Showing 1 - 20 results of 279 for search '"РЕМОДЕЛИРОВАНИЕ МИОКАРДА"', query time: 0.80s Refine Results
  1. 1
    Academic Journal

    Source: International Journal of Scientific Pediatrics; Vol. 4 No. 5 (2025): September-October; 1072-1077 ; Международный журнал научной педиатрии; Том 4 № 5 (2025): Сентябрь-Октябрь; 1072-1077 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 4 No. 5 (2025): Sentabr-Oktabr; 1072-1077 ; 2181-2926

    File Description: application/pdf

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    Source: Zdorovʹe Rebenka, Vol 12, Iss 5, Pp 556-561 (2017)
    CHILD`S HEALTH; Том 12, № 5 (2017); 556-561
    Здоровье ребенка-Zdorovʹe rebenka; Том 12, № 5 (2017); 556-561
    Здоров'я дитини-Zdorovʹe rebenka; Том 12, № 5 (2017); 556-561

    File Description: application/pdf

  8. 8
    Academic Journal

    Authors: Dunayeva, I.P.

    Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 13, Iss 1, Pp 18-26 (2017)
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine); Vol. 13 No. 1 (2017); 18-26
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 13 № 1 (2017); 18-26
    Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 13 № 1 (2017); 18-26

    File Description: application/pdf

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Authors: Тащук, B.

    Source: Clinical anatomy and operative surgery; Vol. 6 No. 3 (2007); 106-108
    Клиническая анатомия и оперативная хирургия; Том 6 № 3 (2007); 106-108
    Клінічна анатомія та оперативна хірургія; Том 6 № 3 (2007); 106-108

    File Description: application/pdf

  15. 15
  16. 16
  17. 17
    Academic Journal

    Contributors: The study has no sponsorship. State Assignment No. АААА-А17-117112850280-2, Research Institute of Therapy and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, Государственное задание № АААА-А17-117112850280-2, НИИ терапии и профилактической медицины — филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения РАН», Новосибирск, Российская Федерация

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 3 (2021); 493-503 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 3 (2021); 493-503 ; 2541-8017 ; 2223-9022

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1212/974; https://www.jnmp.ru/jour/article/view/1212/1065; Марцевич С.Ю., Кутишенко Н.П., Сичинава Д.П., Калайджян Е.П., Каспарова Э.А., Загребельный А.В., и др. Основные сердечно-сосудистые осложнения и показатели смертности в течение первых полутра лет после перенесенного инфаркта миокарда: данные проспективного амбулаторного регистра ПРОФИЛЬ-ИМ. Рациональная фармакотерапия в кардиологии. 2020;16(3):432–438. https://doi.org/10.20996/1819-6446-2020-06-11; Galli A, Lombardi F. Postinfarct Left Ventricular Remodelling: A Prevailing Cause of Heart Failure. Cardiol Res Pract. 2016:2579832. PMID: 26989555 https://doi.org/10.1155/2016/2579832; Gabriel-Costa D. The pathophysiology of myocardial infarction-induced heart failure. Pathophysiology. 2018;25(4):277–284. PMID: 29685587 https://doi.org/10.1016/j.pathophys.2018.04.003; Астраханцева И.Д., Урванцева И.А., Воробьев А.С., Николаев К.Ю. Патофизиологические и клинические аспекты кардиопротекции аторвастатином в высоких дозах у пациентов с острым коронарным синдромом. Атеросклероз. 2018;14(3):78–83. https://doi.org/10.15372/ATER20180312; Cannon CP, Braunwald E, McCabe CH, Rader JD, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004; 350(15):1495–1504/ PMID: 15007110 https://doi.org/10.1056/NEJMoa040583; Davidson SM, Ferdinandy P, Andreadou I, Botker HE, Heusch G, Ibanez B, et al. Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury JACC Review Topic of the Week. J Am Coll Cardiol. 2019;73(1):89–99. PMID: 30621955 https://doi.org/10.1016/j.jacc.2018.09.086; Giblett JP, Bulluck H. Cardioprotection for Acute MI in Light of the CONDI2/ERIC-PPCI Trial: New Targets Needed. Interv Cardiol. 2020;15: e13. PMID: 32944081 https://doi.org/10.15420/icr.2020.01; Rossello X, Lobo-Gonzalez M, Ibanez B. Editor’s choice – pathophysiology and therapy of myocardial ischaemia/reperfusion syndrome. Eur Heart J Acute Cardiovasc Care. 2019;8(5):443–456. PMID: 31172789 https://doi.org/10.1177/2048872619845283; García-Prieto J, Villena-Gutierrez R, Gomez M, Bernardo E, PunGarcía A, García-Lunar I, et al. Neutrophil stunning by metoprolol reduces infarct size. Nat Commun. 2017;8:14780. PMID: 28416795 https://doi.org/10.1038/ncomms14780; Lobo-Gonzalez M, Galán-Arriola C, Rossello X, González-Del-Hoyo M, Vilchez JP, Higuero-Verdejo MI, et al. Metoprolol blunts the timedependent progression of infarct size. Basic Res Cardiol. 2020; 115(5):55. PMID: 32748088 https://doi.org/10.1007/s00395-020-0812-4; Астраханцева И.Д., Урванцева И.А., Николаев К.Ю. Применение внутривенных форм бета-адреноблокаторов при остром коронарном синдроме. Атеросклероз. 2017;13(2):50–54.; Chatterjee S, Chaudhuri D, Vedanthan R, Fuster V, Ibanez B, Bangalore S, et al. Early intravenous beta-blockers in patients with acute coronary syndrome – a meta-analysis of randomized trials. Int J Cardiol. 2013;168(2):915–921. PMID: 23168009 https://doi.org/10.1016/j.ijcard.2012.10.050; Ibanez B, Macaya C, Sanchez-Brunete V, Pizarro G, Fernandez-Friera L, Mateos A, et al. Effect of early metoprolol on infarct size in STsegment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARDCNIC) Trial. Circulation. 2013;128(14):1495–1503. PMID: 24002794 https://doi.org/10.1161/CIRCULATIONAHA.113.003653; Roolvink V, Ibanez B. Ottervanger JP, Pizarro G, van Royen N, Mateos A, et al. Early Intravenous Beta-Blockers in Patients With ST-Segment Elevation Myocardial Infarction Before Primary Percutaneous Coronary Intervention. J Am Coll Cardiol. 2016;67(23):2705–2715. PMID: 27050189 https://doi.org/10.1016/j.jacc.2016.03.522; Roolvink V, Ottervanger JP, Ibanez B, Dambrink JH, Gosselink M, Kedhi E, et al. One-year clinical outcome of early administration of intravenous beta-blockers in patients with ST-segment elevation myocardial infarction before primary percutaneous coronary reperfusion. EuroIntervention. 2018;14(6):688–691. PMID: 29155386 https://doi.org/10.4244/EIJ-D-17-00776; Newby LK. Intravenous Beta-Blockers for Cardioprotection in STEMI: The Saga Continues. J Am Coll Cardiol. 2016;67(23):2716–2718. PMID: 27050188 https://doi.org/10.1016/j.jacc.2016.03.532; Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–177. PMID: 28886621 https://doi.org/10.1093/eurheartj/ehx393; Староверов И.И., Шахнович Р.М., Гиляров М.Ю., Комаров А.Л., Константинова Е.В., Панченко Е.П., и др. Евразийские клинические рекомендации по диагностике и лечению острого коронарного синдрома с подъемом сегмента ST (ОКСпST). Евразийский кардиологический журнал. 2020;30(1):4–77. https://doi.org/10.38109/2225-1685-2020-1-4-77; Аверков О.В., Дупляков Д.В., Гиляров М.Ю., Новикова Н.А., Шахнович Р.М, Яковлев А.Н., и др. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):251–310. https://doi.org/10.15829/1560-4071-2020-4103; Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC), Steg P, James S, Atar D. Badano L, Blömstrom-Lundqvist C, Borger M, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–2619. PMID: 22922416 https://doi.org/10.1093/eurheartj/ehs215; Flachskampf FA, Schmid M, Rost С, Achenbach S, Demaria AN, Daniel WG. Cardiac imaging after myocardial infarction. Eur Heart J. 2011;32(3):272–283. PMID: 21163851 https://doi.org/10.1093/eurheartj/ehq446; Kjekshus J, Apetrei E, Barrios V, Böhm M, Cleland JG, Cornel JH, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357(22):2248–2261. PMID: 17984166 https://doi.org/10.1056/NEJMoa0706201; Hirayama A, Kusuoka H, Yamamoto H, Sakata Y, Asakura M, Higuchi Y, et al. Serial changes in plasma brain natriuretic peptide concentration at the infarct and non-infarct sites in patients with left ventricular remodelling after myocardial infarction. Heart. 2005;91(12):1573–1577. PMID: 15774610 http://dx.doi.org/10.1136/hrt.2004.049635; Richards AM, Nicholls MG, Espiner EA, Lainchbury JG, Troughton RW, Elliott J, et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003;107(22):2786–2792. PMID: 12771003 https://doi.org/10.1161/01.CIR.0000070953.76250.B9; https://www.jnmp.ru/jour/article/view/1212

  18. 18
    Academic Journal

    Source: Pharmacogenetics and Pharmacogenomics; № 2 (2020); 8-9 ; Фармакогенетика и фармакогеномика; № 2 (2020); 8-9 ; 2686-8849 ; 2588-0527

    File Description: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/193/189; Алексеев И.А., Давыдов Е.Л. Фармакоэпидемиологический анализ антигипертензивной терапии в пожилом и старческом возрасте // Клиническая геронтология. 2018;9-10:5-7.; Кривощеков С.Г., Суворова И.Ю., Баранов В.И., Шевченко И.В. Генетические предикторы ремоделирования миокарда и работоспособность сердца при гипертонии // Ульяновский медико-биологический журнал. 2017;8(3):135-148.; Саидов М.З., Маммаев С.Н., Абдуллаев А.А. и др. Анализ полиморфизмов генов ренин-ангиотензин-альдостероновой системы и связь с вазопрессорами при эссенциальной артериальной гипертензии с гипертрофией левого желудочка в дагестанской популяции // Российский кардиологический журнал. 2017;10(150):76-84. DOI:10.15829/1560-4071-2017-10-76-84.; Boqian Z, Xinmin S, Yaoyao G. An association between the endothelial nitric oxide synthase gene G894T polymorphism and premature coronary artery disease: a meta-analysis. Oncotarget. 2017;8(44):7799077998.

  19. 19
  20. 20
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 11, № 4 (2019); 311-319 ; Трансплантология; Том 11, № 4 (2019); 311-319 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2019-11-4

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/463/532; https://www.jtransplantologiya.ru/jour/article/view/463/543; Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow-up of Thoratec ventricular assist device bridge-torecovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–521. PMID: 11983540 https://doi.org/10.1016/S1053-2498(01)00408-9; Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–896. PMID: 17761592 https://doi.org/10.1056/NEJMoa067758; Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–2251. PMID: 19920051 https://doi.org/10.1056/NEJMoa0909938; Müller J, Wallukat G, Weng Y, Dandel M, Spiegelsberger S, Semrau S, et al. Weaning from mechanical cardiac support in patients with dilated cardiomyopathy. Circulation. 1997;96(2):542–549. PMID: 9244223 https://doi.org/10.1161/01.cir.96.2.542; Hetzer R, Müller J, Weng Y, Wallukat G, Spiegelsberger S, Loebe M. Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg. 1999;68(2):742–749. PMID: 10475481 https://doi.org/10.1016/S0003-4975(99)00542-1; Dandel M, Weng Y, Sinawski H, Potapov E, Lehmkuhl H B, Hetzer R. Longterm results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation. 2005;112(9Suppl):37–45. PMID: 16159848 https://doi.org/10.1055/s-2005-861953; Frazier OH, Benedect CR, Radovancevic B, Bick RJ, Capek P, Springer WE, et al. Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg. 1996;62(3):675–682. PMID:8783992 https://doi.org/10.1016/S0003-4975(96)00437-7; Hall JL, Fermin DR, Birks EJ, Barton PJ, Slaughter M, Eckman P, et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol. 2011;57(6):641–652. PMID: 21292124 https://doi.org/10.1016/j.jacc.2010.11.010; Akhter SA, D'Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE, et al. Reversal of impaired myocardial beta-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2010;29(6):603–609. PMID: 20202864 https://doi.org/10.1016/j.healun.2010.01.010; Saito S, Matsumiya G, Sakaguchi T, Miyagawa S, Yamauchi T, Kuratani T, et al. Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant. 2010;29(6):672–679. PMID: 20188595 https://doi.org/10.1016/j.healun.2010.01.007; Ogletree ML, Sweet WE, Talerico C, Klecka ME, Young JB, Smedira NG, et al. Duration of left ventricular assist device support: Effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant. 2010;29(5):554–561. PMID: 20044278 https://doi.org/10.1016/j.healun.2009.10.015; Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, et al. Cardiac improvement d uring mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation. 2007;115(19):2497–2505. PMID: 17485581 https://doi.org/10.1161/CIRCULATIONAHA.106.633180; Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4:425–432. PMID: 21540356 https://doi.org/10.1161/CIRCHEARTFAILURE.111.961326; Ferrar DJ, Holmann WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–521. PMID: 11983540 https://doi.org/10.1016/S1053-2498(01)00408-9; Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J, et al. Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation. 2005;112(9Suppl):132–136. PMID: 16159839 https://doi.org/10.1161/CIRCULATIONAHA.104.524124; Birks E J, Tansley P D, Hardy J, George R S, Bowles C T, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failur e. N Engl J Med. 2006;355(18):1873–1884. PMID: 17079761 https://doi.org/10.1056/NEJMoa053063; Dandel M, Weng Y, Siniawski H, Potapov E, Drews T, Lehmkuhl HB, et al. Prediction of cardiac stability after weaning from ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation. 2008;118(14Suppl):S94–105. PMID: 18824777 https://doi.org/10.1161/CIRCULATIONAHA.107.755983; Hetzer R, Dandel M, Knosalla C. Left ventricular assist devices and drug therapy in heart failure. N Engl J Med. 2007;356(8):869–870. PMID: 17314351 https://doi.org/10.1056/NEJMc063394; Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E, et al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J. 2011;32(9):1148–1160. PMID: 20929978 https://doi.org/10.1093/eurheartj/ehq353; Dandel M, Weng Y, Siniawski H, Potapov E, Krabatsch T, Lehmkuhl HB, et al. Pre-explant stability of unloading promoted cardiac improvement predicts outcome after weaning from ventricular assist devices. Circulation. 2012;126(11Suppl):S9–19. PMID: 22965998 https://doi.org/10.1161/CIRCULATIONAHA.111.084640; Swynghedauw B. Molecular mechanisms of myocardial remode ling. Physiol Rev. 1999;79(1):215–262. PMID: 9922372 https://doi.org/10.1152/physrev.1999.79.1.215; van Empel V, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67(1):21–29. PMID:15896727 https://doi.org/10.1016/j.cardiores.2005.04.012; van Empel V, De Windt LJ. Myocyte hypertrophy and apoptosis: a balan cing act. Cardiovasc Res. 2004;63(3):487–499. PMID: 15276474 https://doi.org/10.1016/j.cardiores.2004.02.013; Mann DL. Mechanisms and models in heart failure: A combinatorial approach. Circulation. 1999;100(9):999–1008. PMID: 10468532 https://doi.org/10.1161/01.cir.100.9.999; Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology. 2004;44(5):412–427. PMID: 151399989 https://doi.org/10.1111/j.1365-2559.2004.01835.x; Catena E, Milazzo F. Echocardiography and cardiac assist devices. Minerva Cardioangiol. 2007;55(2):247–265. PMID: 17342042; Scheinin SA, Capek P, Radovancevic B, Duncan JM, McAllister HA Jr, Frazier OH. The effect of prolonged left ventricular support on myocardial histopathology in patients with end-stage cardiomyopathy. ASAIO J. 1992;38(3):M271–M274. PMID: 1457863 https://doi.org/10.1097/00002480-199207000-00035; Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation. 1995;91(11):2717–2720. PMID: 7758175 https://doi.org/10.1161/01.cir.91.11.2717; Razeghi P, Bruckner BA, Sharma S, Youker KA, Frazier OH, Taegtmeyer H. Mechanical unloading of the failing human heart fails to activate the protein kinase B/Akt/glycogen synthase kinase-3beta survival pathway. Cardiology. 2003;100(1):17–22. PMID: 12975541 https://doi.org/10.1159/000072387; Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tjan TD, et al. Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant. 2000;19(7):668-674. PMID: 10930816 https://doi.org/10.1016/S1053-2498(00)00074-7; Nag AC, Zak R. Dissociation of adult mammalian heart into single cell suspension: an ultrastructural study. J Anat. 1979;129(Pt3):541–559. PMID: 120352; Yacoub MH. A novel strategy to maximize the efficacy of left ventricular assist devices as a bridge to recovery. Eur Heart J. 2001;22(7):534–540. PMID: 11259141 https://doi.org/10.1053/euhj.2001.2613; Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular hypertrophy after left ventricular assist device support. Circulation. 1998;98(7):656–662. PMID: 9715858 https://doi.org/10.1161/01.cir.98.7.656; Razeghi P, Taegtmeyer H. Hypertrophy and atrophy of the heart: the other side of remodeling. Ann N Y Acad Sci. 2006;1080:110–119. PMID: 17132779 https://doi.org/10.1196/annals.1380.011; Wohlschlaeger J, Sixt SU, Stoeppler T, Schmitz KJ, Levkau B, Tsagakis K, et al. Ventricular unloading is associated with increased 20s proteasome protein expression in the myocardium. J Heart Lung Transplant. 2010;29(1):125–132 PMID: 19837610 https://doi.org/10.1016/j.healun.2009.07.022; Soppa GK, Barton PJ, Terracciano CM, Yacoub MH. Left ventricular assist device-induced molecular changes in the failing myocardium. Curr Opin Cardiol. 2008;23(3):206–18. PMID: 18382208 https://doi.org/10.1097/HCO.0b013e3282fc7010; Terracciano CM, Hardy J, Birks EJ, Khaghani A, Banner NR, Yacoub MH. Clinical recovery from end-stage heart failure using left-ventricular assist device and pharmacological therapy correlates with increased sarcoplasmic reticulum calcium content but not with regression of cellular hypertrophy. Circulation. 2004;109(19):2263–2265. PMID: 15136495 https://doi.org/10.1161/01. CIR.0000129233.51320.92; Hall JL, Birks EJ, Grindle S, Cullen ME, Barton PJ, Rider JE, et al. Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. Eur Heart J. 2007;28(5):613–627. PMID: 17132651 https://doi.org/10.1093/eurheartj/ehl365; Vatta M, Stetson SJ, Perez-Verdia A, Entman ML, Noon GP, TorreAmione G, et al. Molecular remodelling of dystrophin in patients with endstage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet. 2002;359(9310):936–941. PMID: 11918913 https://doi.org/10.1016/S0140-6736(02)08026-1; Birks EJ, Hall JL, Barton PJ, Grindle S, Latif N, Hardy JP, et al. Gene profiling changes in cytoskeletal proteins during clinical recovery after left ventricular-assist device support. Circulation. 2005;112(9Suppl):I57–I64. PMID: 16159866 https://doi.org/10.1161/CIRCULATIONAHA.104.526137; Latif N, Yacoub MH, George R, Barton PJR, Birks EJ. Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support. J Heart Lung Transplant. 2007;26(3):230–235. PMID: 17346624 https://doi.org/10.1016/j.healun.2006.08.011; de Jonge N, van Wichen DF, Schipper ME, Lahpor JR, Gmelig- Meyling FH, Robles de Medina EO. Left ventricular assist device In end-stage heart failure: persistence of structural myocyte damage after unloa ding: Animmunohistochemical analysis of the contractile myofilaments. J Am Coll Cardiol. 2002;39(6):963–969. PMID: 11897437 https://doi.org/10.1016/S0735-1097(02)01713-8; Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4(4):425–432. PMID: 21540356 https://doi.org/10.1161/CIRCHEARTFAILURE.111.961326; Lee SH, Doliba N, Osbakken M, Oz M, Mancini D. Improvement of myocardial mitochondrial function after hemodynamic support with left ventricular assist devices in patients with heart failure. J Thorac Cardiovasc Surg. 1998;116(2):344–349. PMID: 9699589 https://doi.org/10.1016/S0022-5223(98)70136-9; Mital S, Loke KE, Addonizio LJ, Oz MC, Hintze TH. Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respirationin failing human hearts. J Am Coll Cardiol. 2000;36(6):1897–1902. PMID: 11092662 https://doi.org/10.1016/S0735-1097(00)00948-7; Heerdt PM, Schlame M, Jehle R, Barbone A, Burkhoff D, Blanck TJ. Diseasespecific remodeling of cardiac mitochondria after a left ventricular assist device. Ann Thorac Surg. 2002;73(4):1216–1221. PMID: 11996266 https://doi.org/10.1016/S0003-4975(01)03621-9; Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, et al. Myocardial expression of the arginine: glycineamidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation. 2006;114(1Suppl):I16–I20. PMID: 16820567 https://doi.org/10.1161/CIRCULATIONAHA.105.000448; Doenst T, Abel ED. Spotlight on metabolic remodelling in heart failure. Cardiovasc Res. 2011;90(2):191–193. PMID: 21429943 https://doi.org/10.1093/cvr/cvr077; Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R, et al. Markers of autophagy are down regulated in failing human heart after mechanical unloading. Circulation. 2009;120(11Suppl):S191–S197. PMID: 19752367 https://doi.org/10.1161/CIRCULATIONAHA.108.842252; Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tijan TD, et al. Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant. 2000;19(7):668–674. PMID: 10930816 https://doi.org/10.1016/S1053-2498(00)00074-7; Grabellus F, Schmid C, Levkau B, Breukelmann D, Halloran PF, August C, et al. Reduction of hypoxia-inducible heme oxygenase-1 in the myocardium after left ventricular mechanical support. J Pathol. 2002;197(2):230–237. PMID: 12015748 https://doi.org/10.1002/path.1106; Drakos SG, Kfoury AG, Hammond EH, Reid BB, Revelo MP, Rasmusson BY, et al. Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol. 2010;56(5):382–391. PMID: 20650360 https://doi.org/10.1016/j.jacc.2010.04.019; Manginas A, Tsiavou A, Sfyrakis P, Giamouzis G, Tsourelis L, Leontiadis E, et al. Increased number of circulating progenitor cells after implantation of ventricular assist devices. J Heart Lung Transplant. 2009;28(7):710–717. PMID: 19560700 https://doi.org/10.1016/j.healun.2009.04.006; Wohlschlaeger J, Levkau B, Brockoff G, Schmitz K J, von Winterfeld M, Takeda A, et al. Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation. 2010;121(8):989–996. PMID: 20159834 https://doi.org/10.1161/CIRCULATIONAHA.108.808071; Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, et al. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation. 2005;112(3):364–374. PMID: 15998679 https://doi.org/10.1161/CIRCULATIONAHA.104.515106; Blaxall BC, Tschannen-Moran BM, Milano CA, Koch WJ. Differential gene expression and genomic patient stratification following left ventricular assist device support. J Am Coll Cardiol. 2003;41(7):1096–1106. PMID: 12679207 https://doi.org/10.1016/S0735-1097(03)00043-3; Margulies KB, Matiwala S, Cornejo C, Olsen H, Craven WA, Bednarik D. Mixed messages: transcription patterns in failin g and recovering human myocardium. Circ Res. 2005;96(5):592–599. PMID: 15718504 https://doi.org/10.1161/01.RES.0000159390.03503.c3; Matkovich SJ, VanBooven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, et al. Reciprocal regu lation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119(9):1263–1271. PMID:19237659 https://doi.org/10.1161/CIRCULATIONAHA.108.813576; de Weger RA, Schipper ME, Sierade Koning E, van der Weide P, Quadir R, Lahpor JR, et al. Proteomic profiling of the human failing heart after left ventricular assist device support. J Heart Lung Transplant. 2011;30(5):497–506. PMID: 21211997 https://doi.org/10.1016/j.healun.2010.11.011; Ramani R, Vela D, Segura A, McNamara D, Lemster B, Samarendra V, et al. A micro-ribonucleic acid signature associated with recovery from assist device support in 2 groups of patients with severe heart failure. J Am Coll Cardiol. 2011;58(22):2270–2278. PMID: 22093502 https://doi.org/10.1016/j.jacc.2011.08.041; Bruggink AH, de Jonge N, van Oosterhout MF, van Wichen DF, de Ko ning E, Lahpor JR, et al. Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2006;25(2):174–180. PMID: 16446217 https://doi.org/10.1016/j.healun.2005.09.007; Torre-Amione G, Stetson SJ, Youker KA, Durand JB, Radovancevic B, Delgado RM, et al. Decreased expression of tumor necrosis factor-α in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation. 1999;100(11):1189–1193. PMID: 10484539 https://doi.org/10.1161/01.cir.100.11.1189; Hall JL, Grindle S, Han X, Fermin D, Park S, Chen Y, et al. Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol Genomics. 2004;17(3):283–291. PMID: 14872006 https://doi.org/10.1152/physiolgenomics.00004.2004; James KB, McCarthy PM, Thomas JD, Vargo R, Hobbs RE, Sapp S, et al. Effect of implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation. 1995;92(9Suppl):II191–II195. PMID: 7586406 https://doi.org/10.1161/01.CIR.92.9.191; Drakos SG, Athanasoulis T, Malliaras KG, Terrovitis JV, Diakos N, Koudoumas D, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging. 2010;3(1):64–70. PMID: 20129533 https://doi.org/10.1016/j.jcmg.2009.10.008; Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111(21):2837–2849. PMID: 15927992 https://doi.org/10.1161/CIRCULATIONAHA.104.500546; Mann DL, Burkhoff D. Myocardial expression levels of micro-ribonucleic acids in patients with left ventricular assist devices signature of myocardial recovery, signature of reverse remodeling, or signature with no name? J Am Coll Cardiol. 2011;58(22):2279–81. PMID: 22093503 https://doi.org/10.1016/j.jacc.2011.09.007; Koitabashi N, Kass DA. Reverse remodeling in heart failure-mechanisms and therapeutic opportunities. Nat Rev Cardiol. 2011;9(3):147–157. PMID: 22143079 https://doi.org/10.1038/nrcardio.2011.172; Drakos SG, Kfoury AG, Selzman CH, Verma DR, Nanas JN, Li DY, et al. Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol. 2011;26(3):245–255. PMID: 21451407 https://doi.org/10.1097/HCO.0b013e328345af13; https://www.jtransplantologiya.ru/jour/article/view/463