медичної науки та практики; № 2 (2017)
Current issues in pharmacy and medicine: science and practice; № 2 (2017)
Актуальные вопросы фармацевтической и медицинской науки и практики; № 2 (2017)Θεματικοί όροι: RS1-441, антитіла, безпліддя, репродуктивна медицина, Pharmacy and materia medica, антитела, бесплодие, репродуктивная медицина, antibodies, infertility, reproductive medicine, 3. Good health
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://pharmed.zsmu.edu.ua/article/download/103821/99955
https://doaj.org/article/469c627d908b4b8ab60851c173f69dc6
http://pharmed.zsmu.edu.ua/article/view/103821
https://doaj.org/article/469c627d908b4b8ab60851c173f69dc6
http://pharmed.zsmu.edu.ua/article/download/103821/99955
https://core.ac.uk/display/153679658
http://pharmed.zsmu.edu.ua/article/view/103821 -
11Academic Journal
-
12Academic Journal
Συγγραφείς: Reabenko, E., Рябенко, Е.
Πηγή: Legea şi Viaţa 278 (2/2) 87-90
Θεματικοί όροι: репродукция, репродуктивная медицина, право на репродукцию, репродуктивные права, законодатель- ство
Περιγραφή αρχείου: application/pdf
Relation: info:eu-repo/grantAgreement/EC/FP7/1815/EU//; https://ibn.idsi.md/vizualizare_articol/35537; urn:issn:25874365
Διαθεσιμότητα: https://ibn.idsi.md/vizualizare_articol/35537
-
13Dissertation/ Thesis
Συγγραφείς: Полякова, И. Г.
Thesis Advisors: Меренков, А. В.
Θεματικοί όροι: ДИССЕРТАЦИИ, СОЦИАЛЬНАЯ СТРУКТУРА, СОЦИАЛЬНЫЕ ИНСТИТУТЫ И ПРОЦЕССЫ, РЕПРОДУКТИВНАЯ МЕДИЦИНА, ВСПОМОГАТЕЛЬНЫЕ РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ, РЕПРОДУКТИВНОЕ ДОНОРСТВО, ДОНОРЫ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА, МОТИВАЦИЯ ДОНОРОВ В РЕПРОДУКЦИИ, 5.4.4
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: http://elar.urfu.ru/handle/10995/118995
-
14Dissertation/ Thesis
Συγγραφείς: Полякова, И. Г.
Thesis Advisors: Меренков, А. В.
Θεματικοί όροι: АВТОРЕФЕРАТЫ, СОЦИАЛЬНАЯ СТРУКТУРА, СОЦИАЛЬНЫЕ ИНСТИТУТЫ И ПРОЦЕССЫ, РЕПРОДУКТИВНАЯ МЕДИЦИНА, ВСПОМОГАТЕЛЬНЫЕ РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ, РЕПРОДУКТИВНОЕ ДОНОРСТВО, ДОНОРЫ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА, МОТИВАЦИЯ ДОНОРОВ В РЕПРОДУКЦИИ, 5.4.4
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: http://elar.urfu.ru/handle/10995/118994
-
15Academic Journal
Συγγραφείς: Нікіфоров, О.
Περιγραφή αρχείου: text/html
-
16Academic Journal
Πηγή: Инновационная наука.
Θεματικοί όροι: КЛИНИЧЕСКАЯ ПСИХОЛОГИЯ,РЕПРОДУКТИВНАЯ МЕДИЦИНА
Περιγραφή αρχείου: text/html
-
17Academic Journal
Συγγραφείς: Виктория Николаевна Муха, Вера Александровна Литовка
Πηγή: Sovremennye Issledovaniâ Socialʹnyh Problem, Vol 0, Iss 9 (2013)
Θεματικοί όροι: образ, фотография, дискурсивная интерпретация, репродуктивная медицина, эмоции, ассоциации, Social Sciences
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/6016d07c66604e708071951c79b760bc
-
18Academic Journal
Συγγραφείς: Муха, Виктория, Литовка, Вера
Θεματικοί όροι: ОБРАЗ, ФОТОГРАФИЯ, ДИСКУРСИВНАЯ ИНТЕРПРЕТАЦИЯ, РЕПРОДУКТИВНАЯ МЕДИЦИНА, ЭМОЦИИ, АССОЦИАЦИИ
Περιγραφή αρχείου: text/html
-
19Academic Journal
Συγγραφείς: Литовка, Вера
Θεματικοί όροι: КОНТЕНТ-АНАЛИЗ, ФОТОГРАФИЧЕСКИЕ ОБРАЗЫ, РЕКЛАМНЫЕ ФОТОГРАФИИ, РЕПРОДУКТИВНАЯ МЕДИЦИНА, КЛИНИКА, ВСПОМОГАТЕЛЬНЫЕ РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ
Περιγραφή αρχείου: text/html
-
20Academic Journal
Συγγραφείς: Авраменко, Н., Барковський, Д., Нікіфоров, О., Кабаченко, О., Грідіна, І.
Θεματικοί όροι: ОПТИМіЗАЦіЯ, НАВЧАЛЬНИЙ ПРОЦЕС, РЕПРОДУКТИВНА МЕДИЦИНА, ОПТИМИЗАЦИЯ, УЧЕБНЫЙ ПРОЦЕСС, РЕПРОДУКТИВНАЯ МЕДИЦИНА
Περιγραφή αρχείου: text/html