Εμφανίζονται 1 - 20 Αποτελέσματα από 218 για την αναζήτηση '"РЕПАРАТИВНАЯ РЕГЕНЕРАЦИЯ"', χρόνος αναζήτησης: 0,90δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: Тhe article was prepared with the support of Bausch Health LLC. The position of the authors of the article may differ from the position of Bausch Health LLC, Статья подготовлена при поддержке компании ООО «Бауш Хелс». Позиция авторов статьи может отличаться от позиции компании ООО «Бауш Хелс»

    Πηγή: Ophthalmology in Russia; Том 21, № 4 (2024); 793-801 ; Офтальмология; Том 21, № 4 (2024); 793-801 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2505/1280; MollerPedersen T, Cavanagh HD, Petroll WM, Jester JV. Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1year confocal microscopic study. Ophthalmology. 2000 Jul;107(7):1235– 1245. doi:10.1016/s0161-6420(00)00142-1. PMID: 10889092.; Федоров АА, Куренков ВВ, Каспаров АА, Полунин ГС. Особенности регенераторных процессов в роговице после фоторефракционной кератэктомии. Тезисы докладов 7 съезда офтальмологов России. 2000 ч 2:49.; Румянцева ОА, Ухина ТВ. Изучение патогенеза гиперплазии эпителия и регресса рефракции после фоторефракционной хирургии. Клиническая офтальмология. 2001;1(4):101–104.; Куренков ВВ. Эксимерлазерная хирургия роговицы. М.: Медицина, 1998:134–138. Kurenkov VV. Excimerlaser surgery of the cornea. Moscow, Medicine, 1998:134– 138 (In Russ.).; Ramachandran GN, Bansal M, Bhatnagar RS. A hypothesis on the role of hydroxyproline in stabilizing collagen structure. Biochim Biophys Acta. 1973 Sep 21;322(1):166–171. doi:10.1016/0005-2795(73)90187-6.; Lambiase A, Manni L, Bonini S, Rama P, Micera A, Aloe L. Nerve growth factor promotes corneal healing: structural, biochemical, and molecular analyses of rat and human corneas. Invest Ophthalmol Vis Sci. 2000 Apr;41(5):1063–1069.; Amayem A, AliAT, Waring GO 3rd, Ibrahim O. Bacterial keratitis after photorefractive keratectomy. J Refract Surg. 1996 JulAug;12(5):642–644. doi:10.3928/1081-597X-19960701-19.; Hovanesian JA, Shah SS, Maloney RK. Symptoms of dry eye and recurrent erosion syndrome after refractive surgery. J Cataract Refract Surg. 2001 Apr;27(4):577–584. doi:10.1016/s0886-3350(00)00835-x.; Cordeiro MF, Bhattacharya SS, Schultz GS, Khaw PT. TGFbeta1, beta2, and beta3 in vitro: biphasic effects on Tenon’s fibroblast contraction, proliferation, and migration. Invest Ophthalmol Vis Sci. 2000 Mar;41(3):756–763.; Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003 Jul;83(3):835–870. doi:10.1152/physrev.2003.83.3.835.; Di Girolamo N, Bobba S, Raviraj V, Delic NC, Slapetova I, Nicovich PR, Halliday GM, Wakefield D, Whan R, Lyons JG. Tracing the fate of limbal epithelial progenitor cells in the murine cornea. Stem Cells. 2015 Jan;33(1):157–169. doi:10.1002/stem.1769.; Brunette I, Gresset J, Boivin JF, Pop M, Thompson P, Lafond GP, Makni H. Functional outcome and satisfaction after photorefractive keratectomy. Part 2: survey of 690 patients. Ophthalmology. 2000 Sep;107(9):1790–1796. doi:10.1016/s0161-6420(00)002670.; Stojanovic A, Nitter TA. Correlation between ultraviolet radiation level and the incidence of lateonset corneal haze after photorefractive keratectomy. J Cataract Refract Surg. 2001 Mar;27(3):404–410. doi:10.1016/s0886-3350(00)00742-2.; Patel S, Maheshwari A, Chandra A. Biomarkers for wound healing and their evaluation. J Wound Care. 2016 Jan;25(1):46–55. doi:10.12968/jowc.2016.25.1.46.; Kim JH, Kim MS, Hahn TW, Lee YC, Sah WJ, Park CK. Five years results of photorefractive keratectomy for myopia. J Cataract Refract Surg. 1997 Jun;23(5):731– 735. doi:10.1016/s0886-3350(97)80282-9.; Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J. 2003 Aug 21;2:7. doi:10.1186/1475-2891-2-7.; Mohammed BM, Fisher BJ, Huynh QK, Wijesinghe DS, Chalfant CE, Brophy DF, Fowler AA 3rd, Natarajan R. Resolution of sterile inflammation: role for vitamin C. Mediators Inflamm. 2014;2014:173403. doi:10.1155/2014/173403.; Savini I, Rossi A, Pierro C, Avigliano L, Catani MV. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids. 2008 Apr;34(3):347–355. doi:10.1007/s00726-007-0555-7.; Khurana V, Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Functional characterization and molecular identification of vitamin C transporter (SVCT2) in human corneal epithelial (HCEC) and retinal pigment epithelial (D407) cells. Curr Eye Res. 2015 May;40(5):457-69. doi:10.3109/02713683.2014.93544320.; Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA. A family of mammalian Na+dependent Lascorbic acid transporters. Nature. 1999 May 6;399(6731):70–75. doi:10.1038/19986.; Taniguchi M, Arai N, Kohno K, Ushio S, Fukuda S. Antioxidative and antiaging activities of 2OαglucopyranosylLascorbic acid on human dermal fibroblasts. Eur J Pharmacol. 2012 Jan 15;674(2-3):126–131. doi:10.1016/j.ejphar.2011.11.013.; Gonzalez G, Sasamoto Y, Ksander BR, Frank MH, Frank NY. Limbal stem cells: identity, developmental origin, and therapeutic potential. Wiley Interdiscip Rev Dev Biol. 2018 Mar;7(2):10.1002/wdev.303. doi:10.1002/wdev.303.; Kim JE, Jin DH, Lee SD, Hong SW, Shin JS, Lee SK, Jung DJ, Kang JS, Lee WJ. Vitamin C inhibits p53induced replicative senescence through suppression of ROS production and p38 MAPK activity. Int J Mol Med. 2008 Nov;22(5):651–655.; Moores J. Vitamin C: a wound healing perspective. Br J Community Nurs. 2013 Dec;Suppl:S6, S8–11. doi:10.12968/bjcn.2013.18.sup12.s6.; Brubaker RF, Bourne WM, Bachman LA, McLaren JW. Ascorbic acid content of human corneal epithelium. Invest Ophthalmol Vis Sci. 2000 Jun;41(7):1681–1683.; Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004 Jan 1;9:283–289. doi:10.2741/1184. .; Mohammed BM, Fisher BJ, Kraskauskas D, Ward S, Wayne JS, Brophy DF, Fowler AA 3rd, Yager DR, Natarajan R. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int Wound J. 2016 Aug;13(4):572–584. doi:10.1111/iwj.12484.; Chen J, Lan J, Liu D, Backman LJ, Zhang W, Zhou Q, Danielson P. Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea. Stem Cells Transl Med. 2017 May;6(5):1356–1365. doi:10.1002/sctm.16-0441.; Csorba A, Katona G, BudaiSzűcs M, BaloghWeiser D, Fadda AM, Caddeo C, Takács ÁI, Mátyus P, Balogh GT, Nagy ZZ. Effect of liposomal formulation of ascorbic acid on corneal permeability. Sci Rep. 2023 Mar 1;13(1):3448. doi:10.1038/s41598-023-29290-9.; Bilgihan A, Bilgihan K, Toklu Y, Konuk O, Yis O, Hasanreisoğlu B. Ascorbic acid levels in human tears after photorefractive keratectomy, transepithelial photorefractive keratectomy, and laser in situ keratomileusis. J Cataract Refract Surg. 2001 Apr;27(4):585–588. doi:10.1016/s0886-3350(00)00877-4.; Li M, Chen Z, Liu L, Ma X, Zou J. Topical Vitamin C Promotes the Recovery of Corneal Alkali Burns in Mice. J Ophthalmol. 2021 Dec 23;2021:2406646. doi:10.1155/2021/2406646.; Hayes S, Cafaro TA, Boguslawska PJ, KammaLorger CS, Boote C, Harris J, Young R, Hiller J, Terrill N, Meek KM, Serra HM. The effect of vitamin C deficiency and chronic ultravioletB exposure on corneal ultrastructure: a preliminary investigation. Mol Vis. 2011;17:3107–3015.; Stojanovic A, Ringvold A, Nitter T. Ascorbate prophylaxis for corneal haze after photorefractive keratectomy. J Refract Surg. 2003 MayJun;19(3):338–343. doi:10.3928/1081-597X-20030501-11.; Marriott MP, Birt DF, Stallings VA, Yates AA, eds. “Vitamin C”. Present Knowledge in Nutrition, Eleventh Edition. London, United Kingdom: Academic Press (Elsevier), 2020. P. 155–170. ISBN 978-0-323-66162-1.; Методические рекомендации MP 2.3.1.025321 «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 22 июля 2021 г.).; Carr AC, Lykkesfeldt J. Discrepancies in global vitamin C recommendations: a review of RDA criteria and underlying health perspectives. Crit Rev Food Sci Nutr. 2021;61(5):742–755. doi:10.1080/10408398.2020.1744513.; Chew EY, Clemons TE, Agrón E, Domalpally A, Keenan TDL, Vitale S, Weber C, Smith DC, Christen W; AREDS2 Research Group. Longterm Outcomes of Adding Lutein/Zeaxanthin and ω3 Fatty Acids to the AREDS Supplements on AgeRelated Macular Degeneration Progression: AREDS2 Report 28. JAMA Ophthalmol. 2022 Jul 1;140(7):692–698. doi:10.1001/jamaophthalmol.2022.1640.; Schleicher RL, Carroll MD, Ford ES, Lacher DA. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). The American Journal of Clinical Nutrition. 2009;90(5):1252–1263.; AgeRelated Eye Disease Study Research Group. A randomized, placebocontrolled, clinical trial of highdose supplementation with vitamins C and E, beta carotene, and zinc for agerelated macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001 Oct;119(10):1417–1436. doi:10.1001/archopht.119.10.1417. Erratum in: Arch Ophthalmol. 2008 Sep;126(9):1251.; World Health Organization. “Chapter 7: Vitamin C”. Vitamin and mineral requirements in human nutrition (2nd ed.). Geneva: World Health Organization, 2005. https://en.wikipedia.org/wiki/Vitamin_C; Narayanan S, Kumar SS, Manguvo A, Friedman E. Current Estimates of Serum Vitamin C and Vitamin C Deficiency in the United States. Curr Dev Nutr. 2021 Jun 7;5(Suppl 2):1067. doi:10.1093/cdn/nzab053_060. PMCID: PMC8180804.; https://www.ophthalmojournal.com/opht/article/view/2505

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 19, № 3 (2022); 571-577 ; Офтальмология; Том 19, № 3 (2022); 571-577 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2022-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1924/1016; Xian B., Zhang Y., Peng Y., Huang J., Li W., Wang W., Zhang M., Li K., Zhang H., Zhao M., Liu X., Huang B. Adult Human Peripheral Blood Mononuclear Cells Are Capable of Producing Neurocyte or Photoreceptor-Like Cells That Survive in Mouse Eyes After Preinduction With Neonatal Retina. Stem cells translational medicine. 2016;5(11):1515–1524. DOI:10.5966/sctm.2015-0395; Hu J., Wang Y., Jiao J., Liu Z., Zhao C., Zhou Z., Zhang Z., Forde K., Wang L., Wang J., Baylink D.J., Zhang X.B., Gao S., Yang B., Chen Y.E., Ma P.X. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration. Biomaterials. 2015;73:51–59. DOI:10.1016/j.biomaterials.2015.09.008; Аветисов С.Э., Каспарова Е.А, Каспаров А.А., Суббот А.М., Антохин А.И., Павлюк А.С., Фадеева Л.Л., Феофанов С.А. Персонализированная клеточная терапия. III. Клиническая эффективность при лечении заболеваний, вызванных поражением заднего эпителия роговицы. Гены и клетки. 2018;XII(4):69–74. DOI:10.23868/201812049; Астахов С.Ю., Рикс И.А., Папанян С.С., Каспаров А.А., Каспарова Евг.А., Павлюк А.С., Федотова К. Опыт клинического применения персонализированной клеточной терапии для лечения больных с первичной эндотелиальной дистрофией после факоэмульсификации. Офтальмологические ведомости. 2017;10(4):6–12. DOI:10.17816/OV1046-12; Бикбов М.М., Шевчук Н.Е., Мальханов В.Б. Цитокины в офтальмологии. Уфа: Уфимский полиграфкомбинат; 2008.; Запускалов И.В., Кривошеина О.И. Современная фармакотерапия язвенных поражений роговицы: применение аутологичных мононуклеаров крови. Саабрюкен, Lambert Academic Publishing; 2013.; Патент на изобретение RU 2674237, 05.12.2018. Бюл. № 34. Кривошеина О.И., Дениско М.С., Филиппова Е.О. Способ хирургического лечения эндотелиально-эпителиальной дистрофии роговицы. Доступно по: https://www.fips.ru/ (Ссылка активна на 19.02.2021).; Kado M., Tanaka R., Arita K., Okada K., Ito-Hirano R., Fujimura S., Mizuno H. Human peripheral blood mononuclear cells enriched in endothelial progenitor cells via quality and quantity controlled culture accelerate vascularization and wound healing in a porcine wound model. Cell Transplant. 2018 Jul;27(7):1068–1079. DOI:10.1177/0963689718780307; Italiani P., Boraschi D. Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions. Results Probl Cell Differ. 2017;62:23–43. DOI:10.1007/978-3-319-54090-0_2; Yamaguchi T., Higa K., Suzuki T., Nakayama N., Yagi-Yaguchi Y., Dogru M., Satake Y., Shimazaki J. Elevated Cytokine Levels in the Aqueous Humor of Eyes With Bullous Keratopathy and Low Endothelial Cell Density. Invest Ophthalmol Vis Sci. 2016;Nov 1;57(14):5954–5962. DOI:10.1167/iovs.16-20187; Bhandari V., Reddy J.K., Siddharthan K.S., Singhania N. Simultaneous Descemet’s membrane endothelial keratoplasty and posterior iris-claw-fixated intra ocular lens implantation (IOL) in management of aphakic bullous keratopathy. Int. Ophthalmol. 2016;6(3):305–311. DOI:10.1007/s10792-015-0117-z; https://www.ophthalmojournal.com/opht/article/view/1924

  10. 10
    Academic Journal

    Πηγή: Acta Biomedica Scientifica; Том 7, № 2 (2022); 49-64 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3412/2343; Емельянов В.Ю., Преображенская Е.В., Николаев Н.С. Сравнительная оценка эффективности биофизических методов стимуляции остеогенеза: обзор литературы. Травматология и ортопедия России. 2021; 27(1): 86-96. doi:10.21823/2311-2905-2021-27-1-86-96; Zaiss MM, Frey B, Hess A, Zwerina J, Luther J, Nimmerjahn F, et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 2010; 184(12): 7238-7246. doi:10.4049/jimmunol.0903841; Ding Z-C, Lin Y-K, Gan Y-K, Tang T-T. Molecular pathogenesis of fracture nonunion. J Orthop Translat. 2018; 14: 45-56. doi:10.1016/j.jot.2018.05.002; Zhang J, Yang Y, Yang Z, Li T, Chen F. Snapshot: Targeting macrophages as a candidate for tissue regeneration. Curr Issues Mol Biol. 2018; 29: 37-48. doi:10.21775/cimb.029.037; Мироманов А.М., Гусев К.А., Мироманова Н.А. Влияние полиморфизма гена TGFβ1-25Arg>Pro на экспрессию ростового фактора TGFβ1 у больных с нарушением консолидации переломов в Забайкальском крае. Фундаментальные исследования. 2015; 1(5): 1008-1012.; Гусев К.А., Мироманов А.М., Мироманова Н.А., Витковский Ю.А. Полиморфизм гена EGFR-2073A>T и экс-прессия ростового фактора EGF у больных с нарушением консолидации переломов длинных костей конечностей. Забайкальский медицинский вестник. 2016; 3: 25-29. URL: http://zabmedvestnik.ru/arhiv-nomerov/nomer-3-za-2016-god/polimorfizm-gena-egfr-2073a-t-i-jekspressija-rostovogo-faktoraegf-u-bolnyh-s-narusheniem-konsolidacii-perelomov-dlinnyhkostej-konechnostej/588/5.pdf [дата доступа: 01.12.2021].; Новикова Е.Л., Бакаленко Н.И., Нестеренко А.Ю., Кулакова М.А. НОХ-гены и регенерация у животных. Онтогенез. 2016; 47(4): 209-218. doi:10.7868/S0475145016040078; Zimmermann G, Schmeckenbecher KHK, Boeuf S, Weiss S, Bock R, Moghaddam A, et al. Differential gene expression analysis in fracture callus of patients with regular and failed bone healing. Injury. 2012; 43(3): 347-356. doi:10.1016/j.injury.2011.10.031; Waki T, Lee SY, Niikura T, Iwakura T, Dogaki Y, Okumachi E, et al. Profiling microRNA expression in fracture nonunions: Potential role of microRNAs in nonunion formation studied in a rat model. Bone Joint J. 2015; 97-В(8): 1144-1151. doi:10.1302/0301-620X.97B8.34966; Wang H, Xie Z, Hou T, Li Z, Huang K, Gong J, et al. MiR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b. Cell Physiol Biochem. 2017; 41(2): 530-542. doi:10.1159/000457013; He B, Zhang ZK, Liu J, He YX, Tang T, Li J, et al. Bioinformatics and microarray analysis of miRNAs in aged female mice model implied new molecular mechanisms for impaired fracture healing. Int J Mol Sci. 2016; 17(8): 1260. doi:10.3390/ijms17081260; Guimarães JM, Guimarães IC do V, Duarte MEL, Vieira T, Vianna VF, Fernandes MBC, et al. Polymorphisms in BMP4 and FGFR1 genes are associated with fracture non-union. J Orthop Res. 2013; 31(12): 1971-1979. doi:10.1002/jor.22455; Movchan OS, Olifirenko OI. Autotransplantation native marrow at defective fracture consolidation. Trauma. 2016; 17(2): 69-72. doi:10.22141/1608-1706.2.17.2016.74658; Скрипникова И.А., Алиханова Н.А., Колчина М.А., Мягкова М.А., Косматова О.В. Атеросклероз и остеопороз. Общие мишени для влияния сердечно-сосудистых и антиостеопорозных препаратов (Часть I). Влияние сердечно-сосудистых препаратов на прочность костной ткани. Рациональная фармакотерапия в кардиологии. 2019; 15(1): 69-76. doi:10.20996/1819-6446-2019-15-1-69-76; Парахонский А.П. Механизмы регенерации тканей. Заметки ученого. 2018; 6(31): 10-18.; Матчин А.А., Стадников А.А., Носов Е.В., Кириакиди С.Х. Морфологическая и иммуногистохимическая характеристика процессов заживления экспериментальных переломов нижней челюсти. Журнал анатомии и гистопатологии. 2019; 8(1): 44-48. doi:10.18499/2225-7357-2019-8-1-44-48; Juban G, Chazaud B. Metabolic regulation of macrophages during tissue repair: Insights from skeletal muscle regeneration. FEBS Lett. 2017; 591(19): 3007-3021. doi:10.1002/1873-3468.12703; Schlundt C, Khassawna TEl, Serra A, Dienelt A, Wendler S, Schell H, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone. 2018; 106: 78-89. doi:10.1016/j.bone.2015.10.019; Wu AC, Raggatt LJ, Alexander KA, Pettit AR. Unraveling macrophage contributions to bone repair. Bonekey Rep. 2013; 2: 373. doi:10.1038/bonekey.2013.107; Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne). 2020; 11: 386. doi:10.3389/fendo.2020.00386; Sivanathan KN, Rojas-Canales DM, Hope CM, Krishnan R, Carroll RP, Gronthos S, et al. Interleukin-17A-induced human mesenchymal stem cells are superior modulators of immunological function. Stem Cells. 2015; 33(9): 2850-2863. doi:10.1002/stem.2075; Kim Y-G, Park J-W, Lee J-M, Suh J-Y, Lee J-K, Chang B-S, et al. IL-17 inhibits osteoblast differentiation and bone regeneration in rat. Arch Oral Biol. 2014; 59(9): 897-905. doi:10.1016/j.archoralbio.2014.05.009; Noronha N de C, Mizukami A, Caliari-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019; 10(1): 131. doi:10.1186/s13287-019-1224-y; Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jamsen E, et al. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017; 8(1): 277. doi:10.1186/s13287-017-0730-z; Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Gorgulu A. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther. 2018; 9(1): 286. doi:10.1186/s13287-018-1039-2; Lu Z, Chen Y, Dunstan C, Roohani-Esfahani S, Zreiqat H. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng A. 2017; 23(21-22): 1212-1220. doi:10.1089/ten.tea.2016.0548; Camacho-Cardenosa M, Camacho-Cardenosa A, Timon R, Olcina G, Tomas-Carus P, Brazo-Sayavera J. Can hypoxic conditioning improve bone metabolism? A systematic review. Int J Environ Res Public Health. 2019; 16(10): 1799. doi:10.3390/ijerph16101799; Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm Regen. 2020; 40: 2. doi:10.1186/s41232-019-0111-3; Герштейн Е.С., Тимофеев Ю.С., Зуев А.А., Кушлинский Н.Е. Лиганд-рецепторная система RANK/RANKL/OPG и ее роль при первичных новообразованиях костей (анализ литературы и собственные результаты). Успехи молекулярной онкологии. 2015; 2(3): 51-59. doi:10.17650/2313-805X-2015-2-3-51-59; Walsh MC, Choi Y. Biology of the RANKL–RANK–OPG system in immunity, bone, and beyond. Front. Immunol. 2014; 5: 511. doi:10.3389/fimmu.2014.00511; Baht GS, O’Young J, Borovina A, Chen H, Tye CE, Karttunen M, et al. Phosphorylation of Ser136 is critical for potent bone sialoprotein-mediated nucleation of hydroxyapatite crystals. Biochem J. 2010; 428(3): 385-395. doi:10.1042/BJ20091864; Köttstorfer J, Thomas A, Gregori M, Kecht M, Kaiser G, Eipeldauer S, et al. Are OPG and RANKL involved in human fracture healing? J Orthop Res. 2014; 32(12): 1557-1561. doi:10.1002/jor.22723; Abdallah BM, Stilgren LS, Nissen N, Kassem M, Jorgensen HRI, Abrahamsen B. Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int. 2015; 76(2): 90-97. doi:10.1007/s00223-004-0074-4; Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008; 4(2): 68-75. doi:10.4161/org.4.2.5851; Houschyar KS, Momeni A, Pyles MN, Maan ZN, Whittam AJ, Siemers F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis. 2015; 11(3): 95-104. doi:10.1080/15476278.2015.1086052; Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006; 127(3): 469-480. doi:10.1016/j.cell.2006.10.018; Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, et al. Wnt pathway in bone repair and regeneration – What do we know so far. Front Cell Dev Biol. 2019; 6: 170. doi:10.3389/fcell.2018.00170; MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol. 2012; 4(12): a007880. doi:10.1101/cshperspect.a007880; Enzo MV, Rastrelli M, Rossi CR, Hladnik U, Segat D. The Wnt/beta-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. Mol Cell Ther. 2015; 3: 1. doi:10.1186/s40591-015-0038-2; Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol. 2012; 4(11): a007906. doi:10.1101/cshperspect.a007906; Bao Q, Chen S, Qin H, Feng J, Liu H, Liu D et al. An appropriate Wnt/beta-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Sci. Rep. 2017; 7(1): 2695. doi:10.1038/s41598-017-02705-0; Wang T, Zhang X, Bikle DD. Osteogenic differentiation of periosteal cells during fracture healing. J Cell Physiol. 2017; 232(5): 913-921. doi:10.1002/jcp.25641; Regard JB, Zhong Z, Williams BO, Yang Y. Wnt signaling in bone development and disease: Making stronger bone with Wnts. Cold Spring Harb Perspect Biol. 2012; 4(12): a007997. doi:10.1101/cshperspect.a007997; Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. Carcinogenesis. 2012; 33(3): 483-491. doi:10.1093/carcin/bgr305; Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones. 2007; 6(4): 279-294. doi:10.14310/horm.2002.1111024; Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009; 113(3): 517-525. doi:10.1182/blood-2008-03-145169; Balemans W, Hul WV. The genetics of low-density lipoprotein receptor-related protein 5 in bone: A story of extremes. Endocrinology. 2007; 148(6): 2622-2629. doi:10.1210/en.2006-1352; Schulze J, Seitz S, Saito H, Schneebauer M, Marshall RP, Baranowsky A, et al. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS One. 2010; 5(4): e10309. doi:10.1371/journal.pone.0010309; Cao J, Wei Y, Lian J, Yang L, Zhang X, Xie J, et al. Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int J Mol Med. 2017; 40(2): 378-388. doi:10.3892/ijmm.2017.3037; Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011; 112(12): 3491-3501. doi:10.1002/jcb.23287; Baum R, Gravallese EM. Impact of inflammation on the osteoblast in rheumatic diseases. Curr Osteoporos Rep. 2014; 12(1): 9-16. doi:10.1007/s11914-013-0183-y; Kureel J, John AA, Prakash R, Singh D. MiR 376c inhibits osteoblastogenesis by targeting Wnt3 and ARF-GEF-1-facilitated augmentation of beta-catenin transactivation. J Cell Biochem. 2018; 119(4): 3293-3303. doi:10.1002/jcb.26490; Kang H, Hata A. The role of microRNAs in cell fate determination of mesenchymal stem cells: Balancing adipogenesis and osteogenesis. BMB Rep. 2015; 48(6): 319-323. doi:10.5483/BMBRep.2015.48.6.206; Vimalraj S, Selvamurugan N. MicroRNAs: Synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol. 2013; 15: 7-18.; Peng S, Gao D, Gao C, Wei P, Niu M, Shuai C. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol Med Rep. 2016; 14(1): 623-629. doi:10.3892/mmr.2016.5335; Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, et al. Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res. 2017; 32(12): 2466-2475. doi:10.1002/jbmr.3230; Lojk J, Marc J. Roles of non-canonical Wnt signalling pathways in bone biology. Int J Mol Sci. 2021; 22(19): 10840. doi:10.3390/ijms221910840; Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 2017; 18(6): 375-388. doi:10.1038/nrm.2017.11; Gao B, Song H, Bishop K, Elliot G, Garrett L, English M, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 2011; 20(2): 163-176. doi:10.1016/j.devcel.2011.01.001; Struhl G, Casal J, Lawrence PA. Dissecting the molecular bridges that mediate the function of Frizzled in planar cell polarity. Development. 2012; 139(19): 3665-3674. doi:10.1242/dev.083550; Gao B. Wnt regulation of planar cell polarity (PCP). Curr Top Dev Biol. 2012; 101: 263-295. doi:10.1016/B978-0-12-394592-1.00008-9; Wan Y, Lantz B, Cusack BJ, Szabo-Rogers HL. Prickle1 regulates differentiation of frontal bone osteoblasts. Sci Rep. 2018; 8(1): 18021. doi:10.1038/s41598-018-36742-0; Qiu W, Chen L, Kassem M. Activation of non-canonical Wnt/JNK рathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal). stem cells. Biochem Biophys Res Commun. 2011; 413(1): 98-104. doi:10.1016/j.bbrc.2011.08.061; Hwang S-G, Yu S-S, Lee S-W, Chun J-S. Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett. 2005; 579(21): 4837-4842. doi:10.1016/j.febslet.2005.07.067; Uehara S, Udagawa N, Mukai H, Ishihara A, Maeda K, Yamashita T, et al. Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci Signal. 2017; 10(494): eaan0023. doi:10.1126/scisignal.aan0023; Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bonecartilage interface in osteoarthritis. Int J Mol Sci. 2019; 20(18): 4653. doi:10.3390/ijms20184653; Nam D, Mau E, Wang Y, Wright D, Silkstone D, Whetstone H, et al. T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS One. 2012; 7(6): e40044. doi:10.1371/journal.pone.0040044; Grassi F, Cattini L, Gambari L, Manferdini C, Piacentini A, Gabusi E, et al. T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells in vitro. J Tissue Eng Regen Med. 2016; 10(4): 305-314. doi:10.1002/term.1727; Pacifici R. Osteoimmunology and its implications for transplantation. Am J Transplant. 2013; 13(9): 2245-2254. doi:10.1111/ajt.12380; Ono T, Takayanagi H. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep. 2017; 15(4): 367-375. doi:10.1007/s11914-017-0381-0; Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y, et al. IL-17-producing γδ T cells enhance bone regeneration. Nat Commun. 2016; 7: 10928. doi:10.1038/ncomms10928; Glenn JD, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells. 2014; 6(5): 526-539. doi:10.4252/wjsc.v6.i5.526; Lei H, Schmidt-Bleek K, Dienelt A, Reinke P, Volk H-D. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol. 2015; 6: 184. doi:10.3389/fphar.2015.00184; Reinke S, Geissler S, Taylor WR, Schmidt-Bleek K, Juelke K, Schwachmeyer V, et al. Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Sci Transl Med. 2013; 5(177): 177ra36. doi:10.1126/scitranslmed.3004754; Toben D, Schroeder I, El Khassawna T, Mehta M, Hoffmann J-E, Frisch J-T, et al. Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res. 2011; 26(1): 113-124. doi:10.1002/jbmr.185; Baht GS, Silkstone D, Vi L, Nadesan P, Amani Y, Whetstone H, et al. Erratum: Exposure to a youthful circulation rejuvenates bone repair through modulation of b-catenin. Nat Commun. 2015; 6: 7761. doi:10.1038/ncomms8761; Sun G, Wang Y, Ti Y, Wang J, Zhao J, Qian H. Regulatory B cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating Foxp3 in Treg cells. Clin Exp Pharmacol Physiol. 2017; 44(4): 455-462. doi:10.1111/1440-1681.12719; Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009; 5(12): 667-676. doi:10.1038/nrrheum.2009.217; Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014; 64: 155-165. doi:10.1016/j.bone.2014.03.052; Yang S, Ding W, Feng D, Gong H, Zhu D, Chen B, et al. Loss of B cell regulatory function is associated with delayed healing in patients with tibia fracture. APMIS. 2015; 123(11): 975-985. doi:10.1111/apm.12439; https://www.actabiomedica.ru/jour/article/view/3412

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Сучасні погляди на функціональну морфологію та репаративні властивості печінки / Г. М. Мустафіна, І. І. Старченко, В. М. Кока [та ін.] // Вісник проблем біології і медицини. – 2020. – Вип. 2 (156). – С. 43–48.; https://repository.pdmu.edu.ua/handle/123456789/12851

  16. 16
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: State of the palate tissues reparative regeneration in children after radical uranostaphyloplasty / P. I. Tkachenko, O. B. Dolenko, N. M. Lokhmatova [et al.] // Світ медицини та біології. – 2020. – № 2 (72). – С. 129–133.; https://repository.pdmu.edu.ua/handle/123456789/13012

  17. 17
  18. 18
  19. 19
  20. 20